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Abstract

The ability to objectively measure aspects of performance and behavior is a fundamental pillar of digital health, enabling digital
wellness products, decentralized trial concepts, evidence generation, digital therapeutics, and more. Emerging multimodal
technologies capable of measuring several modalities simultaneously and efforts to integrate inputs across several sources are
further expanding the limits of what digital measures can assess. Experts from the field of digital health were convened as part
of a multi-stakeholder workshop to examine the progress of multimodal digital measures in two key areas: detection of disease
and the measurement of meaningful aspects of health relevant to the quality of life. Here we present a meeting report, summarizing
key discussion points, relevant literature, and finally a vision for the immediate future, including how multimodal measures can
provide value to stakeholders across drug development and care delivery, as well as three key areas where headway will need to
be made if we are to continue to build on the encouraging progress so far: collaboration and data sharing, removal of barriers to
data integration, and alignment around robust modular evaluation of new measurement capabilities.

(J Med Internet Res 2022;24(5):e35951) doi: 10.2196/35951
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Introduction

The field of digital health has become a multibillion dollar
market, powering a paradigm shift by enabling the continuous

capture of multimodal data including activity, sleep, vital signs,
and contextual information. Novel machine learning applications
are pioneering the conversion of these multimodal data into
measures for health-related quality of life (QOL)–relevant
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symptoms like fatigue [1], stress [2], and depression [3,4]. These
insights have the potential to enable improved care delivery [5]
and a deeper understanding of patients’ lived experiences and
better, more personalized medicines. However, important
barriers remain to realize these benefits, both in technical and
social aspects of real-world adoption.

On July 27, 2021, as part of the IEEE-EMBS International
Conference on Biomedical and Health Informatics jointly
organized with the 17th IEEE-EMBS International Conference
on Wearable and Implantable Body Sensor Networks [6], a
workshop was held on “Measuring Quality of Life with

Multimodal Data.” The workshop was divided into two sessions,
the first focusing on disease detection and the second focusing
on the measurement of well-being. Abstracts from the keynotes
and talks are presented in Table 1; this meeting report
summarizes key discussion points, relevant literature, and finally
a vision for the immediate future, including how multimodal
measures can provide value to stakeholders across drug
development and care delivery, as well as three key areas where
headway will need to be made if we are to continue to build on
the encouraging progress so far: collaboration and data sharing,
removal of barriers to data integration, and alignment around
robust modular evaluation of new measurement capabilities.
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Table 1. Talk titles and abstracts for all presented work.

Citations
and further
reading

AbstractTitleAffiliationSpeaker

Session 1: disease detection

[7,8]PGHD from smartphones, wearables, and other sensors have the
potential to transform the way health is measured, with broad-

PGHDa: a new ally for
public health

Evidation HealthAuthor
LF

ranging applications from clinical research to public health and
health care at large. This talk will survey examples of applications
of PGHD across therapeutic areas, including post-op monitoring,
screening for cognitive impairment, and a particular focus on
public health applications for flu and COVID-19 detection and
quantification. Finally, I will discuss lessons learned in translating
PGHD research into benefits for the individual, with emphasis
on the importance of evaluating analytics performance (eg, AU-

ROCb, sensitivity, and specificity) within a specific context of
use of a real-world application.

[9,10]In recent years, DHTTsc such as smartphones and wearables are
becoming an integrated part of clinical research. Augmented by

Digital health technology
tools and quality of life:
examples from current

Roche Pharma Re-
search and Early Devel-
opment, F. Hoffmann-
La Roche Ltd

Author
FL

novel often AId-powered signal processing, they enable continu-
ous and precise measurements of disease symptoms. It is therefore

studies in neurological
disorders

becoming important to link these measures to the different aspects

of QOLe of patients to make them meaningful tools for drug de-
cision-making. In this talk, I will highlight examples from DHTTs
we are developing for neurological disorders such as Parkinson
disease, multiple sclerosis, and Huntington disease. Leveraging
active testing and patient questionnaires accompanied by passive
continuous monitoring in daily life, these tools offer rich sets of
data. General signal processing and dedicated machine learn-
ing/AI solutions are used to unlock these data sets and relate them
back to standard clinical scores of disease severity. I will show
how resulting measures relate to patients’ self-perceived health-
related quality of life, how DHTTs used during COVID-19–in-
duced lockdowns can offer new insights on QOL perception, and
how we envision strengthening the link between novel sensor
measurements and patient-relevant symptoms and impacts.

