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Abstract

Background: Chronic pain is a significant worldwide health problem. It has been reported that people with chronic pain
experience decision-making impairments, but these findings have been based on conventional laboratory experiments to date. In
such experiments, researchers have extensive control of conditions and can more precisely eliminate potential confounds. In
contrast, there is much less known regarding how chronic pain affects decision-making captured via laboratory-in-the-field
experiments. Although such settings can introduce more experimental uncertainty, collecting data in more ecologically valid
contexts can better characterize the real-world impact of chronic pain.

Objective: We aim to quantify decision-making differences between individuals with chronic pain and healthy controls in a
laboratory-in-the-field environment by taking advantage of internet technologies and social media.

Methods: A cross-sectional design with independent groups was used. A convenience sample of 45 participants was recruited
through social media: 20 (44%) participants who self-reported living with chronic pain, and 25 (56%) people with no pain or
who were living with pain for <6 months acting as controls. All participants completed a self-report questionnaire assessing their
pain experiences and a neuropsychological task measuring their decision-making (ie, the Iowa Gambling Task) in their web
browser at a time and location of their choice without supervision.

Results: Standard behavioral analysis revealed no differences in learning strategies between the 2 groups, although qualitative
differences could be observed in the learning curves. However, computational modeling revealed that individuals with chronic
pain were quicker to update their behavior than healthy controls, which reflected their increased learning rate (95%
highest–posterior-density interval [HDI] 0.66-0.99) when fitted to the Values-Plus-Perseverance model. This result was further
validated and extended on the Outcome-Representation Learning model as higher differences (95% HDI 0.16-0.47) between the
reward and punishment learning rates were observed when fitted to this model, indicating that individuals with chronic pain were
more sensitive to rewards. It was also found that they were less persistent in their choices during the Iowa Gambling Task compared
with controls, a fact reflected by their decreased outcome perseverance (95% HDI −4.38 to −0.21) when fitted using the
Outcome-Representation Learning model. Moreover, correlation analysis revealed that the estimated parameters had predictive
value for the self-reported pain experiences, suggesting that the altered cognitive parameters could be potential candidates for
inclusion in chronic pain assessments.

Conclusions: We found that individuals with chronic pain were more driven by rewards and less consistent when making
decisions in our laboratory-in-the-field experiment. In this case study, it was demonstrated that, compared with standard statistical
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summaries of behavioral performance, computational approaches offered superior ability to resolve, understand, and explain the
differences in decision-making behavior in the context of chronic pain outside the laboratory.

(J Med Internet Res 2022;24(4):e26307) doi: 10.2196/26307
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Introduction

Background
Chronic pain is defined as pain persisting or reoccurring for
more than 3 to 6 months [1] and has been recognized as one of
the most significant health issues of the 21st century [2,3].
Approximately 100 million adults in the United States
experience chronic pain, resulting in an annual cost of US
$560-635 billion in medical treatment and lost productivity [4].
Worldwide, it is estimated that approximately 20% of the
population lives with chronic pain [5,6]. As a result, there is
significant ongoing research into understanding chronic pain
and supporting people who live with this condition. A key area
of research is the impact of chronic pain on cognitive or
neuropsychological abilities. It has been reported that at least
20% of clinical patients with chronic pain, including those
without a history of mental disorders, complain of cognitive
impairments that cause significant difficulties in their social life
and daily functioning [7]. In other studies, researchers have
found that cognitive deficits occur across a range of pain
conditions, including fibromyalgia [8], migraine [9], chronic
back pain [10], and chronic neuropathic pain [11].

Although pain is an attention-demanding sensory process,
cognitive alterations cannot be simply attributed to the extra
attentional demand from ongoing pain [10]. Functional magnetic
resonance imaging has revealed decreased gray matter density
in the medial prefrontal cortex (mPFC) area [12-14] and less
brain activation in cortical structures during response inhibition
in patients with chronic back pain [15]. These findings are
important as the mPFC also plays a critical role in other
cognitive functions such as decision-making [16], executive
control [17], learning [18], and memory [19]. The latest research
findings have confirmed that reduced glutamate in the mPFC
significantly impairs emotional and cognitive processing in
people with chronic pain [20]. This suggests that chronic pain
may have a negative impact on the mPFC and related neural
structures and could be considered a cognitive state that may
be competing with other cognitive abilities, especially those
involving the mPFC such as decision-making, which is one of
the cognitive domains in which individuals with chronic pain
are commonly impaired.

