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Abstract

Background: Obesity is a leading cause of preventable death worldwide. Artificial intelligence (AI), characterized by machine
learning (ML) and deep learning (DL), has become an indispensable tool in obesity research.

Objective: This scoping review aimed to provide researchers and practitioners with an overview of the AI applications to obesity
research, familiarize them with popular ML and DL models, and facilitate the adoption of AI applications.

Methods: We conducted a scoping review in PubMed and Web of Science on the applications of AI to measure, predict, and
treat obesity. We summarized and categorized the AI methodologies used in the hope of identifying synergies, patterns, and trends
to inform future investigations. We also provided a high-level, beginner-friendly introduction to the core methodologies to facilitate
the dissemination and adoption of various AI techniques.

Results: We identified 46 studies that used diverse ML and DL models to assess obesity-related outcomes. The studies found
AI models helpful in detecting clinically meaningful patterns of obesity or relationships between specific covariates and weight
outcomes. The majority (18/22, 82%) of the studies comparing AI models with conventional statistical approaches found that the
AI models achieved higher prediction accuracy on test data. Some (5/46, 11%) of the studies comparing the performances of
different AI models revealed mixed results, indicating the high contingency of model performance on the data set and task it was
applied to. An accelerating trend of adopting state-of-the-art DL models over standard ML models was observed to address
challenging computer vision and natural language processing tasks. We concisely introduced the popular ML and DL models
and summarized their specific applications in the studies included in the review.

Conclusions: This study reviewed AI-related methodologies adopted in the obesity literature, particularly ML and DL models
applied to tabular, image, and text data. The review also discussed emerging trends such as multimodal or multitask AI models,
synthetic data generation, and human-in-the-loop that may witness increasing applications in obesity research.

(J Med Internet Res 2022;24(12):e40589) doi: 10.2196/40589
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Introduction

Background
The double burden of malnutrition, characterized by the
coexistence of overnutrition (eg, overweight and obesity) and

undernutrition (eg, stunting and wasting), is present at all levels
of the population: country, city, community, household, and
individual [1]. Obesity is a leading cause of preventable death
and consumes substantial social resources in many high-income
and some low- and middle-income economies [2]. Worldwide,
the obesity rate has nearly tripled since 1975 [3]. In 2016, 13%
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of the global population, or 650 million adults, were obese [4].
More than 340 million children and adolescents aged 5 to 19
years and 39 million children aged <5 years were overweight
or obese [4]. By 2025, the global obesity prevalence is projected
to reach 18% among men and 21% among women [5].

Health data are now available to researchers and practitioners
in ways and quantities that have never existed before, presenting
unprecedented opportunities for advancing health sciences
through state-of-the-art data analytics [6]. By contrast, dealing
with large-scale, complex, unconventional data (eg, text, image,
video, and audio) requires innovative analytic tools and
computing power only available in recent years [7,8]. Artificial
intelligence (AI), characterized by machine learning (ML) and
deep learning (DL), has become increasingly recognized as an
indispensable tool in health sciences, with relevant applications
expanding from disease outbreak prediction to medical imaging
and patient communication to behavioral modification [9-14].
Over the past decade, an upsurge of the scientific literature
adopting AI in health research has been witnessed [15,16]. These
investigations applied a wide range of AI models: from shallow
ML algorithms (eg, decision trees (DTs) and k-means clustering)
and deep neural networks [17] to various data sources (eg,
clinical and observational) and types (eg, tabular, text, and
image) [18]. This boom in AI applications raises many questions
[19-21]: How do AI-based approaches differ from conventional
statistical analyses? Do AI techniques provide additional benefits
or advantages over traditional methods? What are the typical
AI applications and algorithms applied in obesity research? Is
AI a buzzword that will eventually fall out of fashion, or will
the upward trend of AI adoption to study obesity continue in
the future?