[11,12]Byteflies’s Sensor Dot platform enables continuous acquisition
of physiologic and behavioral data. We leverage this multimodal

Leveraging multimodal
sensor data to assess com-

BytefliesAuthor
BV

data to move diagnostic tests typically performed in a specializedplex chronic conditions at
home environment to the home of the user and to make longitudinal

assessments of chronic conditions possible. In both cases, an
understanding of the continuous changes in activities of daily
living is crucial for safe and accurate clinical interpretation of
the data. In this talk, I will discuss EpiCare@Home, a remote
epileptic seizure monitoring solution built on top of the Byteflies
platform.
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Citations
and further
reading

AbstractTitleAffiliationSpeaker

[13-15]Background: Anxiety and depression are defined with clinical

interviews in RCTsf, possibly inflating intervention’s/placebo’s
effects. We here introduce an algorithm to identify anxiety and
depression with wearable-measured physiological biomarkers.

Objectives: To validate a machine learning–based algorithm using
wearable unsupervised measurements of the autonomic nervous
system and physiological parameters to classify clinical anxiety
and depression according to validated questionnaires.

Methods: Included were physically healthy workers from the
general population wearing an arm-band wearable device
equipped with photoplethysmogram and electrodermal activity
sensors for 24 hours. Participants answered validated self-report

questionnaires for mental health, including PSS-10g, GAD-7h,

and PHQ-9i. Wearable recordings were subject to artifact removal,
signal preprocessing, and split in 30-second blocks for which
physiological indexes and related features were extracted. A
feature fusion approach was implemented together with the C5.0
machine learning algorithm, which was run on 70% randomly
selected preprocessed blocks, and on the remaining 30% for ex-
ternal validation. Coprimary outcomes were anxiety (GAD-7≥10),
and depression (PHQ-9≥10).

Results: We included 95 participants (yielding 237,778 monitor-
ing blocks), 47.7% females, mean age 37.2 (SD 15.5) years.
Overall, 13.7% had anxiety, 12.6% had depression, and 7.4%
had both. In the main sample, the wearable machine learning al-
gorithm showed excellent accuracy for coprimary outcomes,

namely, AUCj=0.928 for anxiety and AUC=0.959 for depression.

Discussion: Limitations of the study include self-report question-
naires to assess primary outcomes and its cross-sectional nature.
Potential implications of this work include biomarker-based in-
clusion criteria in RCT testing interventions for anxiety and de-
pression, as well as screening and monitoring tools of mental
health issues in the general population. Further studies should
replicate the proposed algorithm against structured interview-
based diagnoses with different wearable devices on clinical
samples, possibly with a longitudinal design.

Unsupervised wearable
and machine learning ap-
proach to identify depres-
sion, anxiety, and stress
physiological phenotypes

Department of Neuro-
science, University of
Padua, Italy; SENSE-
DAT Srl, Padua, Italy

Author
GG

Session 2: measuring well-being

[2,16]Digital phenotyping and machine learning technologies have
shown a potential to measure objective behavioral and physiolog-
ical markers, provide risk assessment for people who might have
a high risk of poor health and well-being, and help make better
decisions or behavioral changes to support health and well-being.
I will introduce a series of studies, algorithms, and systems we
have developed for measuring, predicting, and supporting person-
alized health and well-being. I will also discuss challenges,
learned lessons, and potential future directions in health and well-
being research.

Multimodal sensor data
analysis and modeling for
health and well-being

Rice UniversityAuthor
AS
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Citations
and further
reading

AbstractTitleAffiliationSpeaker

[17,18]Engineered solutions for personal data generation (wearable
sensors, apps, etc) and analysis are proliferating rapidly, but
health services served by these technologies continue to lag be-
hind. Complexity in human diversity stymies algorithm general-
izability and hampers successful wide adoption of any specific
solution. We propose that efforts at expanding engagement in
discovery will achieve two complementary goals: (1) promote
mapping of biological diversity beyond demography and genetics
into physiology and behavior so that algorithms can be developed
on empirically determined subpopulations, and (2) fertilize natural
experiments that will reveal communities sharing needs and goals,
for whom solutions can then be tailored. Efforts to expand engage-
ment may enable a virtuous cycle where iterative improvement
and expansion in precision wellness technologies go from in-
tractable to standard in personal, community, and clinical settings.