The Iowa Gambling Task (IGT) developed by Bechara et al
[21] is one of the most widely used neuropsychological
paradigms for simulating complex and experience-based
decision-making. Participants in this task are required to choose
cards from one of 4 decks, two of which (decks A and B) are
good decks and the remaining 2 (decks C and D) being bad
decks. The bad decks yield negative long-term outcomes,
whereas the good decks yield positive long-term outcomes. It
has been successfully used to distinguish various clinical

populations from healthy populations, such as patients with
lesions in the ventromedial prefrontal cortex [22,23],
obsessive-compulsive disorder [24], and even chronic cannabis
use [25-27]. These earlier applications of the IGT found that
healthy controls could learn to choose more frequently from
good decks than from bad ones, whereas clinical populations
tended to more regularly choose from bad decks throughout the
task. With relevance to this discussion, the IGT has also been
applied to investigate abnormalities in decision-making among
people living with various chronic pain conditions, yielding
significant findings. After extracting behavioral responses to
the IGT, Apkarian et al [12] found that patients with chronic
pain more frequently chose cards from bad decks, were less
persistent, and exhibited a negative correlation between
gambling performance outcome and reported intensity of chronic
pain. The participants in the study by Verdejo-García et al [28]
were required to complete both the original IGT, where reward
was immediate and punishment was delayed, and an IGT variant
where punishment was immediate and reward was delayed. The
authors summarized their behavioral choices and found that
women with fibromyalgia had significantly lower scores on the
third block, which was referred to as the hunch period of the
task, on the original IGT, whereas intact performance on the
IGT variant suggested that these patients were hypersensitive
to rewards. Similar results were obtained in the study by
Tamburin et al [10], where people with chronic back pain won
significantly less money relative to healthy controls, and their
IGT scores did not change significantly throughout the task.

Objective
It is worth noting that all the relevant studies to date have been
conducted in a laboratory setting. In these settings, the
participants were under tight experimental control. No study to
date has investigated decision-making tasks such as the IGT in
the context of chronic pain in more natural environments where
the experimenter has much less control. A laboratory-in-the-field
approach is adopted in this study and, although such a setting
can introduce experimental noise and potential confounds that
may bias the results, it is closer to observing more representative
behavior for this population [29]. In addition, carrying out
web-based behavioral experiments is the only entirely risk-free
method currently available under the typical movement
restrictions imposed by the threat of COVID-19. Thus, in this
study, we are interested in investigating the differences in
characterizations of decision-making between individuals with
chronic pain and normal controls in their everyday living
environment. We are also interested in the analysis approaches
that are best able to extract behavioral signals in noisy
experimental environments. In terms of the experimental task,
the participants were required to complete the pain assessments
and the IGT on their web browser in an environment where they
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carried out the task at a location of their choice, at a time of
their choice, and without supervision. To the best of our
knowledge, this is among the first research studies investigating
chronic pain through internet-based technology combining
decision-making tasks and self-reports.

Given the higher variability of data when collection takes place
outside a laboratory setting, conventional behavioral data
statistics may not be sufficient to reveal signals in the noisier
data collected. In previous studies, this conventional analysis
has been based on the measurement of the proportion of choices
from the good decks relative to the bad decks. Furthermore,
these behavioral summaries are agnostic to the underlying
cognitive mechanisms that drive the behavioral performance
on the IGT, thus limiting their interpretability. Therefore, in
this study, we apply computational modeling analysis as a
complementary approach to explicitly decompose behavioral
performance on the IGT into cognitive parameters. It has been
documented that estimated parameters from such models are
able to reveal group differences in cognitive processes despite
the absence of group differences in conventional IGT
measurements [30]. The extracted parameters can then be used
to understand the source of the decision-making alterations. We
hypothesize that the noisier experimental environment might
produce data that reveal little difference between the
experimental groups when considered through conventional
analysis, whereas the filtering enabled by the computational
modeling might reveal significant differences in some
cognitively interpretable parameters. Although computational
modeling analyses have been successfully applied to capture
the complex interplay of cognitive processes for people with a
variety of other health issues [31,32], we have only found 1
reference in which a simple heuristic model was designed to
differentiate the behavioral performance of individuals with
chronic pain and healthy controls on the IGT [33]; thus, the
changes in latent cognitive parameters that drive the impaired
performance of people living with chronic pain remain
unexplored until now. Given that more competitive cognitive
models and more advanced parameter estimation methods have
been developed to more precisely characterize the underlying
cognitive mechanisms, we hypothesize that computational
modeling analysis is more effective in capturing the differences
in decision-making from the data set collected in a
laboratory-in-the-field environment.

Methods

Recruitment
The participants in this study were recruited through social
media and local pain advocacy groups. A total of 64 people,
including 28 (44%) symptomatic participants who had lived
with chronic pain for months and 36 (56%) healthy controls
who had never lived with chronic pain or had experienced pain
for <6 months, were interested in participating in the
experiments. They were directed to a webpage containing the
plain language statement of the experiment. After providing
informed consent, they were linked to a questionnaire and the
IGT through their computer or mobile phone. A total of 8
symptomatic participants and 11 healthy controls were excluded
from the study as they failed to complete the IGT. Thus, a
convenience sample of 45 participants (45/64, 70% of the total)
was recruited finally, consisting of 20 (44%) symptomatic
participants (14/20, 70% women; mean age 40, SD 12 years)
and 25 (56%) healthy controls (12/25, 48% women; mean age
38, SD 12 years). The groups did not significantly differ in age
(P=.43) or proportion of women (P=.07).

Ethics Approval
This study was approved by the local ethics committee of the
School of Computing, Dublin City University
(DCUREC/CA/2019/1).

