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Abstract

Background: In December 2019, the COVID-19 outbreak started in China and rapidly spread around the world. Many studies
have been conducted to understand the clinical characteristics of COVID-19, and recently postinfection sequelae of this disease
have begun to be investigated. However, there islittle consensus on the longitudinal changes of lasting physical or psychological
symptoms from prior COVID-19 infection.

Objective: This study aims to investigate and analyze public social media data from Reddit to understand the longitudinal
impact of COVID-19 symptoms before and after recovery from COVID-19.

Methods: We collected 22,890 Reddit posts that were generated by 14,401 authors from March 14 to December 16, 2020. Using
active learning and intensive manual inspection, 292 (2.03%) active authors, who were infected by COVID-19 and frequently
reported disease progress on Reddit, along with their 2213 (9.67%) longitudinal posts, were identified. Machine learning tools
to extract biomedical information were applied to identify COVID-19 symptoms mentioned in the Reddit posts. We then examined
longitudinal changes in individual physiological and psychological characteristics before and after recovery from COVID-19
infection.

Results: Intotal, 58 physiological and 3 psychologica symptomswereidentified in social media before and after recovery from
COVID-19 infection. From the analyses, we found that symptoms of patients with COVID-19 lasted 2.5 months. On average,
symptoms appeared around a month before recovery and remained for 1.5 months after recovery. Well-known COVID-19
symptoms, such asfever, cough, and chest congestion, appeared relatively earlier in patient journeys and were frequently observed
before recovery from COVID-19. Meanwhile, mental discomfort or distress, such asbrain fog or stress, fatigue, and manifestations
on toes or fingers, were frequently mentioned after recovery and remained as intermediate- and longer-term sequel ae.

Conclusions: In this study, we showed the dynamic changes in COVID-19 symptoms during the infection and recovery phases

of the disease. Our findings suggest the feasibility of using social media data for investigating disease states and understanding
the evolution of the physiological and psychological characteristics of COVID-19 infection over time.

(J Med I nternet Res 2022;24(2):€33959) doi: 10.2196/33959
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Introduction

COVID-19 is a pandemic vira infectious disease that has
quickly spread worldwide. The clinical presentation of
COVID-19 hasbeen well defined from active clinical and basic
scientific research. Risk factors and commonly observed

https://www.jmir.org/2022/2/€33959

symptoms at the diagnosis of COVID-19 and throughout the
acute disease course have been well documented [1,2]. Several
studies havetried to identify self-reported COV1D-19 symptoms
using social media data [3,4] and investigated the dynamics of
symptoms that were observed prior to and throughout
COVID-19infection [5]. Our own analysis of social mediaand
clinical literatures suggested less common or rarely observed
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novel symptoms related to COVID-19. We also observed that
different sets of clinical and demographic characteristics are
associated with specific clinical outcomes, such as severity of
disease progression, hospitalization, and intensive care unit
admission [6]. These efforts have helped to understand the
development of COVID-19 and identify appropriate medical
treatment options and diagnostic methods.

Since early 2021, researchers have found emerging evidence
of long-term sequelae in a considerable proportion of patients
who have recovered from COVID-19. Severa systematic
reviews and cohort-based studies have suggested a set of
symptoms from which COVID-19 survivors have partialy
recovered or thosethey haveretained [7,8]. Most of these studies
have focused on aset of symptomsthat appeared at astatictime
point (eg, symptoms before, or at, the moment of confirmation
of COVID-19; symptoms during recovery; or symptoms after
recovery from COVID-19) and were based on retrospective
data of hospitalized patients. When we considered that about
15% of patients with COVID-19 have been hospitalized [9],
there was limited understanding of patients who experienced
less severe symptoms and received home-based care. This
created a huge knowledge gap to understand the symptom
landscape and symptom durations in the general patient
population (ie, 85% of patients with COVID-19). A
comprehensive understanding of the full spectrum of symptoms
and their dynamic changes throughout the patient journey (ie,
disease course) was essential to obtain better information about
acute and chronic/persistent COVID-19 symptoms in general
patients and develop a complete understanding of the
longitudinal impact of COVID-19 infection in the population.