The future of health and
wellness discovery is
democratic

UCSDk Department of
Bioengineering and the
Halicioglu Data Science
Institute; Oura

Author
BS

[3,19]Fatigue is both common and burdensome across a range of patient
groups. The manifestation of fatigue is complex, comprising both
subjective and objective changes to cognitive and physical per-
formance, and is determined by a range of factors, including
sleep, mood, time of day, competing demands, and environmental
context, as well as disease-specific variables. These factors, and
consequently the patient’s experience of fatigue, vary with time,
meaning that infrequent in-clinic assessments are likely to be of
limited sensitivity. Given this complexity, we have been interested
in exploring the potential role of digital technologies in capturing
and characterizing fatigue, particularly the impact of fatigue on
cognitive performance, across a range of clinical conditions. This
talk will focus on methods of data collection such as brief active
assessments, voice capture, and passive data from wearable
technology, and describe insights these data provide us into this
complex symptom.

Characterizing fatigue us-
ing digital technologies

Cambridge Cognition;
Department of Psychia-
try, University of Cam-
bridge

Author
FC

[20,21]We are faced with global challenges related to health, food, sus-
tainability, and the environment. While these are formidable
challenges, they also represent a substantial opportunity to im-
prove people’s lives on a global scale while at the same time
creating new economic opportunities. We are convinced nano-
electronics and digital technologies are the key tools for disruptive
solutions. With that purpose in mind, the OnePlanet Research
Center was created as a multidisciplinary collaboration between
imec, Radboud University Medical Center, and Wageningen
University & Research. In OnePlanet, we apply nanoelectronics
and analytics innovations to solve problems related to personal-
ized health, personalized nutrition, mental well-being, sustainable
food production, and reduced environmental impact. The sensors
and data innovations are working toward the creation of digital
twins for prevention, early detection, or interception of disease.

Nanoelectronics and AI for
our (and our planet’s)
health

Connected Health Solu-
tions, imec; OnePlanet
Research Center

Author
CvH
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Citations
and further
reading

AbstractTitleAffiliationSpeaker

[22,23]The boundaries between the consumer and clinical device markets
are becoming leaner every year. This trend is driven by a number
of factors including consumer demand for ubiquitous and con-
stantly accessible health care; increased presence of chronic
conditions (eg, high blood pressure, diabetes, depression, and
obesity); and a corresponding need for preventive health care, an
increasingly aging global population, availability of cost-effective
wearable technology, and remote access to storage and computa-
tion resources. This trend enables substantial opportunities for
providing health care services to larger populations at lower cost.
It will also pave the way to personalized medicine where preven-
tion, diagnosis, and treatment of a disease can be tailored to indi-
viduals’ characteristics and behavior. In this presentation, recent
developments of wearable technologies at MIT Media Lab and
their application to the diagnosis of mental health diseases and
overall well-being are discussed.

Monitoring well-being us-
ing longitudinal passive
data

MIT Media LabAuthor
SF

aPGHD: person-generated health data.
bAUROC: area under the receiver operating characteristic curve.
cDHTT: digital health technology tool.
dAI: artificial intelligence.
eQOL: quality of life.
fRCT: randomized controlled trial.
gPSS-10: Perceived Stress Scale.
hGAD-7: Generalized Anxiety Disorder–7
iPHQ-9: Patient Health Questionnaire.
jAUC: area under the curve.
kUCSD: University of California, San Diego.

Background: A Shared Lexicon

To begin discussions, participants shared their perspectives on
some of the terminology relevant to this emerging area of

research. In Table 2, we restate some of the key points raised
to orientate readers in the following report.

Table 2. Key terms relevant to the discussion. Participants shared terminology relevant to this emerging area of research.

ReferencesDefinitionTerm

[24]Referencing “Multimodal Deep Learning,” multimodal measures are derived from multiple input modalities (eg,
activity, sleep, heart rate, patient-reported outcomes, or contextual data)

Multimodal mea-
sures

[25]An individual’s or a group’s self-perceived physical and mental health over timeHealth-related
quality of life

[26,27]Sensor-derived objective measures arising from “connected digital products.” Includes active tests captured via a
mobile platform and continuous passive data collected from a wearable technology but excludes electronic patient-
reported outcomes and other subjective measures collected from mobile platforms. An all-inclusive term, encom-
passing all stages of maturity, settings, and technologies.

Digital measure

[27]A subset of robustly evaluated digital measures that have successfully pursued acceptance or qualification and can
be used as decision-making evidence in clinical trials

Digital end point

[27]Objective quantifiable physiological and behavioral data that are collected and measured by means of digital devices
such as portables, wearables, implantables, or digestibles. The data collected are typically used to explain, influence,
or predict health-related outcomes.