Assessment of Pain Experience
The Brief Pain Inventory–Short Form (BPI-SF) is a validated,
9-item self-administered questionnaire used to evaluate the
severity of the patient’s pain and its impact on the patient’s
daily functioning. The patient is asked to rate their worst, least,
average, and current pain intensity; list current treatments and
their perceived effectiveness; and rate the degree to which pain
interferes with general activity, mood, walking ability, normal
work, relations with other persons, sleep, and enjoyment of life
on a 10-point scale. The pain interference is then divided into
affective subdimensions (ie, relations with others, enjoyment
of life, and mood [REM]) and activity subdimensions (ie,
walking, general activity, sleep, and work [WASW]). The
BPI-SF has been used with a variety of populations and has
been shown to be a valid and reliable measure with adequate
internal reliability across these studies (eg, α=.86-.96) [34]. A
graphical representation of the conceptual framework of the
measurement is shown in Figure 1.
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Figure 1. A graphical representation of the conceptual framework of the measurement. REM: relations with others, enjoyment of life, and mood
subdimension of the Brief Pain Inventory–Short Form; WASW: walking, general activity, sleep, and work subdimension of the Brief Pain Inventory–Short
Form.

The IGT Paradigm
Participants in the IGT are initially given €2000 (US $2216.10)
in virtual money and presented with 4 decks of cards labeled
A, B, C, and D. Each card in these decks can generate gains and
sometimes cause losses. Participants have to choose 1 card from
these 4 decks consecutively until the task shuts off automatically
after 100 trials. In each trial, feedback on the rewards and losses
of their choice and the running tally over all trials so far are
given to the participants, but no information is given regarding
how many trials they will play and how many trials they have
completed during the task. Participants are instructed that they
can choose cards from any deck and switch decks at any time.
They are also told to make as much money as possible, thus
minimizing losses.

Table 1 shows the payoffs of the 4 decks. As can be seen in the
table, decks A and B are 2 bad decks that generate high
immediate, constant rewards but even higher unpredictable,
occasional losses. Thus, the long-term net outcome associated
with decks A and B is negative. In contrast, decks C and D are
2 good decks that generate low immediate, constant rewards
but even lower unpredictable, occasional losses. Thus, the
long-term net outcome associated with decks C and D is
positive. In addition to the payoff magnitudes, the 4 decks also
differ in the frequency of losses (ie, decks A and C are
associated with a higher frequency of losses, whereas decks B
and D are associated with a lower frequency of losses). The key
to obtaining a higher long-term net outcome in this task is to
explore all the decks in the initial stage and then exploit the 2
good decks (see Figure 2 for the screenshot of the web-based
IGT that we implemented).

Table 1. Summary of the payoff of the Iowa Gambling Task.

Deck D (good deck with
infrequent losses)

Deck C (good deck with
frequent losses)

Deck B (bad deck with
infrequent losses)

Deck A (bad deck with
frequent losses)

5050100100Reward/trial (€)

1515Number of loss trials/10 trials

−250−250−1250−1250Loss/10 trials (€)

250250−250−250Net outcome/10 trials (€)
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Figure 2. Screenshot of the web-based Iowa Gambling Task.

Standard Behavioral Data Analysis
To compare the behavioral differences between the 2 groups in
the IGT, 3 parameters were measured. First, the total amount
of gain at the end of the task was calculated for each participant
to measure their overall performance on the task. An unpaired
2-tailed t test was used to determine if the difference between
the 2 groups was significant on this measure. Second, to obtain
a visual exploration of the group-level deck preferences across
trials, we calculated the proportions of good deck selections
(decks C and D) and the learning IGT scores (ie, the difference
between the number of good deck selections [decks C and D]
and the number of bad deck selections [decks A and B]) across
the task. Specifically, 5 new variables were created through the
division of the 100 trials into 5 blocks of 20 trials each without
overlap. The proportion of good deck selections and the
difference between the number of good deck selections and the
learning score in each block were calculated. In this way, 5
proportions and 5 learning scores, 1 for each block, were
obtained for each participant. The comparison between the 5
learning scores is regarded as an index of learning. A learning
score increasing from the first block to the last block suggests
that a participant is developing a preference for good decks and
an effective selection strategy. Given the repeated learning
scores of the 2 groups over the 5 blocks of trials, a

block-by-group Bayesian repeated-measure analysis of variance
was performed (within-participant factor: block 1-5;
between-participant factor: group healthy vs chronic pain group)
to reveal whether the 2 groups differed in learning curves.

Computational Modeling Analysis

Overview
Poor performance on the IGT can be due to a variety of altered
underlying neurocognitive processes such as poor learning,
memory, hypersensitivity to rewards and losses, or less response
consistency. To more precisely identify the psychological
processes that drive participants’ behavioral performances on
the IGT, multiple cognitive models have been proposed, such
as the Expectancy–Valence Learning model (which is also the
first proposed cognitive model for the IGT) [35], the Prospect
Valence Learning model with Delta (PVL-Delta) [36], the PVL
model with decay (PVL-Decay) [26], and the
Values-Plus-Perseverance (VPP) model [26] (these 3 models
are derived from the original Expectancy–Valence Learning
model but show better performance), as well as the recently
proposed Outcome-Representation Learning (ORL) model [37]
(see Textbox 1 for the parameter specifications of the 4 IGT
models). We fitted the 4 models using the hBayesDM package
in R (R Foundation for Statistical Computing) [38].