To better understand the longitudinal changes in the
physiological and psychological characteristics of the
COVID-19 patient population throughout the patient journey,
we systematically investigated Reddit public social mediadata
from individuals who had previously been infected with
COVID-19 and have recovered. Social media provides an
efficient method of gathering large amounts of real-world data
on the general public, which are scalable and convenient for
users at any time of day, especially from remote or unattended
regions. In addition, the devel opment of sophisticated machine
learning methods has been used to collect high-quality medical
information from social media [10,11]. For this study, social
media datawere utilized to capture the disease course of general
patients with COVID-19, including nonhospitalized patients
with various levels of symptom severity. Machine learning
methodswere applied to select reliable patientswith COVID-19
and their posts from social media data and to identify the full
spectrum of symptoms of COVID-19 in a comprehensive
manner.

Methods

Data

Reddit was used to collect social media posts of COVID-19
survivors. Reddit is alarge user-generated content website and
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text-based social mediaplatform (without the limitation of text
length) enabling usto extract detailed information about agiven
topic. Reddit is also acommunity-based social media platform
providing sections devoted to topic-specific discussions
(subreddits). Authors express their opinions or concerns on
subreddit forums. Subreddit defines its characteristics and
eligible members. Therefore, people who are redlly interested
in each topic can participate in a subreddit community.
Furthermore, Reddit provides apublicly accessible Application
Programming Interface (API) so that researchers can collect
and analyze anonymized postsfor their own purpose. Such clear
definitions of topics and member eligibility, as well as
anonymized data accessthrough the API, made Reddit areliable
and effective social mediaplatform to find the appropriate target
audience for this study.

For this analysis, we collected posts that were generated from
the moment the United States declared COVID-19 a national
emergency (March 13, 2020; we collected posts from March
14, 2020) until the Food and Drug Administration (FDA) issued
an emergency use authorization to both Pfizer-BioNTech’s and
Moderna's COVID-19 vaccines (December 17, 2020; we
collected posts until December 16, 2020). After the World
Health Organization (WHO) declared COVID-19 a pandemic
and the United States declared COVID-19 anational emergency,
it was logical to assume that the general population started to
become aware of the presence of the COVID-19 virus and be
interested in symptoms and their health conditions. In addition,
they were exposed to the risk of COVID-19 contraction before
the vaccine was available. During this period, people could
actively discuss COVID-19-related issues and share their
personal experience. We especially considered posts generated
in*“COVID-19Positive” and “ CoronavirusSurvivors’ subreddits.
“COVID-19Positive” was self-described as“a place for people
who came back positive for COVID-19 to share your stories,
experiences, answer questionsand vent!” “ CoronavirusSurvivor”
was self-described as a community for survivors of the
coronavirus. At the time the conversations analyzed for this
study were downloaded, the “COVID-19Positive” subreddit
had about 81,000 members and the “CoronavirusSurvivors’
subreddit had about 1000 members.

The procedure to process and analyze social media data is
described in Figure 1A. In total, 22,890 posts from 15,401
authors were collected from Reddit. Of the 15,401 authors,
11,900 (77.27%) generated only 1 post, which wasinappropriate
to examine longitudinal changesin COVID-19 symptoms. We
did not consider them for further analyses.

To identify active authors' authentic COVI1D-19-related posts,
we performed active learning. After the automated active
learning procedure, manual inspection was performed to
examinethereliability of post labeling (Figure 1A). Detailsare
described in the Acquiring Pertinent Labels for Reddit Posts
section.
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Figure 1. Overview of socia media datarelated to COVID-19 patient journey. (A) Social media data collection and analysis procedure. In total, 1634
posts from 290 active authors who continuously posted their disease progress were identified and used for further analyses. * and + indicate automated
steps and steps requiring manual inspections, respectively. (B) Fraction of active authors, depending on posting duration. Posting duration is the time
difference between the first and last COVID-19 posts from the same active author. The red-dashed line indicates the average posting duration. (C)
Fraction of before-posts, depending on number of symptoms. (D) Fraction of after-posts, depending on the number of symptoms. The red-dashed line

indicates the average number of symptoms mentioned in a post.
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Acquiring Pertinent L abels for Reddit Posts

We observed some authors asking questions about COVID-19
or posting about symptoms, or about a family member, rather
than themselves. It was apparent after reading many posts that
not all authors were COVID-19 positive. This observation
necessitated distinguishing between true patients with
COVID-19 and authors who had not tested positive for
COVID-19. Furthermore, we wanted to identify those authors
that had discussed recovery from COVID-19 in their posts. We
were also interested to know how different physical and
psychologica symptoms were discussed within Reddit posts.