Synthesizing and Disseminating AI Methodologies
Adopted in Obesity Research
Three previous studies reviewed the applications of AI in weight
loss interventions through diet and exercise [22-24]. They found
preliminary but promising evidence regarding the effectiveness
of AI-powered tools in decision support and digital health
interventions [22-24]. However, to our knowledge, no study
has been conducted to summarize AI algorithms, models, and
methods applied to obesity research. This study remains the
first methodological review on the applications of AI to measure,
predict, and treat childhood and adult obesity. It serves 2
purposes: synthesizing and disseminating AI methodologies
adopted in obesity research. First, we focused on summarizing
and categorizing AI methodologies used in the obesity literature
in the hope of identifying synergies, patterns, and trends to
inform future scientific investigations. Second, we provided a
high-level, beginner-friendly introduction to the core
methodologies for interested readers, aiming to facilitate the
dissemination and adoption of various AI techniques.

Methods

The scoping review was conducted in accordance with the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
guidelines [25].

Study Selection Criteria
Studies that met all of the following criteria were included in
the review: (1) study design: experimental or observational
studies; (2) analytic approach: use of AI, including ML and DL
(ie, deep neural networks), in measuring, predicting, or
intervening obesity-related outcomes; (3) study participants:
humans of all ages; (4) outcomes: obesity or body weight status
(eg, BMI, body fat percentage [BFP], waist circumference [WC],
and waist-to-hip ratio [WHR]); (5) article type: original,
empirical, and peer-reviewed journal publications; (6) time
window of search: from the inception of an electronic
bibliographic database to January 1, 2022; and (7) language:
articles written in English.

Studies that met any of the following criteria were excluded
from the review: (1) studies focusing on outcomes other than
obesity (eg, diet, physical activity, energy expenditure, and
diabetes); (2) studies that used a rule-based (hard-coded)
approach rather than example-based ML or DL; (3) articles not
written in English; and (4) letters, editorials, study or review
protocols, case reports, and review articles.

Search Strategy
A keyword search was performed in 2 electronic bibliographic
databases: PubMed and Web of Science. The search algorithm
included all possible combinations of keywords from the
following two groups: (1) “artificial intelligence,”
“computational intelligence,” “machine intelligence,” “computer
reasoning,” “machine learning,” “deep learning,” “neural
network,” “neural networks,” or “reinforcement learning” and
(2) “obesity,” “obese,” “overweight,” “body mass index,”
“BMI,” “adiposity,” “body fat,” “waist circumference,” “waist
to hip,” or “waist‐to‐hip.” The Medical Subject Headings
terms “artificial intelligence” and “obesity” were included in
the PubMed search. Multimedia Appendix 1 documents the
search algorithm used in PubMed. Two coauthors of this review
independently conducted title and abstract screening on the
articles identified from the keyword search, retrieved potentially
eligible articles, and evaluated their full texts. The interrater
agreement between the 2 coauthors was assessed with Cohen
kappa (κ=0.80). Discrepancies were resolved through discussion.

Data Extraction and Synthesis
A standardized data extraction form was used to collect the
following methodological and outcome variables from each
included study: authors; year of publication; country; data
collection period; study design; sample size; training, validation,
and test set size; sample characteristics; the proportion of female
participants; age range; AI models used; input data source; input
data format; input features; outcome data type; outcome
measures; unit of analysis; main study findings; and implications
for the effectiveness and usefulness of AI in measuring,
predicting, or intervening obesity-related outcomes.

Methodological Review
We classified AI methodologies adopted by the included studies
into 2 primary categories: ML and DL models. Among the ML
models, methods were organized into 2 subcategories:
unsupervised and supervised learning. Among the DL models,
methods were classified into 3 subcategories: tabular data
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modeling, computer vision (CV), and natural language
processing (NLP). Rather than enumerating every single model
performed by the included studies, which is unnecessary and
unilluminating, we focused on the popular models used by
multiple studies.