Textbox 1. Parameter specifications of the 4 Iowa Gambling Task models.

Models and their parameters

• Prospect Valence Learning (PVL)-Delta (four parameters): outcome sensitivity (α), loss aversion (λ), learning rate (A), and response consistency
(c)

• PVL-Decay (four parameters): outcome sensitivity (α), loss aversion (λ), decay parameter (A), and response consistency (c)

• Values-Plus-Perseverance (eight parameters): outcome sensitivity (α), loss aversion (λ), learning rate (A), decay parameter (K), gain impact
parameter (EPp), loss impact parameter (EPN–), weight parameter (w), and response consistency (c)

• Outcome-Representation Learning (five parameters): reward learning rate (A+), punishment learning rate (A–), decay parameter (K), outcome
frequency weight (βF), and perseverance weight (βp)
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The PVL Models
Both the PVL-Delta and PVL-Decay models consist of a utility
function, a learning rule, and an action selection rule. They are
identical except that they use different learning rules. The utility
function determines the weight given to gains relative to losses.
Both PVL variants applied the Prospect utility function [39]
that featured diminishing sensitivity to increases in magnitude
and different sensitivity to losses versus gains. The utility u(t)
of each net outcome x(t)—that is, the difference between the
amount of rewards and losses—in trial t is calculated as follows:

Where u(t) is the subjective utility of the experienced net
outcome x(t), α is the outcome sensitivity parameter (0<α<1)
that controls the shape of the utility function, and λ is the loss
aversion parameter (0<λ<10) that governs the sensitivity to
losses relative to gains. A higher value of α suggests that
individuals have greater sensitivity to feedback outcomes. A
value of λ<1 indicates that individuals are more sensitive to
gains than to losses, and a value of λ>1 indicates that they are
more sensitive to losses than to gains.

The learning rule in the PVL models is used to update the
expectancies of the decks E(t) based on the subjective utility
value. In the delta rule, a simplified version of the
Rascorla-Wagner rule is applied, in which only the expectancy
of the chosen selection is updated, whereas the expectancies for
other decks remain unchanged: Ei(t + 1) = Ej(t) + A · (u(t) –
Ej(t)) (equation 2), where A is the learning rate parameter
(0≤A≤1) that determines how much weight the decision maker
gives to the recent outcomes when updating expectancies.
However, in the decay rule, the expectancies of all decks are
discounted in each trial except for the chosen deck, which is
updated by the current outcome utility: Ei (t + 1) = A · Ej(t) +
δj(t) · u(t) (equation 3).

Here, A is the decay parameter (0≤A≤1) that determines how
much the past expectancy is discounted, and δj(t) is a dummy
variable that equals 1 when deck i is chosen and 0 otherwise.

The action selection rule generates the choice possibilities Pr(D(t
+ 1) = i) for each deck in the next trial using a softmax function:

Where D(t) is the chosen deck on trial t, θ is assumed to be

trial-independent and set to 3c – 1, and c (0≤c≤5) is a response
consistency parameter. A higher value of c indicates that the
decision maker has a higher tendency to select choices with
higher expected values, which means that they are responding
more deterministically.

VPP Model
The VPP model adds a perseveration term Pi(t) for the chosen
deck i on trial t based on the PVL-Delta model:

K is a decay parameter that determines how much the
perseveration value of each deck is discounted in each trial. The
tendency to perseverate or switch is incremented each time and
updated by a gain impact parameter EPp (–Inf < EPp < Inf) and
a loss impact parameter EPN (–Inf < EPN < Inf) based on whether
the net outcome in the previous trial was a loss or a gain.
Positive values for these parameters indicate stronger tendencies
for decision makers to perseverate the deck chosen in the
previous trial, whereas negative values indicate switching
tendencies.

The expected value and perseveration term are then integrated
into a single-value signal: Vi(t + 1) = w · Ei(t + 1) + (1 – w) ·
Pi(t + 1) (equation 6), where w (0<w<1) is a weight parameter
that controls the weight given to the expected value in each trial.
A greater value of w represents a greater weight given to the
expected value. The values of Vi (t + 1) are then entered into
the softmax function to calculate the probabilities of each option
being chosen.

ORL Model
The recently proposed ORL model assumes that people track
the expected value (EV(t)) and the win frequency (EF(t))
separately. In addition, for positive and negative net outcomes,
the decision makers update the expectancy of the chosen deck
i with different learning rates:

Here, A+ (0<A+<1) and A– (0<A–<1) are the reward and
punishment learning rates, respectively, used to update the
expected value of the chosen deck after rewards and punishment.
The updating process for the win frequency (EF(t)) of the chosen
option is as follows:

Here, A+ and A– are the same learning rates as those used to
update the expected value, and sgn(x(t)) returns 1, 0, or −1 for
positive, 0, or negative outcome values on trial t, respectively.
The expected outcome frequencies for unchosen decks j’ are
also updated in each trial, in which the learning rates are also
shared from the expected value learning rule:

Here, c is the number of alternative choices for the chosen deck
j, which is 3 in the case of the IGT. The ORL model also
assumes that the decision makers have tendencies to stay or
switch their choices regardless of the outcome in the last trial,
and this tendency can be captured by a perseverance weight
(PSi(t)):
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Here, K is the decay parameter that controls how quickly the

past deck selections are forgotten and is determined by K = 3K’

– 1 (equation 11).

