
Original Paper

Interpretable Machine Learning Prediction of Drug-Induced QT
Prolongation: Electronic Health Record Analysis

Steven T Simon1, MD; Katy E Trinkley2, PharmD; Daniel C Malone3, PhD; Michael Aaron Rosenberg4, MD
1Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States
2Department of Clinical Pharmacy, School of Pharmacy, University of Colorado, Aurora, CO, United States
3College of Pharmacy, University of Utah, Salt Lake City, UT, United States
4Division of Cardiac Electrophysiology, University of Colorado School of Medicine, Aurora, CO, United States

Corresponding Author:
Michael Aaron Rosenberg, MD
Division of Cardiac Electrophysiology
University of Colorado School of Medicine
12631 E. 17th Ave
Aurora, CO, 80045
United States
Phone: 1 720 500 3621
Email: michael.a.rosenberg@cuanschutz.edu

Abstract

Background: Drug-induced long-QT syndrome (diLQTS) is a major concern among patients who are hospitalized, for whom
prediction models capable of identifying individualized risk could be useful to guide monitoring. We have previously demonstrated
the feasibility of machine learning to predict the risk of diLQTS, in which deep learning models provided superior accuracy for
risk prediction, although these models were limited by a lack of interpretability.

Objective: In this investigation, we sought to examine the potential trade-off between interpretability and predictive accuracy
with the use of more complex models to identify patients at risk for diLQTS. We planned to compare a deep learning algorithm
to predict diLQTS with a more interpretable algorithm based on cluster analysis that would allow medication- and
subpopulation-specific evaluation of risk.

Methods: We examined the risk of diLQTS among 35,639 inpatients treated between 2003 and 2018 with at least 1 of 39
medications associated with risk of diLQTS and who had an electrocardiogram in the system performed within 24 hours of
medication administration. Predictors included over 22,000 diagnoses and medications at the time of medication administration,
with cases of diLQTS defined as a corrected QT interval over 500 milliseconds after treatment with a culprit medication. The
interpretable model was developed using cluster analysis (K=4 clusters), and risk was assessed for specific medications and
classes of medications. The deep learning model was created using all predictors within a 6-layer neural network, based on
previously identified hyperparameters.

Results: Among the medications, we found that class III antiarrhythmic medications were associated with increased risk across
all clusters, and that in patients who are noncritically ill without cardiovascular disease, propofol was associated with increased
risk, whereas ondansetron was associated with decreased risk. Compared with deep learning, the interpretable approach was less
accurate (area under the receiver operating characteristic curve: 0.65 vs 0.78), with comparable calibration.

Conclusions: In summary, we found that an interpretable modeling approach was less accurate, but more clinically applicable,
than deep learning for the prediction of diLQTS. Future investigations should consider this trade-off in the development of
methods for clinical prediction.

(J Med Internet Res 2022;24(12):e42163) doi: 10.2196/42163
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Introduction

Drug-induced long-QT syndrome (diLQTS) [1,2] is a major
concern for inpatients worldwide and has been identified as a
key target for clinical decision support tools [3-7]. Importantly,
although certain medications have been implicated as having
significant clinical risk [8,9], for others, despite a known risk
of diLQTS, clinical validation has been lacking [10-12]. In the
past few years, several groups have sought to apply prediction
models using electronic health record (EHR) data to model risk
[13-17] toward the goal of developing an automated approach
that leverages innovations in data science and machine learning.
In prior work [18], we performed a comparative evaluation of
machine learning methods to predict diLQTS using EHR data,
in which we found that the most accurate prediction method
was a deep learning model (6-layer neural network). However,
each of the models carried the limitation of lacking
interpretability for its predictions [19], as we were unable to
assess which clinical features were the most predictive. As such,
we were unable to construct a meaningful decision support
approach based on these models to reduce the risk of diLQTS
or determine whether our model could be easily exported to
other systems.