Digital biomarker

[26]Assessments about how patients feel or function in their daily lives where the information is reported by the patient
themselves, without interpretation or modification by someone else. Note that assessments can cover a wide range
of relevant categories, some of which are more quantifiable and less subjective (including medication use or
symptom presence), and some which are more subjective (including symptom severity and perception of well-being).

Patient-reported
outcome
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Session 1: Disease Detection

The first session focused on the use of multimodal data and
machine learning for disease detection. Detecting deviations
from normal behaviors and processes is a key step in triggering
further actions, whether that be a follow-up with a health care
provider or a direct digital intervention [28-30].

The session started with a keynote from author LF of Evidation
Health, who spoke about how person-generated health data
(PGHD; adapted from [31]) are transforming public health
applications of disease detection. Author LF provided an
overview of how PGHD are being used to detect and measure
disease progression in a range of indications, the use of PGHD
for detecting COVID-19, and the challenges of distinguishing
COVID-19 from other influenza-like illnesses and infections
[7]. LF underlined that machine learning model performance
needs to be evaluated with a specific context of use in mind and
that, without such context, model performance is ultimately of
little relevance in terms of clinical utility and large-scale
adoption. Finally, the keynote closed with a discussion of how
what we classically think of as evidence can be a source of value
to patients themselves, by helping them manage and understand
their own health.

The following talks covered a wide range of indications,
including author FL of Roche who discussed the use of
smartphone-based apps to monitor neurological conditions
including Parkinson disease [9] and multiple sclerosis [10,32].
Author BV shared work from the Byteflies platform showing
how the system is being deployed for longitudinal monitoring
of sleep disorders and cardiorespiratory and neurodegenerative
conditions, and for detecting seizures in epilepsy [11,12].
Finally, author GG presented recent work examining how
unsupervised measurements of autonomic nervous system
signals, including photoplesmography and electrodermal activity
(EDA), are showing value in the detection and staging of mental
health conditions like anxiety and depression, and how these
measures play a complementary role to traditional biomarkers,
becoming a useful tool in enhancing clinical trials and precision
psychiatry [13-15].

The session was closed with a short panel discussion featuring
all the speakers that focused on questions raised by the attendees.
One question addressed the pros and cons of data collection via
bring your own device (BYOD; ie, allowing participants to
connect their own devices) versus data collection via an app
versus provisioned devices. The speakers agreed that there are
different advantages to each approach. For example, BYOD
enables comparison to a personal baseline and has advantages
for device adherence, whereas provisioned devices can enable
higher data uniformity and eliminate barriers to participation
due to lack of access to appropriate hardware. Overall, the key
is to select the right data collection approach for a given setting;
where data consistency or a specific data type or density is
priority, for example, in a smaller randomized controlled trial,
provisioning may be preferred [33]; BYOD may in turn be
preferred in settings where scale becomes limiting or where
long-term “pervasive” monitoring places an emphasis on
measuring ecologically valid natural behavior [34]. It was noted

that while progress has been made around BYOD for
patient-reported outcomes [35-37], similar progress for digital
measures has not been seen and will be a key step in unlocking
the value previously outlined. Another question focused on
challenges to integrating objective (ie, from wearable devices)
and subjective (eg, from surveys of patient-reported outcomes)
inputs. The panel pointed out that many disease detection
applications combine both objective and subjective inputs, for
example, asking participants to confirm a signal or get a
follow-up test. They also pointed out that subjective and
objective inputs measure different aspects, so we should not
expect them to correlate; however, this also means that they
may have different relationships to a given concept of interest
[38]. Thus applications that combine objective and subjective
inputs can have an advantage in signal detection for disease
detection. To help clarify this point, consider the following
example on general well-being: a range of objective
characteristics can be measured that are informative of overall
well-being, including social media activity, patterns of sleep
and activity, news consumption, patterns of independence, and
many other objective data sources; these sources are informative
of several aspects of subjective well-being (eg, perception of
health), but none have a direct relationship to any specific aspect
of subjective well-being, and what relationship there is differs
between individuals [39].

There were also questions on the value of specific objective
features (eg, EDA in stress), and GG discussed how this is a
special case because this objective marker directly measures
autonomic nervous system activation and thus gives a very good
signal on psychological state. This was contrasted against other
objective measures (eg, step counts) that have a more indirect
relationship to symptoms like depression and anxiety.

