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Abstract

Despite an ever-expanding number of analytics with the potential to impact clinical care, the field currently lacks point-of-care
technological tools that allow clinicians to efficiently select disease-relevant data about their patients, algorithmically derive
clinical indices (eg, risk scores), and view these data in straightforward graphical formats to inform real-time clinical decisions.
Thus far, solutions to this problem have relied on either bottom-up approaches that are limited to a single clinic or generic top-down
approaches that do not address clinical users’ specific setting-relevant or disease-relevant needs. As a road map for developing
similar platforms, we describe our experience with building a custom but institution-wide platform that enables economies of
time, cost, and expertise. The BRIDGE platform was designed to be modular and scalable and was customized to data types
relevant to given clinical contexts within a major university medical center. The development process occurred by using a series
of human-centered design phases with extensive, consistent stakeholder input. This institution-wide approach yielded a unified,
carefully regulated, cross-specialty clinical research platform that can be launched during a patient’s electronic health record
encounter. The platform pulls clinical data from the electronic health record (Epic; Epic Systems) as well as other clinical and
research sources in real time; analyzes the combined data to derive clinical indices; and displays them in simple, clinician-designed
visual formats specific to each disorder and clinic. By integrating an application into the clinical workflow and allowing clinicians
to access data sources that would otherwise be cumbersome to assemble, view, and manipulate, institution-wide platforms represent
an alternative approach to achieving the vision of true personalized medicine.
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Introduction

Precision medicine holds the potential to revolutionize medicine
[1-3], just as prior technological advances, such as microscopy,
molecular diagnostics, and imaging, have done in the past. In
the research realm, big data and artificial intelligence have
yielded substantial advances that showcase the potential of
precision medicine [4,5]. However, translating these advances
into the clinical realm remains a challenge [6,7]. A patient is

more likely to interact with complex algorithms informed by
big data in the waiting room (ie, algorithms in the form of
internet searches, travel directions, or tailored social media)
than in the actual clinic. The medical field needs similarly
intuitive interfaces that can collate the necessary patient-related
data to highlight salient knowledge, pinpoint a patient’s
condition, predict optimal therapy, or estimate the risk of disease
or death [3]. Much of the required physical infrastructure is
already in place, with computers being available in most clinics

J Med Internet Res 2022 | vol. 24 | iss. 2 | e34560 | p. 1https://www.jmir.org/2022/2/e34560
(page number not for citation purposes)

Bove et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:Riley.bove@ucsf.edu
http://dx.doi.org/10.2196/34560
http://www.w3.org/Style/XSL
http://www.renderx.com/


and the majority of clinical data being stored in electronic health
records (EHRs). A small minority of wealthier clinics and health
care systems have built custom, domain-specific interfaces into
their EHRs to deliver the more complex precision medicine
algorithms and visualizations that their physicians need;
however, in the majority of health systems, only the most basic
algorithms (eg, those for calculating BMI) are built into the
EHR, while other, more sophisticated clinical indices (eg, atrial
fibrillation stroke risk [8,9]) are calculated via manual entry
into a public website [10].

The task of translating innovative precision medicine tools from
research projects to clinical care is inhibited by a catch-22
problem. To justify the expense of building the costly
computational infrastructure required to run complex algorithms
on patient data, the algorithms or visualizations need to
demonstrate real-world value. However, to evaluate and prove
these algorithms’ value, the needed infrastructure must already
be in place. One solution to this conundrum is building boutique,
single-clinic solutions consisting of carefully designed,

specialized algorithms or data displays built within or alongside
the EHR [11,12]. Although this bottom-up approach is limited
in scope to a single clinical domain and thus can be
comparatively quick and cost-effective to implement, scalability
and rapid obsolescence are major concerns. To adapt data
displays to other clinics, an institution has to maintain, secure,
and update an ever-expanding heterogeneous code base across
those clinics. Yet, the originating “owners” of these algorithms
are often clinical researchers and physicians without the backing
of an enterprise-level developer team that is equipped to manage
the software as a service over several years of use (Figure 1).
The opposite extreme is commercial vendors building
generalized health care software suites that run on cloud-based
infrastructures. Such centralized solutions address the scalability
challenges of bottom-up approaches, but the emerging health
system–wide products are typically far too generic to meet the
medically heterogeneous and shifting requirements of individual
clinics. Furthermore, adopting such solutions requires substantial
institutional investment, and becoming locked into a single
vendor in a rapidly evolving marketplace poses a risk.