Beyond the role of increasing trust [20] in a prediction model,
interpretability plays a critical role in the assessment of
prediction models [21], particularly in the age of artificial
intelligence, where increasingly complex models can be created
using relatively raw, or unprocessed, clinical features.
Limitations in interpretability are critical not only because the
users may not understand why a model makes the
recommendations that it does but also because a lack of
interpretability increases the risk of bias in the form of data
shifts [22-24]. Data shifts occur when a model is developed in
one population and then applied in a different population; note
that this effect could also occur within the same hospital system
if the treatment paradigm changes dynamically over time. The
inclusion of interpretable models also allows a detailed
investigation to uncover confounding and identify situations
where a critical factor was excluded from the prediction
framework and to assess for reverse causality, a critical
consideration in big data models. Although “interpretability”
itself cannot be well quantified in the same manner as accuracy

or calibration, it remains a critical consideration in the
development of predictive models.

The promise of EHR data is that it provides a scale (ie, power)
to draw clinical inferences across thousands of patients and
potentially millions of data points, at the cost of lacking the
ability for facile clinical validation. With this power comes the
ability to predict clinical outcomes across a large number of
heterogenous subjects, integrating the breadth of the clinical
record and, with it, the range of possible diagnoses and
medications that could have nonlinear associations that cannot
be as easily detected using standard (ie, regression-based)
methods. However, methods to leverage EHR data using
machine learning have been limited by the ability to include
interpretability along with predictive accuracy.

In this follow-up investigation to our previous work [18], we
examined the application of an interpretable approach to
predictive modeling applied at scale to EHR data to predict
diLQTS. We specifically examined the use of clustering as a
bridge to interpretability and compared this approach with a
deep learning, noninterpretable method previously identified
as providing superior predictive accuracy within our health care
system.

Methods

Data Source and Study Population
The data for this investigation have been previously described
[19]. Briefly, we examined EHR data from 35,639 inpatients
within the UCHealth system treated between 2003 and 2018
with at least 1 of 39 medications associated with the risk of
drug-induced QT prolongation and who had an
electrocardiogram (ECG) in the system performed within 24
hours of medication administration (Figure 1). The primary
outcome of drug-induced QT prolongation was based on any
corrected QT interval over 500 milliseconds during the
encounter, after the exclusion of ECGs with conduction disease
(eg, bundle branch block, intraventricular conduction disease,
and ventricular pacing). Predictors included any medication or
diagnosis (International Classification of Diseases, Ninth or
Tenth Edition) listed in the medical record that was present at
the time of medication administration.
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Figure 1. Data management schema. Left: patient data ascertained by order for known QT-prolonging medication with an electrocardiogram (ECG)
performed within 24 hours to define cases (QTc ≥500 ms) and controls (QTc <500 ms), followed by subsequent splitting for models and validation. All
splits stratified by case status. Right: processing of predictors using frequency filters, information coefficient, and clustering. MIC: maximum information
coefficient; QTc: corrected QT interval.

Initial Drug Analysis
Varying formulations for each of the 39 culprit medications
were combined (ie, oral and intravenous amiodarone were
analyzed together). We first performed an unadjusted association
analysis with each medication and the risk of diLQTS using a
chi-square calculation. Those with significant associations after
adjustment for multiple comparison (Bonferroni correction, P
value for significance = .05/29 = .0017) were categorized as
“high risk” for a combined analysis, as well as further model
development (see below).