K’ ∈ [0,5], so K ∈ [0,242]. A single-value signal for each deck
is then produced by integrating the expected value, frequency,
and perseverance into a linear function: Vi(t + 1) = EVi(t + 1) +
EFi(t + 1) · βF + PSi(t + 1) · βp (equation 12).

βF (–Inf < βF < Inf) and βp (–Inf < βp < Inf) are 2-weight
parameters that reflect the weight given to the outcome
frequency and perseverance, respectively, relative to the

expected value of each deck. Finally, the probability of each
choice is determined by passing the expected values through
the softmax function:

Results

Overview
Individuals living with chronic pain (n=20) and healthy controls
(n=25) completed the web-based BPI-SF and the original version
of the IGT at a location of their choice and at a time of their
choice without supervision. The full demographic information
is presented in Table 2.

Table 2. Demographic information for the healthy controls and people living with chronic pain (N=45).

P valuecParticipants with chronic pain (n=20),b mean (SD; range)Healthy controls (n=25),a mean (SD; range)Characteristic

.4340.2 (11.9; 23-62)37.2 (12.5; 24-63)Age (years)

<.00178.6 (76.3; 6-264)1.2 (1.3; 0-5)Pain duration (months)

.0044.3 (2.3; 0-8)2.07 (2.5; 0-10)Pain severity

.0074.6 (3.3; 0-9)2.0 (2.9; 0-9.3)Interference (REMd)

.0044.2 (2.5; 0-8.5)1.9 (2.6; 0-8.3)Interference (WASWe)

a12 females.
b14 females.
cP value for females was .07.
dREM: relations with others, enjoyment of life, and mood subdimension of the Brief Pain Inventory–Short Form.
eWASW: walking, general activity, sleep, and work subdimension of the Brief Pain Inventory–Short Form.

Self-report Analysis
As expected, individuals with chronic pain demonstrated higher
levels of pain severity (t43=–3.06; P=.004; Cohen d=–0.92, 95%
CI −3.64 to −0.75), and their daily activities were more
influenced by pain (t43=–3.05; P=.004; d=–0.92, 95% CI −4.1
to −0.83) in comparison with healthy controls. Moreover,
individuals living with chronic pain reported higher levels of

subdimensional interference in REM (t43=–2.86; P=.007;
d=–0.86, 95% CI −4.50 to −0.78) and WASW (t43=–3.02;
P=.004; d=–0.91, 95% CI −3.84 to −0.77). As expected, pain
severity was strongly correlated with pain interference (r40=0.78,
95% CI 0.63-0.88; logBF10=7.18; P<.001). The 2
subdimensional interferences were positively correlated
(r40=0.87, 95% CI 0.76-0.93; logBF10=10.8; P<.001) as well
(Figure 3).
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Figure 3. Pain severity plotted against pain interference (left) and activity subdimension plotted against affective subdimension (right). Healthy controls
(n=25) are plotted in red, and people living with chronic pain (n=20) are plotted in blue. The r values were calculated between the paired pain measures
for the whole sample (*P<.5, **P<.01, ***P<.001). REM: relations with others, enjoyment of life, and mood subdimension of the Brief Pain
Inventory–Short Form; WASW: walking, general activity, sleep, and work subdimension of the Brief Pain Inventory–Short Form.

Standard Behavioral Data Analysis
The total amount of gain at the end of the IGT did not
significantly differ between individuals with chronic pain (€;
mean 1997, SD 1187) and healthy controls (mean 1756, SD
645; t43=0.81; P=.42). However, pain severity was significantly
correlated with total gain (r43=–0.39, 95% CI −0.62 to −0.11;
P=.008; Figure 4). Figure 5 shows the proportion of choices
from each deck as a function of the 5 blocks for the healthy and
chronic pain groups separately and the proportion of choices
from the good and bad decks. The choice pattern of the chronic
pain group was qualitatively different (visual inspection of plots)
from that of the healthy controls, although both groups
demonstrated a clear avoidance of bad deck A. People with

chronic pain showed an obvious preference for disadvantageous
deck B. In contrast, healthy controls consistently favored deck
D as the task progressed. Both decks B and D, which featured
low-frequency losses, were generally chosen more often than
decks A and C, which featured high-frequency losses. Decision
makers both healthy and with chronic pain selected more cards
from good decks than from bad decks at the beginning of the
task. After learning whether each deck was good or bad in the
second block, the healthy controls continued to select more
from good decks than from bad decks. However, the choices of
decision makers with chronic pain seemed to fluctuate more
across the advantageous and disadvantageous decks throughout
the task. The final proportion of good deck selection of healthy
decision makers was higher than that of decision makers with
chronic pain.
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Figure 4. Pain severity plotted against total amount of gain by the end of the task. Healthy controls (n=25) are plotted in red, and people living with
chronic pain (n=20) are plotted in blue. The r value was calculated between the pain measure and the task performance measure for the whole sample
(*P<.5, **P<.01, ***P<.001).