Results

Identification of Studies
Figure 1 shows the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) flow diagram. We

identified a total of 3090 articles through the keyword search,
and after removing 499 (16.15%) duplicates, 2591 (83.85%)
unique articles underwent title and abstract screening. Of these
2591 articles, 2532 (97.72%) were excluded, and the full texts
of the remaining 59 (2.28%) were reviewed against the study
selection criteria. Of these 59 articles, 13 (22%) were excluded.
The reasons for exclusion were as follows: no adoption of AI
technologies (1/13, 8%), no obesity-related outcomes (11/13,
85%), and commentary rather than original empirical research
(1/13, 8%). Therefore, of the 3090 articles identified initially
through the keyword search, 46 (1.49%) were included in the
review [26-71].

Figure 1. Identification of studies via databases and registers.

Study Characteristics
Table 1 summarizes the key characteristics of the 46 included
studies. An increasing trend in relevant publications was
observed. The earliest study included in the review was
published in 1997; others were published in, or after, 2008; for
example, 2% (1/46) each in 2008, 2012, and 2017; 4% (2/46)
each in 2014 and 2016; 7% (3/46) each in 2009 and 2015; 9%
(4/46) in 2018; 15% (7/46) in 2019; 20% (9/46) in 2020; and
26% (12/46) in 2021. Of the 46 studies, 16 (35%) were
conducted in the United States [28,32,33,37,42,46,48,
50-53,57,58,60,62,63]; 6 (13%) in China [39,40,45,56,64,65];
3 (7%) each in the United Kingdom [27,68,69] and Korea
[35,43,49]; 2 (4%) each in Italy [36,71], Turkey [41,70], Finland
[44,59], Germany [54,55], and India [36,71]; and 1 (2%) each

in Saudi Arabia [26], Iran [67], Serbia [66], Portugal [61], Spain
[47], Singapore [38], Australia [34], and Indonesia [29]. Of the
46 studies, 32 (70%) adopted a cross-sectional study design
[26,27,29-32,37,39-42,46-50,52,55-58,60-63,65-71], 7 (15%)
a prospective study design [28,33,38,43,45,54,59], 6 (13%) a
retrospective study design [34-36,51,53,64], and 1 (2%) a cotwin
control design [44]. Sample sizes varied substantially across
the included studies, ranging from 20 to 5,265,265. Of the 46
studies, 7 (15%) had a sample size of between 20 and 82; 11
(24%) between 130 and 600; 19 (41%) between 1061 and 9524;
6 (13%) between 16,553 and 49,805; 2 (4%) between 244,053
and 618,898; and 1 (2%) study had a sample size of 5,265,265.
Of the 46 studies, 23 (50%) focused on adults, 14 (30%) on
children and adolescents, 1 (2%) on people of all ages, and the
remaining 8 (17%) did not report the age range of participants.
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Table 1. Characteristics of the studies included in the review.

AIa modelAge
(years)

Female
participants
(%)

Sample character-
istics

Validation
set size;
test set size

Train-
ing set
size

Sample
size

Study designData collec-
tion period

CountryAuthors, year

NNc

(AIMd ab-
ductive)

≥20N/AbPatientsN/A; 3008001100Cross-sec-
tional

1995Saudi Ara-
bia

Abdel-Aal and
Mangoud
[26], 1997

Fuzzy c-
means

Mean
52
(SD
16)

N/AParticipants with
varying levels of
obesity

N/AN/A20Cross-sec-
tional

N/AItalyPositano et al
[71], 2008

LRe, MLPfN/AN/AParticipants with
different ranges
of obesity

N/A; 414182Cross-sec-
tional

N/ATurkeyErgün [70],
2009

SVMgN/AN/APatientsN/AN/A507Cross-sec-
tional

N/AUnited
Kingdom

Yang et al
[69], 2009

NBh,

SVM, DTi,
NN

Birth
to 3

N/AChildrenN/A; 546211,09116,553Cross-sec-
tional

1988 to
2003

United
Kingdom

Zhang et al
[68], 2009

NN, LRMean
34.4

N/AHealthy military
personnel

N/A; 104248414Cross-sec-
tional

2010IranHeydari et al
[67], 2012

(SD
7.5)