Predictor Filtering and Data Splitting
The medications and diagnoses in the raw data set were
extracted from the EHR for each subject as a string array,
following which we performed one-hot encoding
(keras.Tokenizer [25]; version 2.8.0) to create a separate variable
for each, labeled as 0 if the diagnosis or medication was absent
at the time of QT-associated medication administration and 1
if it was present. As such, missing values were coded as 0, under
the assumption that if the medication or diagnosis was not
present in the EHR, the patient was not taking the medication
or did not have that diagnosis. This process resulted in a data
set containing 22,817 unique medications and diagnostic codes,
from which we filtered the top 10,000 based on frequency. Of
note, the 10,000th most frequent predictor was present in only
5 of 36,639 subjects. The unadjusted association for each of
these 10,000 predictors with diLQTS was examined using the
maximum information coefficient (MIC; minepy.MIC; version
1.2.6), which examines both linear and nonlinear associations
based on mutual information [26]. After sorting by MIC, the
top 500 most associated diagnoses and medications were

selected for cluster analysis (see below). For deep learning
analysis, the top 10,424 predictors after one-hot encoding were
directly inputted into the model. Data splitting (Figure 1) was
performed by subject index, stratified by the diagnosis of
diLQTS (sklearn.train_test_split; version 1.1.2). The data were
first split into training (28,511/35,639, 80%) and testing
(7128/35,639, 20%) sets; the training set was then further split
into development (21,383/28,511, 75%) and validation
(7128/28,511, 25%) sets. The development set was used to fit
clusters (cluster analysis) as well as to train the deep neural
network. The validation set was used to examine cluster patterns
and predictive accuracy, as well as to examine the training of
deep learning. The testing set was used for comparative testing
of cluster and deep learning models as outlined below.

Cluster Development and Evaluation
Clustering was performed using only diagnostic codes to
facilitate comparisons of risk by drugs. To identify the optimal
number of clusters, we first applied KMean clustering (sklearn;
version 1.1.2) to the development set to create clusters from
K=2 to K=50 and then examined inertia plot and silhouette
scores (Figures S1A and S1B in Multimedia Appendix 1). After
identification of K=4 as the optimal cluster number, we fitted
the validation set with cluster assignments. To identify which
diagnoses were the most overrepresented in each cluster (ie,
which were the most different from other clusters), we calculated
the proportion of each diagnosis for each cluster and assigned
a value based on the product of the proportion within that cluster
and the difference between this proportion and the cluster with
the next highest proportion (termed the “proportion product”).
The clinical interpretation of each cluster was performed by a
clinician expert (MAR) after ranking the proportion product
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within each cluster. Clinical interpretation included evaluating
each cluster for themes of diagnoses (eg, critical care–related
diagnoses and gastrointestinal-related diagnoses) to provide an
overarching framework of the “types” of patients that each
cluster was composed of. Clusters were examined using
chi-square test for independent association the risk of diLQTS,
as well as using logistic regression (unpenalized) for the
proportionate risk of any high-risk medication or combinations
of high-risk medications. Margin plots were created using Stata
IC software (version 16; StataCorp).

Deep Learning Model Development
Hyperparameters for the deep learning model (deep neural
network) were applied from our prior investigation [19].
Specifically, the deep neural network was composed of 6 layers,
with 1024 neurons in the first layer and 512 neurons in the
subsequent 5 layers; sigmoid activation function; 50% dropout
for each layer; and batch normalization between layers. The
final output was a binary prediction (the presence of diLQTS),
with a binary cross-entropy loss function (RMSprop optimizer;

learning rate=1 × 10-5; ρ=0.9), and a validation metric of area
under the receiver operating characteristic curve (AUC). The
model was run over 500 planned epochs, with early stopping
(keras.callbacks.EarlyStopping) if no improvement over 50
epochs, resulting in 118 total epochs of training. Training was
monitored using learning curves (Figures S2A and S2B in
Multimedia Appendix 1). The development set was used for
training, and the validation set was used for validation after
each epoch. In total, the deep learning model had 12,265,473
total parameters, with 12,258,305 trainable parameters and 7168
nontrainable parameters.