Figure 5. Mean proportion of choices from each deck within 5 blocks of both groups of decision makers (top 2 graphs) and mean proportion of choices
from good decks and bad decks of both groups of decision makers (last 2 graphs). Each block contains 20 trials.
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Figure 6 shows the learning scores across the 5 blocks of the
IGT. A learning process was apparent in the healthy control
group, in which the learning score progressively improved across
the 5 blocks. Although the learning scores of individuals with
chronic pain also showed an increasing trend, there was a clear
dip in block 4. It is worth pointing out that the choice variances
of the 2 groups in our study, as shown in Figure 6, were both
higher than the variances reported in previous studies that
administered the IGT in a laboratory setting [10,40]. This is
evidence perhaps of the additional noise introduced by the
unsupervised experimental setting. To quantify the group
differences, we applied the Bayesian repeated-measure analysis

of variance test in the form of a 5 (block) × 2 (health status) to
the learning scores (Table 3). To our surprise, the results showed
that neither the block nor the group factor had a significant
impact on deck selection because the evidence in favor of the
null hypothesis was 3.33:1 in favor of the alternative hypothesis
that assumes an effect of group and 1.45:1 in favor of the
alternative hypothesis that assumes an effect of block. This
suggests that people living with chronic pain and healthy
controls did not show significant deck preferences in the IGT,
and neither group developed a strong learning curve during the
task. We will discuss the possible implications of this
observation in the Discussion section.

Figure 6. The learning Iowa Gambling Task (IGT) scores across the 5 different blocks of the IGT in healthy controls and people living with chronic
pain.

Table 3. Output of the Bayesian repeated-measure analysis of variance conducted in JASP.

BF 01Model

1.000 aNull model

3.33Group

1.45Block

4.65Block + group

90.91Block + group + block × group

a1: no evidence; 1-3: anecdotal evidence for H0; 3-10: moderate evidence for H1; 10-30: strong evidence for H1; 30-100: very strong evidence for H1.

Computational Modeling Analysis for the IGT
Although the behavioral data statistics suggest that decision
makers both healthy and with chronic pain did not show
significantly different deck preferences in the IGT, there might
still be group differences in the cognitive processes underlying
the choices. To investigate this possibility, we decomposed the

IGT performance of the 2 groups using the cognitive modeling
analysis introduced earlier.

We first checked which model provided the best short-term
prediction performance as measured by the one-step-ahead
leave-one-out information criterion (LOOIC). The smaller a
model’s LOOIC score is, the better its model fit is. As shown
in Table 4, the VPP model demonstrated the best overall model
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fit relative to other models followed by the ORL model. The ORL model ranked best in the chronic pain group.

Table 4. Models and prior fits.

Sum LOOICHealthy LOOICPain LOOICaModel

919446004593dIGTb ORLc

916845444623IGT VPPe

962448674756IGT PVLf-Decay

10,67656225054IGT PVL-Delta

aLOOIC: leave-one-out information criterion.
bIGT: Iowa Gambling Task.
cORL: Outcome-Representation Learning.
dThe smaller the value, the better the model fits the data.
eVPP: Values-Plus-Perseverance.
fPVL: Prospect Valence Learning.

Next, we used the best-fitting models (VPP and ORL) to
compare the 2 groups. Figure 7 shows the posterior distributions
of the group-level mean parameters of the VPP and ORL models
fitted with two priors (one for each group) separately for healthy
decision makers and decision makers with chronic pain. The
extracted parameters for the VPP model demonstrated
significantly elevated learning rates in individuals with chronic
pain relative to normal controls (95% highest–posterior-density
interval [HDI] 0.66-0.99). The chronic pain group also showed

strong evidence of increased reward learning rate (95% HDI
0.22-0.55), punishment learning rate (95% HDI 0.03-0.11) and
difference between the reward and punishment learning rate
(95% HDI 0.16-0.47), and decreased decay rate (95% HDI
−0.76 to −0.25) and outcome perseverance (95% HDI −4.38 to
−0.21) than healthy controls when fitting to the ORL model
(the 95% HDI for the comparison across groups did not overlap
zero; Figure 8).
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Figure 7. Group-level Values-Plus-Perseverance (top panel) and Outcome-Representation Learning (bottom panel) parameters across healthy controls
and people living with chronic pain.

J Med Internet Res 2022 | vol. 24 | iss. 4 | e26307 | p. 12https://www.jmir.org/2022/4/e26307
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 8. Differences in group-level Values-Plus-Perseverance (VPP) and Outcome-Representation Learning (ORL) parameter distribution between
healthy and symptomatic groups. Solid red lines covered the 95% highest–posterior-density interval (HDI), and dashed red lines marked the 0 point.
Values on the left and right sides of each graph are the lower and upper bounds of the 95% HDI of the comparison between the symptomatic and healthy
control groups. If 0 point is included in the HDI, we consider there to be a nonsignificant difference between the groups.