The panel also discussed the impact of covariates within a cohort
(eg, comorbidities) and how it influences model performance.
Specifically, when trying to derive more “generalizable” models,
which perform well across a broad range of unseen individuals,
there is a need to incorporate a large number of covariates, and
these covariates can have highly varying relevance across
individuals. Progress on this topic has been made in other fields
[40], but it was noted that such considerations are particularly
relevant to multimodal measures.

Session 2: Measuring Well-being

The second session focused on measuring QOL and well-being.
This ever-growing field has seen proof of concepts for measures
across a range of health-related QOL-relevant symptoms,
including fatigue [1,41], depression [3,42,43], stress [2], anxiety
[44], and independence [8,45], and significant resource is being
invested to understand what “wellness” means for diverse
populations [46].

Author AS of Rice University started the session with a keynote
on multimodal sensor data analysis and modeling for health
and well-being, discussing her vision for how measures can
underpin decision support and behavior change interventions.
Her examples included schizophrenia [47], mood, and stress
[16]. She also discussed challenges in in-the-wild multimodal
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data modeling such as model personalization and adaptability
to new users/patients and missing data.

Author BS of the University of California, San Diego then
discussed current limitations in generalizability [48]. He
proposed that the growth of personal sensor devices should
enable us to augment classification by demographics and
genetics, by including time series of physiology and behavior
in our understanding of human diversity [17,18,49]. BS
suggested developing algorithms that account for these
dynamical differences, especially in health and wellness settings.
Author FC of Cambridge Cognition then presented her work
on the measurement of fatigue, which is increasingly understood
to be a highly patient-relevant symptom across a large range of
conditions [50-53]. She discussed the heterogeneity of the
manifestations of fatigue, and their approach to combining active
tests, voice biomarkers, and passive data collection to capture
this complex symptom. Author CvH of imec then presented his
work on digestible sensors and sensorized toilets for examining
gut physiology. Finally, author SF of the Massachusetts Institute
of Technology presented work on digital signals from wearables
and smartphones, with application for the assessment of
depression symptoms [22] and suicidal thoughts [23].

Overall, the panel discussion focused on measuring well-being
as a whole versus specific aspects of QOL. While developing
measures for specific aspects remains highly relevant for clinical
development and treatment—for example, a measure of anxiety
severity enables drug development and management of
diagnosed individuals—personalized measures of general
well-being have substantial application in public health and in
engagement with individuals’ prediagnosis. Advancements to
date have focused more on the former, as the relevance to the
pharmaceutical industry is higher and the validation pathway
is simpler [27]. The former also limits the diversity of experience
captured and so frames an opportunity for reconceptualizing
wellness, health, and QOL derived from broader participation
in mapping individuals’ perceived needs. The panel also
discussed whether it is possible and valuable to stratify mood
predictions (ie, creating semipersonalized models where
individuals with similar manifestations, personas, or journey
stages are grouped together). Stratification based on objective
behavioral data and digital signals can also advance our
understanding of a condition by delineating commonalities
across patients.

Key Discussion Points

Value of Multimodal Measures
Multimodal digital measures have expanded the number of
possibilities for new ways to measure health by capturing an
increasing number of proxies for multiple aspects of functions
related to health. The panel emphasized that such measures are
not a replacement for patient-reported outcomes but additional,
complimentary tools to help understand the patients’ lived
experience, ideally in a low burden and unobtrusive way. The
research priority should therefore focus on measures that matter
when defining patients’ health or general wellness. To achieve
that, a 4-level sequential framework has been recently proposed
by Manta et al [54] to evaluate meaningfulness of digital

measures, namely, meaningful aspects of health, defining the
aspect of a disease to address; specific and targeted concept of
interest; outcome to be measured; and end point, including
methodology and analysis plan to estimate patient improvement
(eg, due to treatment).

While the majority of the research efforts are focusing on the
definition and development of outcome measures, the adoption
and investigation of these outcome measures in clinical trials
as exploratory assessments is key to the development and
validation of end points. The panel highlighted the rapidly
expanding range of digital cognitive decline measures as an
example and the need for the field to do more comparative
studies [3] and patient-centric research [54] to focus efforts
around the most meaningful and valuable candidate measures.
Personalized or individual health trajectories were highlighted
as potentially highly valuable, both to patients and to
stakeholders outside of clinical development, for example, payer
organizations exploring value-based agreements. Personalized
health trajectories will require the possibility to define multiple
health measures of interest, as no single measure will be equally
relevant across individuals and across individual health journeys
[54]. LF pointed to a key enabler being access to “healthy” data
via monitoring of individuals prior to key events or diagnoses
such that individualized baselines and, subsequently,
individualized responses can be observed [8].