Model Comparison
Prediction from the cluster model was performed on the held-out
testing set using logistic regression by cluster and the number
of high-risk medications to obtain a predicted probability.
Prediction from the deep learning model was performed through

the application of the trained model to the testing set to obtain
a predicted probability of diLQTS. Models were first compared
u s i n g  AU C ,  ave r a g e  p r e c i s i o n  s c o r e
(sklearn.metrics.average_precision_score), and area under
precision recall curve to obtain a threshold-independent
comparison. The optimal probability cutoff was selected for
each using the method of Youden [27]. After the selection of a
cutoff, models were then compared on classification accuracy
using F1-score, recall, precision, and contingency tables.
Calibration was assessed using calibration curves. Platt rescaling
was performed on neural network predictions through the
creation of a logistic regression model to predict actual labels.

Analysis
All analyses were conducted using Python (version 3.9.7; Python
Software Foundation), run on Jupyter Notebook (Anaconda).
Graphs for margin plots for cluster analysis and rescaling was
performed using Stata IC software (version 16). The final script
is available in Table S1 in Multimedia Appendix 1.

Ethics Approval
This project was approved by the University of Colorado
Internal Review Board (COMIRB #18-0251).

Results

Initial Drug Analysis
In the initial medication evaluation, we found that amiodarone,
dofetilide, fluconazole, propofol, and sotalol were significantly
associated with unadjusted increased risk for diLQTS (Table 1
and Table S1 in Multimedia Appendix 1). Interestingly,
medications previously highly associated with inpatient diLQTS,
such as haldoperidol [5], methadone [8], citalopram [28], and
azithromycin [29], were either borderline or not significantly
associated with diLQTS. Additionally, it was noteworthy that
ondansetron [30] was significantly associated with a decreased

risk of diLQTS (P=1.12 × 10-39).

Table 1. Association with drug-induced long-QT syndrome for selected medications. Statistically significant associations emphasized with italics.

P valueChi-square (df)Odds ratio (95% CI)QT-associated medication

1.61 × 10 -75354.80 (4)5.75 (4.68-7.06)Dofetilide

1.69 × 10 -2171010.70 (4)4.41 (4.0-4.87)Amiodarone

1.49 × 10 -1785.04 (4)2.88 (2.28-3.65)Sotalol

7.58 × 10 -116541.36 (4)2.71 (2.49-2.96)Propofol

1.78 × 10 -422.25 (4)1.39 (1.21-1.59)Fluconazole

.117.45 (4)1.39 (1.10-1.76)Methadone

.354.46 (4)1.19 (1.00-1.40)Citalopram

.473.54 (4)1.10 (1.00-1.21)Haloperidol

.990.0085 (4)0.99 (0.88-1.12)Azithromycin

1.12 × 10 -39188.49 (4)0.65 (0.61-0.69)Ondansetron
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Association With diLQTS
Among the top 10,000 most common diagnoses and
medications, the 100 with the highest MIC for association with
the label of diLQTS are listed in Table S2 in Multimedia
Appendix 1, with the top 500 kept for cluster analysis (minimum
MIC 0.000443). The top diagnoses associated with diLQTS
included long-QT syndrome, acidosis, cardiogenic shock, atrial
fibrillation, and acute respiratory failure; the top medications
associated included potassium chloride, furosemide, amiodarone,
magnesium, and albumin (Table S2 in Multimedia Appendix
1). These results highlight the potential for possible reverse
causation, as it seems more likely that potassium chloride and
magnesium would be administered as treatment of or to prevent
diLQTS, rather than themselves being causative. The strong
association with a prior diagnosis of long-QT syndrome provides
a meaningful proof of principle, as congenital long-QT
syndrome is a well-known risk factor for diLQTS [1,31-34].