Figure 1. Approaches to delivering precision medicine results to the clinic. This figure compares the platform design elements across the following
three main approaches to building clinical systems to support precision medicine: (1) single-clinic solutions, (2) institution-specific platforms like
BRIDGE, and (3) centralized solutions purchased from external vendors. Key advantages (blue) and disadvantages (red) of each approach are listed.

Between these two extremes exists a third solution that solves
many of the aforementioned problems. Institution-wide

platforms permit rapid innovation in parallel across multiple
clinics but are built on a single secure, stable, and cost-efficient
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technological foundation. These platforms benefit from a
common architecture built within an institutional firewall with
real-time EHR access and application programming interfaces
(APIs) to major (eg, REDCap [Research Electronic Data
Capture; Vanderbilt University] and Radiology PACS [Picture
Archiving and Communication System]) and custom data
resources, which facilitate the integration of multimodal research
data across all specialties. Yet, these platforms also incorporate

clinic-specific visualization tools that allow clinicians to tailor
the display of information. Therefore, specific research
discoveries can be rapidly translated into clinical tools that fit
each specialty (Figure 2). This approach strikes a balance
between the fast development and flexibility of single-clinic
solutions and the scalability and sustainability of centralized
health care solutions while optimizing transparent institutional
oversight.

Figure 2. Overview of technological components for the integrated delivery of precision medicine through an institution-specific platform like BRIDGE.
The flow of information is depicted as it moves from back-end data sources, through the integrating middleware layer of light and heavy computational
resources, and to the multiple, functionally distinct widgets shown in a user-facing front-end dashboard designed to reflect the needs of a single clinic.
APeX: Advanced Patient-Centered Excellence; API: application programming interface; CT: computerized tomography; EHR: electronic health record;
FHIR: Fast Healthcare Interoperability Resources; MRI: magnetic resonance imaging; REDCap: Research Electronic Data Capture; SMART: Substitutable
Medical Applications and Reusable Technologies; USS: ultrasound sonography.

The BRIDGE platform at University of California, San
Francisco (UCSF), is one example of this approach. Based on
our experience with developing BRIDGE, we describe key
considerations and practical steps for implementing
institution-wide solutions in this rapidly progressing field to
provide a road map for other health care systems considering a
similar approach. We also consider future developments that
will enable the medical community to quickly and
comprehensively realize the potential of computational medicine
to improve the lives of patients.

Consideration 1:Human-Centered Design

Overview of the Human-Centered Design of Precision
Medicine Tools
For a precision medicine tool to be adopted in a clinic, it needs
to provide pertinent, actionable information in a format that is

appropriate to the user (either a clinician or a patient). Therefore,
perhaps the most essential components of effective precision
medicine tool deployment are the principles and phases of
human-centered design (HCD) [13-15]. For tools targeted at
medical professionals, clinician users, who are well informed,
should be at the center of decisions about which technological
format is the most appropriate for their workflow, which
innovations in their specialty are scientifically ready for
deployment at clinics, and how evaluations of tool effectiveness
should be conducted to justify the continued use of such tools
(Textbox 1). Many of these decisions reflect the dimensions of
precision medicine, as articulated in a recent scoping review
[7].
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Textbox 1. Key decisions in designing a digital application for clinical research.

Key questions

1. Who are the users (eg, clinicians, patients, and specialists)?

2. What do the users need (eg, novel data sources, novel algorithms, novel visualization, and data collation)?

3. How will it improve care (eg, patient experience, clinic efficiency, morbidity, and mortality)?

4. How does the user access the application (eg, individual log-in and authorization via an existing clinical system)?

5. Where is it hosted (eg, local server, cloud-based server, or external vendor)?

6. What is the maintenance schedule (eg, 9 AM to 5 PM on Monday to Friday or 24 hours per day year-round)?

7. What are the constraints of the system? For example, will it not write to the electronic health record? Are data behind an institutional firewall?

Practical Considerations From the BRIDGE
Experience
From its inception, BRIDGE exemplified both the principles
and phases of HCD [13,14]. It was conceptualized and designed
according to the requirements of clinician scientists, including
the project’s principal investigators (manuscript authors RB,
KPR, and SJS). Further, the key architectural decisions (Textbox
1) were made by applying HCD principles to engage clinician,
patient, scientific, programming, design, industry, and
institutional stakeholders.