Wefirst generated an unlabel ed data set of 4762 poststhat were
written by 734 authors who had posted at least 4 times in our
COVID-19-related subreddits (Figure 1A). We designated 4
classes (ie, label types) that we needed for our analysis. For
each post in our data set, we needed to check whether the post
had (1) evidence that the author is'was COVID-19 positive
(label: “posi”), (2) evidence that the author has recovered from
COVID-19 (labe: “reco”), (3) evidence of physiological
symptoms (label: “physio”), and (4) evidence of psychological
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symptoms (label: “psycho”). More details of labeling are
described in Multimedia Appendix 1.

To do this, we implemented an active learning method [12] to
capture the different labels for Reddit posts in an automated
and expedited manner. Active learning is a popular method to
find relevant materials from within documents and is widely
used in the e-discovery domain (eg, labeling documents as
relevant or nonrelevant from a collection of legal documents or
research papers). It also hasbeen applied toidentify theliterature
that isrelevant to infection prevention and control of COVID-19
from a large biomedical corpus [13] and used to build a
diagnostic method for COVID-19 [14].

Using active learning, we built a classifier for each of the label
classes; the classifier was periodically updated with new
evidence, as saved by a human assessor (Multimedia Appendix
1). Thisway, the classifier can capture newly found text features
with each training iteration. The goal for the classifier isto find
the next best-candidate Reddit post that can contain a label
evidence string. The human assessor, when presented with the
candidate post, assesses the post as nonrelevant (providing a
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true-negative label) or highlights and saves an evidence string
(providing a true-positive label). After retraining with a set of
new labels, the classifier “relearns’ which features in the text
are likely to be found relevant and it presents the next best
candidate to the user for assessment. For the human assessor,
the likelihood of finding true-positive labels increases early in
thelabel-gathering process, which helpswith expediting labeling
effortswhen we arelooking for true-positive labels on abudget.

A labeling interface was built to capture labels using our active
learning method (Multimedia Appendix 1). An assessor is
presented with 1 Reddit post at a time for 1 label class. The
assessor can mark the post as nonrelevant for the particular post
for the particular class or save (copy/paste) an evidence string
that isrepresentative of thelabel classdescription. The classifier
for the respective label type is then retrained with the new
evidence string. Then, all remaining unlabeled posts are scored
by the classifier. Thetop-ranked unlabeled post isthen presented
to the assessor for judgement. Thus, after each judgement cycle,
the classifier learns which text features are relevant to the
assessor, and the method then presents the most likely relevant
candidate for assessment to the user next. This way, the most
relevant posts are labeled quickly, with the added advantage
that assessment budgets and available time are utilized more
efficiently.

Werecruited 13 well-trained assessorsfor the labeling task; the
number of assessors varied across label classes. The goal for
assessors was to find and label as many |abel-relevant posts as
fast as possible. To do this, we provided 2 hours of training
sessions so that accessors could find relevant posts generated
by reliable patients with COVID-19. Labeled data completed
by accessors were then manually inspected by the authors in
this study to confirm that labeling was done correctly
(Multimedia Appendix 1). The assessors made 2785 judgements
and found 1072 evidence strings across all classes (Multimedia
Appendix 1).

Identifying Active Authors

We selected active authors who were infected by COVID-19
and described their experiencesand COV1D-19 symptoms across
the entire patient journey: from the confirmation of COVID-19
infection to after recovery from COVID-19. To do this, we
examined the median time duration between the first post and
the last post that a given user generated (Multimedia A ppendix
1), and selected the optimal number of poststhat could represent
the patient journey.

We found that symptoms usually take 5-6 days to appear after
COVID-19 exposure (incubation period of COVID-19) [15].
We also estimated the recovery time after onset of the
symptoms. We calculated the average recovery time (duration
between the posts with the label “posi” and the posts with the
label “reco”) for the subset of users who had mention of
recovery in their posts. For this calculation, first we removed
the outliers that were considered as cases with recovery time
higher than 2xSD. We obtained 15.7(SD 10.4) days as the
average recovery time after testing positive. Since our subset
was small (n=38 users) and there was high variation in the data,
we decided to use the commonly accepted recovery time from
the literature. Although there were various studies reporting
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different durations [5], 14 days was the duration we most often
found in our search [16-19]. Therefore, we utilized 14 days as
the recovery period after having tested positive for COVID-19,
and we assumed that 20 (6+14) days of posting period could
represent atypical patient’s journey. In addition, 4 posts were
used as a cut-off to find active authors since they were generated
for 22 days, which wasthe closest period to our adopted notion
of COVID-19 duration (20 days).