Cluster Analysis
Cluster number optimization identified 4 clusters as the highest
silhouette score (Figure S1A in Multimedia Appendix 1), which
was validated using the elbow method applied to the inertia
score (Figure S1B in Multimedia Appendix 1). Manual
inspection of the cluster components (Table 2 and Table S3 in
Multimedia Appendix 1) indicated that cluster 0 seemed to

include a large number of critical care diagnoses; cluster 1
included diagnoses suggestive of cardiovascular disease; cluster
2 included diagnoses consistent with drug intoxication and
injuries; and cluster 3 included diagnoses of nausea, abdominal
pain, and headaches. In the validation set, we found that clusters
0 and 1 had an increased baseline risk of diLQTS compared
with clusters 2 and 3 (Table 2), which increased with exposure
to high-risk medications (Figure 2A) and combinations of
high-risk medications (Figure 2B). Subjects in cluster 3 were
not treated with any of the high-risk antiarrhythmic medications
(amiodarone, sotalol, or dofetilide), but for all 3 other clusters,
treatment with one of these agents increased the risk of diLQTS
(Figure 2C). Interestingly, the use of propofol was only
significantly (P=.0002) associated with risk of diLQTS for
subjects in cluster 2 (Figure 2D) but not clusters 0 (P=.0161)
or 1 (P=.4920; cluster 3 was not exposed), and the use of
ondansetron was significantly associated with decreased risk

of diLQTS in cluster 2 (P=6.371 × 10-6) but not the other
clusters (0: P=.996, 1: P=.129, and 3: P=.0577; Figure 2E).
These results indicate that although antiarrhythmic drugs
increased the risk of diLQTS broadly across all clusters, for
non-antiarrhythmic medications, the impact was primarily seen
in cluster 2, where propofol increased the risk of diLQTS and
ondansetron decreased risk.

Table 2. Cluster composition and association with drug-induced long-QT syndrome (diLQTS). Cluster 3 represents baseline comparator group (odds
ratio for the risk of diLQTS are compared with cluster 3).

P valueOdds ratio (95% CI)Representative diagnosesCluster

<.0013.25 (2.51-4.21)Kidney failure, sepsis, respiratory failure, and anemia0

<.0012.29 (1.77-2.95)Coronary artery disease, hypertension, hyperlipidemia, diabetes, and myocardial infarction1

.610.94 (0.73-1.20)Live birth, motor vehicle accident, drug overdose, and alcohol intoxication2

N/Aa1Nausea, abdominal pain, and headache3

aN/A: not applicable.
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Figure 2. Probability of diLQTS. (A) Probability of diLQTS for each cluster with treatment with high-risk medication. (B) Probability of diLQTS with
increasing numbers of high-risk meds, by cluster. (C) Probability of diLQTS for each cluster with treatment with antiarrhythmic medication (AAD).
(D) Probability of diLQTS for each cluster with treatment with propofol. (E) Probability of diLQTS for each cluster with treatment with ondansetron.
diLQTS: drug-induced long-QT syndrome.

Comparison of Predictive Accuracy
The AUC for deep learning was 0.776 (Figure 3A) compared
with the AUC of the cluster analysis of 0.636 (Figure 3B); the
area under precision recall curve was 0.373 for deep learning
(Figure 3C) compared with 0.322 for cluster analysis (Figure
3D); and the average precision score for deep learning was 0.379
and 0.193 for cluster analysis. Based on the Youden’s method
for cutoff selection, the optimal cutoff for the prediction of
diLQTS from deep learning was Pr(diLQTS) of 0.12, and for
cluster analysis, it was 0.15. Based on these cutoffs, the F1-score
for deep learning was 0.39, and for cluster analysis, it was 0.29.

Contingency tables for both are in Tables S4A and S4B in
Multimedia Appendix 1, with classification comparison in Table
3 demonstrating an agreement of 71.4% for the 2 approaches.
Calibration comparison is provided in Figure 4, in which we
noted that the neural network was poorly calibrated and
generally overpredicted the risk of diLQTS (ie, actual proportion
of diLQTS cases less than predicted probability), which had
been described with these models in our previous work [18].
With Platt rescaling (Figures S3A and S3B in Multimedia
Appendix 1), calibration of the neural network was improved
and was similar to calibration of the cluster analysis (Figure
S3B in Multimedia Appendix 1).