The three HCD phases are also being deployed in the iterative
process of adapting BRIDGE to each new clinic that is interested
in a BRIDGE dashboard (Figure 3). In the “Inspiration” phase,
the BRIDGE clinician scientists and programmers identify and
meet with a small number of clinician champions to
collaboratively define the problems to be solved to improve
care in the clinician champions’clinic. They also generate ideal

use cases based on that clinic’s workflow, such as those for data
types, data sources, and visualizations. In the “Ideation” phase,
a design mock-up is shared with a broader set of intended
stakeholders from that clinic to obtain their input, after which
the final set of minimum viable product (MVP) specifications
is derived for the dashboard, and programming begins for the
jointly approved design mock-up. The finalized MVP is built
in the “Implementation” phase, during which early testing is
conducted by a small superuser group of clinicians who generate
feedback about bugs and minor refinements. These clinic domain
experts are the primary drivers for designing and conducting
formal evaluations of their precision medicine tools, which
include clinician users’ feedback about dashboard ease, utility,
and fidelity; patients’ satisfaction with care; impacts on
workflow, including automated click tracking; and longer-term
analyses of the clinical impact, value, and cost-effectiveness of
these tools. Clinical validation, technological or therapeutic
innovation, or user demand may result in further cycles of
design.
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Figure 3. Example timelines and milestones of clinical application development. The design and development of an institution-specific platform for
clinical applications, such as BRIDGE, is a multiyear undertaking (eg, 2 years for the MVP and clinic 1). Following the principles and phases of
human-centered design ensures the development of a product that meets the needs of the users and the requirements of the institution. Obtaining
institutional regulatory approval—a process that runs in parallel with the design and development processes—is critical and can risk becoming the
rate-limiting step. The evaluation of the product initially focuses on user experience, followed by clinical outcomes such as morbidity, mortality, or
efficiency. With the majority of the platform built, the design and build times are dramatically reduced for clinic 2, and they continue to fall as the
process becomes refined (eg, under 6 months for clinics 3-5) and occurs in parallel. MVP: minimum viable product.

HCD: Future Directions
Since the back-end infrastructure of an institution-wide platform
is unified, only 1 set of corresponding regulatory approvals is
needed, and this approach reduces the cost and time required
to develop a front-end tool and allows multiple tools to be
developed in parallel (Figure 3). However, given the number
of medical specialties, clinical scenarios, disorders, and
algorithms across a health care system, engaging in this intensive
HCD process with each new clinic will not be cost-effective in
the long term. Instead, a library of existing data sources and
graphical interfaces could be generated, and clinicians (or
patients, ie, in the event of a patient-facing version) could
customize this library to design their own dashboards, thereby
freeing programmers to concentrate on developing new modular
interfaces and data sources. Generating more universal standards
for describing clinical dashboards and their connections to APIs
and EHRs could ease the deployment of dashboards across a
wide range of health care platforms. Containerization, the
Substitutable Medical Applications and Reusable Technologies
(SMART) on Fast Healthcare Interoperability Resources (FHIR)
API, and the Epic App Orchard (Epic Systems) represent
important steps in this direction, but substantial scope for further
standardization remains. The adoption of this type of adaptable
clinical dashboard at scale would provide sufficient data for
iteratively testing and improving performance, resulting in a
second data-driven evaluation phase that focuses on surveys
and click data. As the scale of data grows, especially across

institutions, a third design phase that is based on both clinical
outcomes and user experience will become possible.

Consideration 2: Technological Design

Common Approaches to the Technological Design of
Digital Health Tools
The architecture of most digital health tools involves a
connection among the back-end databases, middleware software
algorithms that convert the data into useful knowledge, and
front-end displays for users (Figure 2). Both single-clinic and
centralized solutions are often hard-coded to represent a specific
data source and visualization type, which slows the development
of novel iterations and results in higher overall costs. A more
efficient solution is to build a framework of reusable APIs that
connects a multiplying number of data sources, computational
algorithms, and modular visualization schematics and is
adaptable and scalable to diverse types of medical data and
clinical specialties.