Identifying Symptoms of COVID-19

To identify the physical or psychological symptoms that were
mentioned in Reddit posts, we applied 2 automated symptom
extraction methods. Using the Amazon Comprehend Medical
tool (Amazon Web Services), we extracted medical entities.
The Amazon Comprehend Medical tool uses machinelearning
to extract health-related information from text automatically.
For this study, we considered medical entities“ symptoms’ and
“signs’ as COVID-19 symptoms. In addition to the Amazon
Comprehend Medical tool, we also built a model to identify
medical entities using Scispacy (v.0.4.0). Scispacy is a Python
package for handling scientific documents and extracting
medical and clinical terminology [20]. We considered the
medical entity “disease” as COVID-19 symptoms. From the
performance evaluation of medical entity extraction models,
we found that the models identified over 80% of COVID-19
symptoms correctly and reliably (MultimediaAppendix 1). The
model achieved 87% precision, 83% recall, and an F1 score of
0.85. Intotal, 58 physical and 3 psychological symptoms were
identified (Multimedia Appendix 1). The 3 psychological
symptomswere “confusion or fluster,” “ depression or anxiety,”
and “mental discomfort or distress’ (eg, foggy head and loss of
CONSCiouSNess).

In total, 1634 posts generated by 290 active authors mentioned
at least 1 COVID-19 symptom (Figure 1A). Next, we determined
when each post was generated: before or after recovery from
COVID-19. We divided the posts into 2 groups, before-posts
and after-posts, based on their posting time. Before-posts were
written before COVID-19 recovery, and after-posts were written
after recovery. Posts that were generated before recovery posts
(Iabel: “reco”) were defined as before-posts. When authors only
had positive posts (Iabel: “posi”), posts generated from the date
of thefirst positive post to the next 14 days were considered as
before-posts based on the study that patients with COVID-19
take about 14 daysto recover from the disease [16]. Remaining
posts were defined as after-posts. We assumed the date of the
first before-post was the moment users realized COVID-19
symptoms or confirmed their infection by COVID-19.

Since the number of before- and after-posts was different,
identified COVID-19 symptoms were observed with different
frequencies. For a fair comparison of symptom frequency
between before and after COVID-19 recovery, we normalized
the frequency of each symptom to 100 posts (ie, of 100 posts,
how many mentioned a given symptom). Depending on this
frequency, acute and chronic symptomswere determined. Acute
symptoms developed rapidly and were mentioned more
frequently in before-posts. Chronic symptoms developed
gradually and were slow to resolve, remaining as sequel ag, and
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were mentioned more frequently after recovery from COVID-19
(after-posts).

I dentifying Symptoms M entioned Together

To identify symptoms that commonly appear together, we
performed association rule analysis[21]. We measured support,
which is defined as the proportion of posts in which a certain
set of symptoms come together. We adopted the Apriori
algorithm and followed a bottom-up approach that starts from
every single symptom, and then symptom subsets are extended
litem at atime. At each step, the group of candidatesis tested,
and the ones that include infrequent items are pruned.
Negation Analysis

To understand how patients perceive and respond to COVID-19
symptoms, negation analysiswas performed using the Amazon
Comprehend Medical negation model [22] and manual
inspection (Figure 1A). Negation analysis showed whether a
given symptom was denied (eg, “| have gotten no fever” or “I
don't cough anymore”). Therefore, in our study, negation
indicated that a given symptom was relieved or disappeared
after recovery from COVID-19. After automatic identification
of negated symptoms, we removed false positives through
manual inspection. False positives are symptoms that present
after COVID-19 recovery, but negation analysis detected them
dueto the sentence structure (eg, “| still have no smell and taste
after | received a negative polymerase chain reaction [PCR]
test”; “no smell and taste” was not negation. This symptom was
still presented after recovery). Of 699 after-posts, negation was
detected from 240 (34.3%) posts.