In the past decade, and accelerated by the widespread use of
smartphones and other connected digital products, the use of
digital products and devices in clinical trials has grown
substantially, albeit primarily in observational studies and
non–industry-funded clinical trials focusing on wellness [55].
The COVID-19 pandemic has by necessity further accelerated
the adoption of digital health solutions for clinical research in
the context of remote monitoring and telehealth [56].

Examples of the most advanced clinical applications of
multimodal digital data are in Parkinson disease [57-60] and
multiple sclerosis [60,61] with focus on motor function;
cognitive decline in Alzheimer disease [62]; and diagnosis of
depression [3], Friedreich’s ataxia [63], chronic obstructive
pulmonary disease [60,64], and COVID-19 [7,65,66]. Interest
in multimodal digital measures is also growing among early
drug discovery researchers, where personalized medicine
approaches can be enabled by capturing longitudinal information
on patients behaviors and in real-world settings, sometimes
referred to as “digital phenotyping” [67-70]. Indeed digital
measures are seen as a new component of real-world data [71];
thus to drug discovery stakeholders, multimodal measures can
also serve an important role by helping to bridge the gap
between evidence generation in clinical development and
late-phase studies.

Challenges Remaining
As the number of technologies and sources of digital health data
increases, data integration and harmonization remain open
challenges. The panelists identified three key obstacles that will
need to be overcome to maintain momentum in the field.

First, slow and limited collaborative efforts in prioritizing data
sharing will continue to hold back at-scale development and

J Med Internet Res 2022 | vol. 24 | iss. 5 | e35951 | p. 8https://www.jmir.org/2022/5/e35951
(page number not for citation purposes)

Clay et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


evaluation of novel digital measures and end points. Many
companies are starting to realize the value of data sharing
internally to their own walls [67], and increasingly, Findable,
Accessible, Interoperable, Reusable data principles are becoming
a core part of many data strategies [72]. Collaborations like the
Innovative Medicines Initiative project RADAR-BASE [73-75]
and the subsequent impact on a range of projects and application
areas point to a possible path forward and the impact that
precompetitive work in this space can have on productivity.
Furthermore, multimodal sensor data is currently lacking broadly
accepted and adopted common data models [76], which follow
the example of other data types such as genomics and electronic
health records, and have been a catalyst for progress in those
fields; progress is being made [77], but more needs to be done
to drive broad adoption [78]. Progress here will facilitate data
integration, synchronization, and fusion that are often significant
technical challenges at the individual study level when aligning
and analyzing a network of connected devices [79]. A
consequence of this is that substantial resources must be
dedicated to technical challenges, slowing overall progress and
innovation. The impact of better alignment on standards can be
seen, for example, in the impact the Clinical Data Interchange
Standards Consortium (CDISC) [80] has on submission data;
thus it is important that collaborative efforts to make
CDISC-compliant adaptations for digital health data are making
progress [81]. Equally, progress on Fast Healthcare
Interoperability Resources specifically on global standardization
of data formats for digital health applications is encouraging
[82].

Lastly, the rapid evolution of the digital health market and the
short life cycle of wearables and connected devices [83,84] are
challenges for data integration and reproducibility and

generalization of analytical methodologies at the basis of digital
measures and end points. Scaling innovation and efficient
evaluation of new technologies and updated versions of
hardware and software will require adherence to modular
evaluation frameworks [85].

Future advances are expected from cross-industry initiatives to
develop data platforms such as the Digital Medicine Society
sensor integration initiative [78].

Conclusions and Path Forward
With the future of health care in mind, the panelists touched on
a broad range of key takeaways. It is critical to incorporate
practical, representative, and systematic approaches to involving
patients in everyday health decisions [14]. Several examples
discussed highlighted the importance of decision support
systems or outcomes for clinical development and the value of
early engagement with regulators in this space [86]. The
panelists also discussed the significance in bridging the gap
from measures to medicine: clinician confidence. Multimodal
measures and continuous data capture are new concepts and
have not been used by many practitioners, but these methods
have the ability to contextualize observations and provide a
direct connection to patients.

The workshop focused on sharing experiences and perspectives
in the expanding use of multimodal data (multiple
simultaneously collected objective data modalities, contextual
information, and subjective inputs) to detect disease and capture
complex outcomes. Across a wide range of examples, from
infectious diseases to mental health and well-being, the speakers
showcased the progress made and expressed optimism for future
advancement and progression in the field.
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