Practical Considerations From the BRIDGE
Experience

Overview of Practical Considerations
The BRIDGE platform was designed as a proof-of-principle
MVP scaffold that could be developed efficiently and quickly
but later refined and scaled up depending on its success and the
collaborative opportunities generated. The HCD process made
clear the following four key technical requirements: (1) it had
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to permit access to a variety of data sources (ie, beyond the
EHR), which could then be either displayed directly or processed
through computationally intense algorithms [7]; (2) it needed
to enable the visualization of these data in an intuitive and
actionable manner, and this process needed to be embedded in
the clinical workflow, so that it was not cumbersome for
clinicians to access or operate; (3) following logically from the
second requirement, it required the ability to launch directly
from the EHR; and (4) it had to be as modular as possible to
make iterative clinic-by-clinic customizations easier and more
efficient to program.

Data Sources
Many data types contribute to precision care. To build a data
foundation for BRIDGE that would best meet the needs of a
variety of clinical use cases, we opted to include real-time
clinical data from the EHR, minimally processed data from
widely available data platforms (REDCap and Qualtrics
[Qualtrics International Inc]) [16], data from institutional tools
(eg, TabCAT [Tablet-Based Cognitive Assessment Tool;
UCSF]) [17] and research databases [18], and complex data that
either cannot be currently hosted in the standard EHR or require
processing by complex analytics processing pipelines (Figure
2). For example, images from the Radiology PACS can be
obtained ahead of time based on scheduled appointments,
thereby allowing time for computationally intensive image
processing pipelines to run prior to a patient appointment.
Further innovations requiring advanced data processing include
accessing expansive knowledge networks to compute precise
clinical risk and treatment predictions [19]. As it would represent
the convergence of so many sensitive data streams, BRIDGE
required robust front-end and back-end architectures that were
unified around security and hosted within the UCSF firewall.

Workflow Fit and EHR Integration
As a fundamental requirement for BRIDGE, to give clinicians
actionable information during patient encounters, it had to
launch directly from patients’ records in the EHR (ie, Epic; Epic
Systems) and pull their clinical data in real time (Figure 2). This
resulted in a central technical decision to design BRIDGE as a
SMART on FHIR application. Launching from the EHR resulted
in additional clinical workflow benefits; discrete data could be
collected at the point of care by using clinic-specific EHR
Flowsheets and SmartForms (sharable across institutions), and
data could then be pulled into clinical notes. Direct flowsheet
data entry also allows BRIDGE to call and visualize discrete
research data during clinic visits more efficiently. Enabling this
launch functionality required interactions with the EHR
development group and resources for funding their modifications
to the EHR.

Modular Design
BRIDGE was designed to capitalize on a common language of
clinical information flow through the creation of core widgets,
or visualization modules, that can be adapted to an expanding
array of clinical scenarios (Figure 2). At the time of BRIDGE
MVP deployment, we had programmed the following four
reusable core widgets: (1) longitudinal clinical course in the
context of treatment, (2) cross-sectional metrics, (3)

specialty-focused laboratory data, and (4) quantitative
neuroimaging. Both the cross-sectional and longitudinal widgets
allow patients’ scores and metrics to be contextualized against
a larger reference cohort that indicates both normal and
abnormal values as well as percentile calculations, thus allowing
a patient’s clinical status to be interpreted by a clinician at a
glance (Figure 2). We were able to convert existing precision
medicine tools, such as the UCSF Multiple Sclerosis BioScreen
longitudinal viewer [12] and the UCSF Brainsight magnetic
resonance image processing and visualization tool [20] into
these initial BRIDGE widgets. The configuration data for all
viewers are stored by BRIDGE, which queries these data in real
time and then renders the specified widgets and data sources
for the clinician. Updates to the configuration can be made
quickly when existing dashboards need to be adapted, thus
enabling both ongoing user engagement and rapid deployment
to meet the evolving needs of specific clinics. As we expand to
other clinics, new widgets (eg, geolocation and genomics) that
can be retroactively made available to existing clinics are being
developed.

Technological Design: Future Directions
Two architectural changes can be made. The first is integration
with a middleware platform. BRIDGE is currently connected
to multiple data sources through direct API integrations, and
connecting to additional APIs necessitates the modification of
the codebase. Making use of a platform that aggregates APIs
would reduce maintenance efforts and promote more stable
platforms. Examples of such platforms already exist (eg, Human
API [21]) and include EHR data. The second architectural
change is creating a graphical user interface (GUI) that clinicians
can use to create their own dashboards. Currently, dashboard
configuration is done by the BRIDGE development team.
Building a GUI that allows clinicians to configure and customize
their dashboards would accelerate progress and allow clinicians
without programming experience to access relevant data sources.
Such an endeavor will likely require the integration of
institution-wide platforms and centralized platforms, and such
an integration will benefit both types of platforms. The resulting
unified platforms would probably combine generic, cloud-based
back-end and middleware components but be able to deliver
the customized, clinic-specific, front-end dashboards designed
by clinicians through the GUI. Overall, BRIDGE aims to
augment—not supplant—the EHR; should an institution’s
visualization show clinical value, the institution could choose
to maintain it in BRIDGE or integrate it into their EHR more
permanently.