Statistical Analysis

To compare the duration of symptoms before and after
COVID-19, Spearman rank correl ation coefficient measurement
was performed using the programming language Python
(v.3.8.1) and SciPy package (v.1.6.2). P<.05 was considered
statistically significant. For the visualization of analyses, the
BPG library (v.6.0.1) in R was used [23].

Results

Result 1: Overview of Reddit COVID-19 Posts

To understand longitudina changes in physica and
psychological characteristics during the COVID-19 patient
journey, we decided to collect patients self-generated posts
from Reddit. Reddit isacommunity-based online forum where
patients can share their clinical journey, symptoms, and
experiences from diagnosis to postrecovery. We identified 292
active authorswho continuously and voluntarily discussed their
physiological and psychological symptoms from the beginning
of COVID-19 contraction to the after-recovery stage of
COVID-19 (seethe M ethods section and M ultimedia A ppendix
1 for details). From the active learning experiment, we found
that active authors generated 2213 posts that described their
positive COVID-19 infection and the symptomsthey had before
and after recovery from COVID-19. On average, active authors
generated 8 posts in 73 days (difference between the first
before-post and the last after-post; Figure 1B). It is suggested
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that COVID-19 symptoms remain after recovery and present
for about 2.5 months from diagnosis.

Next, we fed all 2213 posts into the biomedical named entity
recognition (Bio-NER) program to find COVID-19 symptoms
in a comprehensive manner. In total, 1634 (73.84%) posts
mentioned at least 1 COVID-19 symptom (Figure 1A). From
those, 935 (57.22%) posts were written from diagnosis (eg,
confirmation of a positive test or notification of COVID-19
symptoms) to before recovery from COVID-19 (eg, received a
negative test after the positive test). These were defined as
before-posts. In addition, 699 (42.78%) posts were written after
recovery (after-posts; see the Methods section for details). On
average, each active author mentioned 9 symptoms in the
before-post (Figure 1C) period and 6 symptomsin the after-post
(Figure 1D) period.

Result 2: COVID-19 Symptom L andscapein Social
Media Data

To understand the dynamic development of physiological and
psychological symptoms throughout the COVID-19 patient
journey, we compared how often individual symptoms were
mentioned in before- and after-posts. Of 61 symptoms, 33 (54%)
were acute symptoms. They were mentioned more frequently
before recovery from COVID-19 compared to after recovery.
The most known COV1D-19 symptoms, such asweakness, body
aches, cough, fever, chest tightness, and loss of smell and taste,
were mentioned frequently in before-posts. We observed that
these symptoms were relieved or improved after recovery. For
example, in 100 posts, loss of smell and taste was mentioned
63 timesin before-posts. However, after recovery, it was 32.89%
lessfrequently mentioned (42 timesin after-posts). Fever, cough,
and throat discomfort (dry or sore throat) were approximately
40% less frequently mentioned after recovery (Figure 2A).
Chills (51.23% reduced), cold-like symptoms (42.38% reduced),
nausea (40.04% reduced), and sputum (43.52% reduced) were
also mentioned less after recovery. Negation analysis supported
these findings. When negation was detected in a sentence that
contained a symptom, we could assume that a symptom was
relieved or disappeared. We performed negation analysis using
after-posts and found that common symptoms, including fever,
cough, or chest tightness, were denied (eg, “I have no fever or
no cough”) in after-posts. In addition, 5%-20% of after-posts
clearly mentioned that these symptoms disappeared after
recovery from COVID-19 infection (Multimedia Appendix 1).
In addition, 4 (7%) extremely rare symptoms (epilepsy, spasm,
constipation, and anemia; lessthan 1% of posts mentioned these
symptoms) were only identified before the recovery period
(Figure 2A).