Figure 3. Accuracy assessment of models. (A) receiver operating characteristic (ROC) curve for neural network. (B) ROC curve for cluster model.
(C) Precision-recall for neural network. (D) Precision-recall for cluster model. AUC: area under ROC curve; NN: neural network.
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Table 3. A 2 × 2 table of comparative predictions at selected cutoffs. For deep learning models, the cutoff was probability of drug-induced long-QT
syndrome (diLQTS) of 0.12, and for cluster analysis, it was 0.15. These values are based on predictive models for which the probability of diLQTS is
produced for each individual, and the cutoff represents the probability above, in which an individual would be predicted to be at risk, and below, in
which one would not be at risk.

Cluster model (N=7128)

Total, n (%)Predicted high risk, n (%)Predicted low risk, n (%)

Neural network model

4671 (65.6)1018 (14.3)3653 (51.2)Predicted low risk

2457 (34.4)1440 (20.2)1017 (14.3)Predicted high risk

7128 (100)2458 (34.5)4670 (65.5)Total

Figure 4. Calibration analysis of neural network and cluster-based models. Top: Calibration plot for each model, with abscissa corresponding to the
binned predicted probability of diLQTS (positive class) from the model and ordinate corresponding to the proportion of actual positives (diLQTS cases)
within each bin. Bottom: Histogram of predicted probability for each model (left: cluster, right: neural network). Note that cluster-based model did not
predict probability over 0.5 for any individual. diLQTS: drug-induced long-QT syndrome.

Discussion

Principal Findings
In this EHR-based follow-up analysis, we sought to compare 2
divergent methods for the integration of machine learning to
guide clinical decisions to prevent diLQTS, with a focus on
clinical interpretability and predictive accuracy. In one, we
applied cluster analysis to group individuals by patterns of
diagnostic codes to identify potentially recognizable clinical
subgroups from which a treating clinician could identify patients
who might be at risk for diLQTS to guide future
decision-making. For comparison, we applied a deep learning
algorithm that was identified based on prior work in this same
population to obtain a “gold standard” level of predictive
accuracy, to quantify the potential loss in predictive accuracy
with the use of a more interpretable methodology. From a
clinical perspective, our findings revealed some interesting

insights regarding which specific medications have the greatest
risk of diLQTS, as well as which subpopulations appear to be
the most susceptible. However, we also found that there was a
fairly substantial loss of predictive accuracy using this
interpretable method in comparison with a “black box” method,
which should be considered in future work on the integration
of predictive models in clinical care.

Among the clinical insights, several are noteworthy. First, we
found that when examined independent of patient characteristics,
certain medications such as haldoperidol or methadone, which
are well established with diLQTS, were not associated with
increased risk, whereas others, such as ondansetron, were
actually associated with decreased risk in our population. This
finding points to the multifactorial nature of diLQTS,
highlighting the need to consider other relevant contextual
factors in assessing risk. However, it may also suggest that in
the inpatient setting, there might be more benefit than risk with
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using these medications, which is also consistent with prior
studies [9-12], including one where a clinical decision support
tool to prevent diLQTS had a paradoxical decrease in mortality
for patients in whom the treating provider ignored the alert and
prescribed the known QT-prolonging medication despite risk
[4]. Particularly in subjects who were not critically ill (not in
cluster 0) and without a history of cardiovascular disease (not
in cluster 1), there appeared to be more benefit to using
ondansetron, balanced against more risk with using propofol.
However, these insights should be taken with caution, as we do
not know the specific timing of the administration of
QT-associated medications in relation to obtaining the ECG nor
whether a medication was administered once, several times, or
not at all (merely listed as an as needed pro re nata medication).
Such a limitation seems likely for several of the known
QT-associated medications that are frequently ordered pro re
nata, such as haldoperidol and ondansetron, in which we found
no (former) or an inverse (latter) association with
QT-prolongation. Regardless of the underlying impact, this
consideration highlights the limitations of the use of clinical
decision support tools applied broadly across all medications
associated with diLQTS and a need to focus on the relative
population risk and indication when designing future tools.