Extracting each individual’s posterior mean estimated
parameters for the VPP model, shrinkage effects [41] were
observed in the individual estimations of the learning rate and
outcome sensitivity parameter in Figure 9, in which the
individual estimations of these 2 parameters were shrunk toward
the population mean. Significant evidence of positive
correlations was identified between learning rate (A) and pain
severity (r43=0.43, 95% CI 0.15-0.64; logBF10=2.48; P=.003),
average pain interference (r43=0.42, 95% CI 0.15-0.64;
logBF10=2.37; P=.04), and the 2 subdimensional interferences.
However, a negative correlation was observed between the 4
pain measures and the outcome sensitivity (α), response
consistency (c), loss aversion (λ), and weight parameter (w)
except for WASW and loss aversion. We did not find significant
correlations between the other 3 parameters in the VPP model
and the pain measures.

Extracting individual estimations for the ORL model provided
evidence for the existence of positive correlations between pain
severity and reward learning rate (r43=0.41, 95% CI 0.12-0.62;
logBF10=2.18; P=.005). Similar correlations were obtained
between pain interference (including 2 subdimensional
interferences) and this model parameter. However, a negative
correlation was observed between pain interference and the
decay rate parameter (r43=–0.29, 95% CI −0.54 to −0.00;
logBF10=0.18; P=.05), but this correlation with the decay rate
parameter did not apply to pain severity. A similar correlation
was only identified between REM and the decay rate parameter
(r43=–0.29, 95% CI −0.54 to −0.00; logBF10=0.18; P=.05), but
no supported correlation for WASW (r43=–0.27, 95% CI −0.53
to −0.02; logBF10=–0.04; P=.07) was identified.
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Figure 9. Estimated parameters of the Values-Plus-Perseverance model and Outcome-Representation Learning model plotted against 4 pain measures.
Healthy controls are plotted in red, and patients with chronic pain are plotted in blue. The r values were calculated between the model parameters and
pain measures for the whole sample (*P<.05, **P<.01, ***P<.001). REM: relations with others, enjoyment of life, and mood subdimension of the Brief
Pain Inventory–Short Form; WASW: walking, general activity, sleep, and work subdimension of the Brief Pain Inventory–Short Form.

Discussion

Principal Findings
In this study, we explored the differences in decision-making
between individuals living with chronic pain and healthy
controls in a laboratory-in-the-field environment by collecting

their behavioral responses to the web-based IGT. The main
finding of our study is that people with chronic pain did not
show significant differences in decision-making in the IGT
based on standard behavioral statistics. However, further
computational modeling analysis revealed that people with
chronic pain had an elevated learning rate for rewards and
punishments when fitting to the VPP model. Further results
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were obtained when fitting the data to the ORL model, where
individuals with chronic pain were more dominated by rewards.
Meanwhile, the symptomatic group demonstrated a decreased
decay rate and perseverance weight when fitting to the ORL
model. We also explored the connection between the
self-reported pain experiences, standard inferential statistics,
and cognitive parameters. The main finding is that the total
amount of gain at the end of the task was negatively correlated
with the degree of pain severity. Moreover, several cognitive
parameters could also predict pain severity and pain interference
assessed by the self-reported pain experiences.

Using standard inferential statistics, the total amount of gain
obtained by the end of the task was not significantly lower in
people living with chronic pain than in healthy controls,
indicating that there was no difference between the 2 groups in
terms of the overall performance on the IGT. However, the total
amount of gain was negatively correlated with the pain severity
measure, suggesting that higher pain severity could be a factor
that impairs performance on the IGT. Although people with
chronic pain tended to select more bad decks relative to healthy
controls, as seen from the learning curves, the statistical analysis
identified neither group nor block as a significant factor that
affected deck preference. This indicates no significant
differences between the 2 groups, and both lacked evidence of
significant learning across the 10 blocks during the task. These
results are inconsistent with previous studies that identified
significant group effects, in which patients won significantly
less money and failed to adopt the advantageous
decision-making strategy quickly learned by healthy controls
[28,42,43]. A possible interpretation of this analysis is that the
laboratory-in-the-field approach, which sacrifices experimenter
control of the participants’environment, causes greater variances
in participants’ behavior, as revealed through their choices.

As expected, even with the relatively noisier data set, significant
differences were identified in several cognitive components
when comparing groups using the best-fitting models (VPP and
ORL) measured by LOOIC in computational modeling analysis.
The learning rate parameter in the VPP model determines how
much weight is placed on past experiences of the chosen deck
versus the most recent outcome from the deck. The chronic pain
group demonstrated a much higher learning rate than the healthy
controls, indicating that the recent outcome had a larger
influence on the expectancy of the chosen deck and that
forgetting was more rapid for individuals with chronic pain.
The reward and punishment learning rates in the ORL model
were used to update expectations after positive and negative
outcomes, respectively. These 2 parameters account for the
degree of the participants’ sensitivity to losses and gains.