Furthermore, 28 (46%) of 61 symptoms were mentioned more
frequently after recovery from COVID-19 (chronic symptoms).
We observed that patients with COVID-19 mainly complained
of psychological symptomsduring thistime. Mental discomfort
and distress, including brain fog, stress, and panic, were
mentioned 18.27% more often, and confusion/fluster was
mentioned 8.63% more after recovery. Constitutional symptoms,
such as fatigue (25.96%), and physiologica symptoms,
including problemsin toes or fingers (eg, tingly hands/feet and
toe/finger rash, 41.26%), renal-related problems (eg, frequent
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urination and kidney pain, 38.43%), and immunodeficiency (eg,
autoimmune disease and immune system disorder, 37.94%),
were also frequently mentioned after recovery (Figure 2B).
These results suggested that well-known symptoms are likely
to be acute symptoms and do not remain as postrecovery
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sequel ae of COVID-19 infection. Rather, after recovery, patients
experience mental discomfort and symptoms that are less
common at or shortly following the time of diagnosis of
infection and slow to resolve [6].

Figure 2. Symptom landscape in before- and after-posts. (A) There were 33 acute symptoms that were frequently mentioned before recovery from
COVID-19. (B) There were 28 chronic symptoms that were frequently mentioned after recovery from COVID-19. The number indicates the incidence

of agiven symptom per 100 posts.

A B
Before After Before After
Body aches and pain 70 52 Myalgia or fatigue 22 30
Loss of smell and taste 63 42 Mental discomfort or distress 14 17
Weird symptoms or weakness 62 51 Skin problem 10 1
Chest tightness or dyspnea 47 42 Respiratory symptoms or disease 8 9
Cough 46 31 Autoimmune diseases or immunadeficiency 5 8
Fever 45 28 Others 2 6
Headache or dizziness 40 29 Nerve pain and disease 1 5
Chest congestion or pain 31 25 Cardiac disease and injury 2 5
Dry throat or sore throat 31 17 Dry-related symptoms 3 4
Depression or anxiety 31 23 Blood pressure-related symptoms 1 4
Stuffy or runny nose 25 13 Confusion or fluster 4 4
Dyssomnias or sleep a lot 15 12 Asthma 3 4
Chills 10 5 Eye prablem 3 4
Sputum or mucus 10 5 Abdominal pain 1 3
Gastrointestinal symptoms 9 9 Blood disorder 1 3
Allergy-like symptoms 8 7 Nausea or vomiting 2 2
Cold-like symptoms 7 4 Enlargement of lymph nodes or sinus 2 2
Diarrhea = 5 Diabetes 2 2
Pneumonia 7 6 Renal symptoms or disease 1 2
Anorexia 7 6 Lung disease 0.43 2
Nausea or vomiting 6 4 Finger or toes problem 1 2 o 30
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Epilepsy 0.21 0 e
Spasm 0.11 0 E]
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Result 3: Co-occurrence of COVID19 Symptoms
Before and After Recovery

It has been shown that COV1D-19 can cause multiple symptoms
during early infection and progression [6]. To understand the
dynamic co-occurrence of COVID-19 symptoms through the
patient journey, we examined a set of symptoms that were
mentioned together in a Reddit post. We found that each author
mentioned more symptoms before recovery than after recovery
(Figure 3). For example, of 256 authors who generated
before-posts, 64 (25%) mentioned 11-15 symptoms, and this
was 1.63 times higher compared to those who generated
after-posts (n=222; 35 [15.8%] mentioned 11-15 symptoms).
Meanwhile, 92 (41.4%) of 222 authors mentioned fewer
symptoms (1-5 symptoms) in after-posts, which was 1.56 times
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higher (68/256, 26.6%) compared to before-posts. Next, we
examined what symptom pairs were observed before and after
recovery. Intotal, weidentified 368 co-occurred symptom pairs.
We observed that common and acute symptoms of COVID-19
were mentioned more frequently together beforerecovery. Chills
with loss of smell and taste (2.51 times), cough (2.44 times),
fever (2.39 times), chest tightness (2.39 times), or body aches
(2.31 times) freguently co-occurred before recovery from
COVID-19 compared to after. Meanwhile, 1 of the chronic
symptoms, immunodeficiency (eg, autoimmune disease and
immune system disorder), co-occurred with other chronic
symptoms, such as mental discomfort/distress, myalgia/fatigue,
and skin problems only after recovery from COVID-19
(Multimedia Appendix 1).
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Figure 3. Number of COVID-19 symptomsin before- and after-posts. Dark- and light-gray barsindicate the fraction of authors who mentioned agiven

number of symptomsin before- and after-posts, respectively.
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Result 4: Symptom Duration in Patientswith
COVID-19

Our data set was composed of poststhat followed time courses,
enabling usto perform temporal analysesto understand dynamic
changes over time. We examined the duration of symptoms
across the COVID-19 patient journey. On average, each
symptom persisted for 83 days. On average, symptoms appeared
37 days before recovery (Figure 4A) and remained up to 46
days after recovery (Figure 4B). Thisimplied that about amonth
was required to recover from the first COVID-19 symptom
presentation and that symptoms remained for 1.5 months after
recovery.