Innovations are also needed to improve data quality in the EHR,
including tools that systematically flag likely data entry errors,
simplify the correction of the EHR by a clinician, and ensure
that corrections are distributed to all clinical tools. Finally, to
demonstrate that these tools comply with the Health Insurance
Portability and Accountability Act (HIPAA) or equivalent
guidelines, a cross-institutional body that is responsible for
testing and validating these solutions could be created. It might
accelerate progress substantially by, for example, supporting
cloud-based, HIPAA-compliant, off-the-shelf solutions to ease
this data quality burden.
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Consideration 3: Regulation and Policy

Launching a clinical application with real-time access to
identified patient health data requires close institutional
oversight and multiple stages of regulatory approval, especially
in cases where clear institutional road maps or leadership
structures are lacking due to the innovative nature of such
applications.

Practical Considerations From the BRIDGE
Experience
With regard to developing the BRIDGE MVP, the Epic EHR,
and the SMART on FHIR application, technological capabilities
were already available within our institution, but multiple
security, privacy, technological, and compliance concerns had
to be addressed. Specifically, authorizing an expandable,
cross-specialty, modular platform rather than a domain- and
clinic-specific tool was entirely novel. This necessitated parallel
revisions to the approval process itself. Early in the design
process, we set clear functional constraints that would reduce
the barriers to institutional approval. Foremost among these
were (1) conceptualizing BRIDGE as a clinical research tool
that is custom designed with clinical specialists rather than as
an institution-wide, enterprise-level clinical solution; (2) not
requesting write access to the EHR (real-time read access was
enabled); and (3) ensuring that data do not leave the institutional
firewall. With an approved clinical research platform in place,
the bar for institutional approval is substantially reduced for
subsequent clinical dashboards that iterate on the initial design,
reducing this multi-month process to a simple, clinic-specific
sign-off (Figure 3). Further approval is required for applications
that add novel functionalities or revisit one of the major systems
constraints (eg, sending data to an external server).

Regulation and Policy: Future Directions
BRIDGE provides a mechanism for rapidly deploying and
evaluating novel precision medicine algorithms and
visualizations developed by clinical researchers [22-24] to
evaluate their clinical benefit [25]. As the system expands and
more clinical visualizations become the standard of care, medical
centers may eventually choose to move the fundamental
infrastructure of their institution-wide platforms from an MVP
clinical research entity, such as BRIDGE, to a full,
enterprise-level clinical system that delivers the same
capabilities at a higher level of reliability [26,27]. This shift
will be precipitated by a number of considerations, including
the need for professional-level version control and releases;
automated testing and quality control; the capacity for multilevel
monitoring, logging, and auditing; and the ability to handle high
user volumes without concurrency issues. The institution will
also need to ensure that there is adequate personnel infrastructure

behind the system to permit sustainable 24-hour user support
and timely design and adaptation for new clinics. In the end,
all stakeholders must be able to trust the reliability and clinical
value of the final platform and the sustainability of the system
supporting it [28]. For many such algorithms, moving along the
continuum from clinical research to enterprise clinical care may
well necessitate regulatory approval from the Food and Drug
Administration Center for Devices and Radiological Health
[29], as spelled out in their Digital Health Innovation Action
Plan, and alignment with the international Software as a Medical
Device guidelines through the International Medical Device
Regulators Forum.

Consideration 4: Evaluation and Impact

Pathway to Evaluation
Technological innovations in health care will ultimately be
evaluated in terms of their impacts on patients, clinicians, data,
and payors. In the near term, this requires the evaluation of a
tool’s interpretability and fidelity, that is, whether clinicians
and patients like, understand, and use the tool and whether the
use of the tool improves patients’ experiences within the health
system [15,28,30]. Making even the most complex algorithms
visually digestible and actionable will be a key evaluation
criterion [3]. To this end, for each BRIDGE dashboard, prior
to measuring its clinical impact, we ensure that it meets key
drivers of clinical adoption. We use the Health Information
Technology Usability Evaluation Model [31] to evaluate at least
15 patients’ and 8 clinicians’ perceptions on the usefulness
[32,33], ease of use [32,33], actionability [31], and likability
[34] of each clinical dashboard. Low-scoring items (ie, <80%
of respondents state “agree” for any given metric) engender
another round of iterative development.