Individuals with chronic pain demonstrated both elevated reward
and punishment learning rates when fitting to the ORL model,
suggesting that they gave more weight to recent outcomes,
which is consistent with the results obtained from the VPP
model. It was suggested in the study by Haines et al [37] that
comparing the differences between the reward and punishment
learning rates for the 2 groups was more useful, although they
were defined separately. The larger the differences between the
2 learning rates, the more the learning is dominated by either
rewards or punishments. The significantly higher reward

learning rates that caused larger differences between the 2
learning rates in individuals with chronic pain suggested that
they were more sensitive to gains over losses relative to healthy
controls. In other words, individuals with chronic pain appeared
to be more driven by rewards, which could be a possible reason
that made them choose more cards from deck B (as seen in
Figure 5), the bad deck with a higher reward magnitude but also
a higher punishment magnitude. This finding differs from the
result reported in the study by Elvemo et al [44], where people
with chronic pain only demonstrated significantly reduced scores
on reward responsiveness but not on the self-reported tendency
to pursue rewards. It can be seen from Equation (12), that the
outcome frequency weight and perseverance weight parameter
in the ORL model collectively influence the total value of the
expected value of each deck. Values for the outcome frequency
<0 or >0 indicate that decision makers prefer decks with low
or high win frequency, respectively. This value was >0 for the
2 groups and did not show significant differences, suggesting
that both groups preferred decks with high win frequency (ie,
decks B and D), which can be reflected in the learning curves
plotted in Figure 5, where healthy individuals ended up selecting
deck D the most and patients with chronic pain ended up
selecting deck B the most. Values for the perseverance weight
<0 or >0 indicate that decision makers prefer to switch or stay
with their recently chosen decks. The mean value of this
parameter for the healthy controls was >0, whereas this value
for the patients with chronic pain was <0. Meanwhile, there was
a significant difference between the 2 groups. This means that
people with chronic pain were less persistent in their previous
choices during the task. In this sense, our findings are in
agreement with a previous study [33] where a simple heuristic
model was proposed to discriminate between patients and
healthy controls on IGT performance by tuning the degree of
randomness and importance given to losses and gains. Patients
with chronic pain in this study demonstrated significantly less
persistent behavior, which was characterized by giving more
emphasis to gains than to losses and increasing decision
randomness. However, contrary to our expectation, decision
makers with chronic pain presented lower decay rates,
suggesting that they base decisions on longer histories than
healthy controls. However, substantial existing studies have
consistently reported impaired memory functions in patients
with chronic pain [45,46], and memory complaints are one of
the most common complaints in patients with chronic pain and
cognitive deficits [47]. In addition, this result is inconsistent
with the findings fitting to the VPP model, where decision
makers with chronic pain had higher learning rates and,
therefore, relatively worse memory. It was argued in the study
by Ahn et al [26] that this situation where the parameters of a
model with good model fit might not correctly reflect the
underlying cognitive constructs could be caused by the
insufficient number of trials such that insufficient information
was extracted to reliably estimate the free parameters in the
model; thus, it might be helpful to perform external tests in
future research [48].

When analyzing the correlations between the cognitive
parameters and self-reported pain experiences, we found that
the learning rate in the VPP model was positively associated
with the 4 pain measures, whereas the outcome sensitivity,
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response consistency, loss aversion, and weight parameter were
negatively associated with the 4 pain measures. Higher reward
learning rates in the ORL model could significantly predict
higher self-reported pain severity and pain interference. Lower
decay rates in the ORL model were only associated with higher
self-reported pain interference, especially with the affective
subdimension of interference. Given the correlations observed
between the cognitive parameters and pain experiences,
cognitive tasks might be an important tool to consider when
evaluating individuals at risk of developing chronic pain
conditions.

In summary, by recruiting participants on the web, administering
the pain inventory and the IGT in natural environments over
the web, and breaking down their performance into distinct
psychological processes using computational modeling analysis,
we revealed that participants with chronic pain displayed
increased reward sensitivity and reduced choice persistency to
their previous choices relative to healthy controls, and some of
the cognitive parameters could predict the participants’ pain
severity and pain interference. Compared with conventional
statistical analysis of behavioral performance, computational
modeling analysis revealed much more evidence of distinct
differences in decision-making between individuals with chronic
pain and healthy controls in the noisier laboratory-in-the-field
environment.

Limitations
First, only sex, age, and pain duration were collected in the
demographic data, but no other measures of education or
psychological status, such as anxiety and depression, were
considered apart from pain severity and pain interference. It is

known that experiencing chronic pain puts a person at increased
risk of developing anxiety and depression disorders, and these
2 factors have been documented to have a significant influence
on decision-making [49,50]. We did not consider the impact of
medications on decision-making either (ie, we did have the
participants’ medication information but did not exclude
participants who were receiving medical treatments). Another
important factor that could influence decision-making is
environmental distractions, such as family members, distractions
in the environment, and time of the day. It is also worth noting
that virtual money may not be as effective as real financial
incentives for the decision-making task. However, we did
achieve good adherence to and compliance with the task.
Furthermore, we recruited a mixed sample of participants who
might have had various kinds of pain conditions that might
cause various cognitive abnormalities and, thus, have different
influences on decision-making. As a result, caution must be
exercised when interpreting the results obtained and generalizing
them to pain populations in specific environments and particular
chronic pain conditions. Future research should conduct a more
comprehensive assessment of the participants and analyze the
potential impacts of the aforementioned variables. Finally, a
sample size of 45 could be considered relatively small,
especially given that our recruitment was not a laboratory-based
paradigm. This may be the cause of the analyses that revealed
results that were not consistent with the existing literature. We
take this smaller scale of study as pilot research to validate our
research methodology. The computational methods
demonstrated a great advantage in distinguishing between the
underlying cognitive processes of participants with chronic pain
and healthy controls in that regard.
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