We found that there was aweak correlation between frequency

of symptoms and symptom duration (p=0.45, P=.28x10*
Spearman correlation coefficient, Figure 4C). In before-posts,
well-known acute COVID-19 symptoms (eg, weakness, body
ache, cough, fever, dyspnea, and headache) were mentioned by
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at least 116 (40%) of 290 active authors. They appeared
relatively early compared to other symptoms (appeared 54 days
before recovery). Loss of smell and taste (37 days), nausea (37
days), and asthma (31 days) appeared about 1 month before
recovery. Less common symptoms, including arthritis, epilepsy,
and anemia (<1% of before-posts mentioned these) appeared
around 10 days before recovery (Multimedia Appendix 1).

After recovery, we observed a similar trend. There was aweak
but statistically significant positive correlation between
frequency of symptoms and time of presentation (p=0.43,

P=.93x10" Spearman correlation coefficient, Figure 4D).
Chronic symptoms (frequently observed after recovery), such
as confusion, immunodeficiency, and fatigue, were slow to
resolve. They remained for over 50 days after recovery. Mental
discomfort/distress (38 days) also remained longer than other
symptoms. Menstrual problems, shock, and acute respiratory
distress—related symptoms (<1% of after-posts) remained about
15 days after recovery (Multimedia Appendix 1).
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Figure 4. Duration of COVID-19 symptoms. (A) Duration of symptoms before recovery from COVID-19. (B) Duration of symptoms after recovery
from COVID-19. The red-dashed line indicates the average symptom duration. The relationship between symptom duration and symptom occurrence

(C) before and (D) after recovery from COVID-19.
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Discussion

Principal Findings

Our longitudinal analysis based on social media data showed
the dynamic evolution of symptoms through the COVID-19
patient journey. From this observational study, we identified
acute and chronic symptomsthat were frequently or specifically
observed before and after recovery from COVID-19. Individual
symptoms showed differing durations and recovery times. Social
mediadataexpanded our understanding of COVID-19 symptoms
and their longitudinal changes through the patient journey.

From social media data, we observed that the most common
COVID-19 symptoms (eg, fever, cough, and weakness) appeared
earlier in patient journeys and were mentioned more frequently
before recovery from COVID-19. These common COVID-19
symptoms were easily recognizable and evaluated by ordinary
peoplewithout any screening tools. In addition, they werebasic
indicators used in clinical and medical research. Accumulated
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COVID-19 research defined them as well-characterized
diagnostic indicators for COVID-19 [24]. Furthermore, at the
beginning of the pandemic, national- or international-level
awareness campaigns were conducted with a limited
understanding of COVID-19 symptoms. We suggested that the
public's basic awareness and easy recognition could
disproportionate the prevalence of COVID-19 symptoms,
increasing the reporting of common symptomsin social media
before recovery from COVID-19.

I nterestingly, common symptoms were relieved or disappeared
after recovery from COVID-19 (acute symptoms) based on our
analyses of symptom negation and the duration over thisentire
period. Fever was considered abeneficial responseto infection.
Increased temperature reduces pathogens’ survival and increases
mobilization of immune cells [25]. Cough is an intrinsic and
protective reaction to many respiratory infections[26]. Skeletal
muscle atrophy can be caused by an immune response, leading
to weakness or body ache[27,28]. Taken together, we suspected
that many common and acute symptoms are likely to be
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associated with the initial immune response and are relieved as
the initial immune response decreases over time after viral
clearance.