Second, we found that, perhaps not surprisingly, the cluster of
patients (cluster 0) with diagnoses suggestive of critical illness
were the most susceptible to use of high-risk medications for
diLQTS, and that patients in clusters 2 and 3 with more benign
diagnoses were less likely to have diLQTS. This finding has
direct clinical implications, as it suggests that decision support
tools might be the most effectively targeted toward patients in
an intensive care unit, where risk is the greatest, rather than
broadly across all inpatients, with the caveat that the use of
propofol might need to be more closely monitored in subjects
without cardiovascular disease or critical illness. Our findings
also suggest that specific combinations of medications, such as
amiodarone and propofol, should either be avoided or
administered with close monitoring and aggressive treatment
of other factors that could predispose risk of diLQTS, such as
electrolyte abnormalities.

Finally, our findings highlight the critical trade-off between
model interpretability and accuracy, as we found that a
black-box prediction model using deep learning was
significantly more accurate (greater AUC and area under
precision recall curve) than the more interpretable cluster-based
model. This finding raises a key question for all practitioners
of predictive modeling: Is the improvement in predictive
accuracy worth the lack of understanding for why the model
makes the predictions it does? More specifically, without
understanding how a model makes its predictions, how can it
be challenged if a treating clinician believes it is less applicable
for a particular patient, and what changes should be made if the
predictive accuracy diminishes (a so-called “data shift” occurs
[23,24]). It is not difficult for an experienced clinician to
understand why patients who are critically ill (cluster 0) would
be at increased risk or why combinations of medications with
high risk of diLQTS would increase risk, and a method that can

uncover these categories would seem to be more useful clinically
than a black-box approach. Such clinical interpretation is
unavailable for the deep learning model, which creates a
challenge of trust in application. Further, in prior work, we
demonstrated that reinforcement learning can be applied to
cluster-based decision models (using a Q table) to allow a
decision support tool to improve over time [35]; it is unclear
whether a deep learning model could be as easily integrated
with reinforcement learning or whether there would be sufficient
prospective data to update the over 20 million parameters of
such a model. Broadly, as increasing numbers of predictive
models based on deep learning are applied to predict diLQTS,
especially those applied directly to the ECG tracing itself
[36,37], the trade-off with interpretability will remain a critical
consideration in clinical applications.

Limitations
Principal among the limitations of this investigation is the high
degree of noise inherent in studies of EHR data at scale and the
challenges with having a lack of ability to perform detailed
validation of diagnoses, medications, or outcomes, beyond what
can be performed in silico without manual chart review. Several
of these limitations related to reverse causation or lack of
temporal granularity with medication administration are
highlighted above. On the one hand, this common limitation of
big data science limits what can be done in terms of granular
validation; on the other hand, it provides both the improvement
in statistical power for modeling and some protection against
population bias, as might occur with studies at a single clinic
or single provider level. With the increased expansion of EHR
use worldwide, it is likely that methods to explore
interpretability within these large data models will be
increasingly relevant, for which our investigation should provide
some foundation for how interpretability can be balanced against
predictive accuracy.

Future Directions
Importantly, our findings provide the opportunity for direct
clinical implementation of “smart” clinical decision tools that
incorporate patient characteristics along with an understanding
of patient risk to improve the accuracy of predictions of diLQTS,
as well as guide clinical decisions including monitoring for
those at high risk or selecting alternative agents where they are
available. When combined with dynamic learning models, such
as Q learning [35], our approach offers the opportunity to
improve overall patient safety and clinical outcomes.

Conclusion
In summary, we found that interpretable methods to predict
diLQTS allow for evaluation in a manner that facilitates deeper
inspection of specific medication interactions and the
identification of meaningful clinical populations to target for
prevention. This interpretability comes at the expense of
predictive accuracy, which must be considered among
organizations seeking to integrate predictive modeling into
clinical decision support tools to prevent diLQTS.
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EHR: electronic health record
MIC: maximum information coefficient
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