Evaluation and Impact: Future Directions
The impact of a dashboard like BRIDGE on clinical research
and, eventually, care can be evaluated through in silico trials
for answering a variety of clinical questions, as depicted in
Figure 4. A near-term goal may be to compare users’preference
for 2 types of symptom displays or to evaluate the impact of
BRIDGE on workflow efficiency (eg, determining whether the
use of the tool reduces the overall time spent on “clicking”
through a patient’s chart). Medium-term goals may be to refine
a series of treatment action prompts that could yield a clinical
decision support tool or to compare the effects of 2 different
prediction algorithms on the risk of rehospitalization after a
cardiac event. Long-term, altering clinical outcomes [2,25,27]
that have obvious implications for health economics, such as
reductions in the time to accurate diagnosis, rehospitalization,
disability progression, morbidity, or death, will be directly
relevant to an institution’s assessment of a tool’s utility.
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Figure 4. Prototypes of clinical research enabled by BRIDGE. Clinical research applications include impacts on patient-doctor interactions and clinical
workflows; the impact of monitoring patient-generated data, such as patient-reported outcomes and activity monitoring data; and the impact of delivering
more advanced image processing and clinical algorithms (including prediction, prevention, and treatment algorithms) into the hands of clinicians. EHR:
electronic health record; IPV: intimate partner violence; IVSM: intravenous solumedrol; MVP: minimum viable product; OCR: ocrelizumab; PHQ:
Patient Health Questionnaire; PHQ-9: Patient Health Questionnaire-9; SSRI: selective serotonin reuptake inhibitor; SUD: substance use disorder.

Discussion

Determining whether big data analytics will truly disrupt clinical
care depends on providing clinicians with access to the results
of these analytics. In this paper, we describe one approach to
overcoming the technical hurdle of making algorithms clinically
available: the development of BRIDGE, an example of an

institution-wide platform that allows for substantial
clinic-specific customization. From the outset, BRIDGE was
designed by intended users who worked closely with
stakeholders, through an HCD process, to develop a structured
and modular solution (Figure 2) that could be scaled and
customized to specific clinic use cases in a cost- and
time-efficient manner (Figure 3). The resulting platform
addresses clinicians’ requests to reduce data overload and more
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precisely tailor the data that they use during clinical encounters.
The lessons learned from building an institution-wide digital
medicine platform include not only the importance of using
HCD but also the importance of engaging with institutional
partners and leadership early to collaboratively and transparently
navigate through the long and arduous process of obtaining
regulatory and security approval.

Based on our experiences, we propose that the development of
similar platforms at other institutions is an efficient way to
accelerate the testing of digital health algorithms in clinics. To
reduce the burden of this undertaking, other academic clinical
centers could use all or part of the BRIDGE platform code to
create their own instances, especially if these centers used Epic,
even though there would still be regulatory approval and
software integration steps for making BRIDGE available within
their EHRs. Additional developments could simplify this further,
including sharing aspects of BRIDGE through centralized
application stores, such as the Epic App Orchard, as well as
creating centralized security audits and certifications that allow
software to be vetted thoroughly once rather than vetting

software at each new institution. Such centralization could be
achieved by a federal initiative, a nationwide nonprofit society,
or commercial vendors. For example, commercial vendors could
provide institutions with centralized platforms that provide
cloud-based computational resources, data access, security, and
certification while clinicians and scientists develop dashboards
and algorithms that run on these centralized platforms. BRIDGE
provides a way to immediately develop and test these dashboards
and algorithms in preparation for this future.

The potential of precision medicine will only be realized when
the utility of the algorithms developed in this field can be
evaluated at the point of care with real patients. Performing this
testing requires substantial infrastructure development, which
is hard to justify in the evaluation phase. Modular, scalable,
institution-wide platforms, such as BRIDGE, represent one
approach to resolving this catch-22 problem by providing an
efficient mechanism for rapidly and cost-effectively deploying
and evaluating new algorithms in clinics. Such a mechanism
effectively serves as a bridge for translating research innovations
into clinical tools.
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