Significance of Mining Social Media Data

Currently, there is limited information about nonhospitalized
or initially asymptomatic patients with COVID-19 who have
had persistent and chronic symptoms after their recovery. In
addition, there is a lack of information about longitudinal
changes in COVID-19 symptoms due to the limited methods
or accessibility to identify COVID-19 survivors on a global
level. Our study explored dynamic changes in COVID-19
symptoms throughout patient journeys using social mediadata.
Although social media may lack some depth of patient
information, it provides an effective method of collecting awide
breadth of data. Social mediadatacan be easily gathered across
the world 24 hours a day, without the need for a clinician visit,
and is an extremely efficient method [29] for rapidly
disseminating new knowledge related to COVID-19 [30].
Indeed, we ohserved more than 60 symptomsthat were extracted
from the Reddit posts, including al the symptoms of COVID-19
suggested by the Centers for Disease Control and Prevention
(CDC) [31]. Thisnumber of symptoms observed in social media
was about 2 times higher than the number of symptoms
mentioned in the biomedical literature (34 symptoms), which
was published by clinical institutes [6]. Furthermore, tracking
COVID-19 symptoms in social media data over time gave us
novel insights to understand the full clinical spectrum of
symptoms and the patient journey. Social media has also been
used to predict COVID-19 waves [32], forecast the number of
cases[33], and devel op crisis management strategies[34]. Taken
together, social media data could be useful for understanding
the symptoms and epidemiology of novel diseases, such as
COVID-19. Accumul ated knowledge and techniquesthat utilize
social mediadatawould be rapidly applied for future pandemic
preparedness and response in an effective manner.

Limitations and Future Work

The presence and rapid diffusion of misinformation in online
communities is a growing concern for patients and health care
providers [35]. We suspected that similar experiences and
common interests among patients would make strong emotional
connections in online disease communities, enabling us to
extract relatively reliable information compared to nondisease
communities. It has been shown that online disease communities
are mainly composed of patients, family members of patients,
and caregivers who are in similar situations and want to obtain
accurate information by posting their real experience-based
inquiries online [36]. In addition, patients are more likely to
express emotions and share aspects of their life in an online
community that they would not share face-to-face [37]. Such
similar experiences, common interests, emotional connections,
and empathy could develop and operate patient empowerment
by creating and disseminating rel evant information that would
help them to understand their health conditions and to receive
psychological support. Furthermore, disease communities
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develop practices that improve the quality of the information
that peers exchange [38]. Since disease communities deal with
life-related matters, peer interactions in online disease
communities have found low levels of inaccuracy [39], and
most false or misleading statements are rapidly corrected by
participants [40]. In addition to patients honest voluntary
participation, we adopted an active learning method by
collecting manually labeled Reddit posts and performed
second-round manual inspections of labeled posts to improve
the authenticity of the social mediadata. We believe these efforts
have greatly improved the reliability and authenticity of our
study.

It could be possiblethat all the symptoms extracted from Reddit
would not cover the entire literature of COVID-19 symptoms
or would not necessarily be COVID-19 symptoms. Moreover,
there is an inherent uncertainty in social media analysis about
the accuracy of temporal directions and the potential delaysthat
might occur between the actual event and the time of posting,
which is challenging to detect. A closely related limitation is
our assumption of a duration of 20 days for the COVID-19
patient journey, which is derived through the available data
(Reddit posts).

Natural language processing (NLP) could assist in identifying
the temporal mentions and adjusting the outcomes. We might
be able to improve our recovery time estimates using NLP,
helping to improve temporal accuracy. As we work beyond
social media surveillance and integrate with other data setsin
the future, we are likely to find better alignment regarding the
patient journey and related timelines.

We believethat the integration of various social mediadata sets
and the accumulation of data or systematic surveys of
COVID-19 survivors as well as customized machine learning
algorithms to capture COVID-19 symptoms would help to
decide which symptoms are manifestations of COVID-19
infection and provide new and untapped insights into
understanding the longitudinal evolution of symptoms
throughout the entire COVID-19 patient journey. This also
could be anovel means of assessing the fraction of COVID-19
survivors with persistent symptoms.

Conclusion

In this observational study, we demonstrated the extensive
variability of physiologica and psychological impacts of
COVID-19 infection and their variability during the acute
infection and recovery phases of illness. We also demonstrated
the usefulness of gathering social media data as an effective
and alternative way to understanding the patient journey from
diagnosis through recovery. Our findings show the practicality
and feasibility of employing social mediadatafor investigating
disease states and understanding the evol ution of physiological
and psychological characteristics of disease over time. These
practices could be incorporated into routine procedures for
COVID-19 patient care, providing appropriate treatment and
long-term care after recovery from COVID-19.
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