NN18 to
88

48.3Adults413; 41319292755Cross-sec-
tional

N/ASerbiaKupusinac et
al [66], 2014

MRj,

MARSk,
SVM, NN

N/AN/AN/AN/A; 74174248Cross-sec-
tional

N/AChinaShao [65],
2014

NN

(ELMl)

22 to
82

62.4Participants with
different ranges
of obesity

N/AN/A476Retrospec-
tive

N/AChinaChen et al
[64], 2015

DT, RFm,
NB, NN

(BNn)

2 to 1049ChildrenN/A; 75267677519Cross-sec-
tional

N/AUnited
States

Dugan et al
[63], 2015

RF10 to
18

N/AChildrenN/A; 742415,07322,497Cross-sec-
tional

2010United
States

Nau et al [62],
2015

LR, NN949.7School-age chil-
dren

N/A; 66415373084Cross-sec-
tional

2009 to
2013

PortugalAlmeida et al
[61], 2016

SVM, NB1 to 6N/AChildrenN/A; 86257428Cross-sec-
tional

N/AUnited
States

Lingren et al
[60], 2016

GBo≥18N/AAdultsN/A; 63716252262Prospective1980 to
2012

FinlandSeyednasrol-
lah et al et al
[59], 2017

RFN/AN/ASchool-age chil-
dren: grades 5, 7,
and 9

N/AN/A5,265,265Cross-sec-
tional

2003 to
2007

United
States

Hinojosa et al
[58], 2018

NN

(CNNp)

≥18N/AAdultsN/A; 3395081695Cross-sec-
tional

2017United
States

Maharana and
Nsoesie [57],
2018

SVM,

KNNq, DT,
LR

27 to
53

36.7Participants with
different ranges
of obesity

N/A; 28111139Cross-sec-
tional

2014 to
2015

ChinaWang et al
[56], 2018

NN8 to 1942.8ChildrenN/A; 66613331999Cross-sec-
tional

1999 to
2004

GermanyDuran et al
[55], 2018
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AIa modelAge
(years)

Female
participants
(%)

Sample character-
istics

Validation
set size;
test set size

Train-
ing set
size

Sample
size

Study designData collec-
tion period

CountryAuthors, year

Cubist,

LASSOr,

PLSs, GB,

RF, LMt

N/A53.8N/A206; 2507961061Prospective2012; 1991
to 1994

GermanyGerl et al [54],
2019

LASSO,
RF, GB

4.5 to
5.5

49.2ChildrenN/A; 2074823449Retrospec-
tive

2008 to
2016

United
States

Hammond et
al [53], 2019

LR, SVM,
DT, RF

≥18N/APatientsN/A; 60014001237Cross-sec-
tional

2008United
States

Hong et al
[52], 2019

SVM,
KNN, DT,

PCAu, RF,
NN

50 to
79

100Postmenopausal
women

N/A;
14,552

33,95648,508Retrospec-
tive

1993 to
1994

United
States

Ramyaa et al
[51], 2019

LM, GBAll
ages

49.9Census popula-
tion

N/AN/A3138Cross-sec-
tional

2018United
States

Scheinker et al
[50], 2019

NN17 to
25

37.4Amateur athletesN/A; 20143163Cross-sec-
tional

N/AKoreaShin et al [49],
2019

NNRange
9.78-
18.54

57Youth with obesi-
ty symptoms

N/AN/A23Cross-sec-
tional

N/AUnited
States

Stephens et al
[48], 2019

PUv learn-
ing

N/AN/APatientsN/A; 996139,84449,805Cross-sec-
tional

N/ASpainBlanes-Selva
et al [47],
2020

SVM, RF,
GB

≥20N/AAdultsN/AN/A79Cross-sec-
tional

2008United
States

Dunstan et al
[46], 2020

GB4 to 740.6Children381; 38211432125Prospective1999 to
2003

ChinaFu et al [45],
2020

GFAw22 to
36

53Young adult
monozygotic
twin pairs

N/AN/A43Cotwin con-
trol

N/AFinlandKibble et al
[44], 2020

LASSOMean
11.94
(SD
3.13);
mean
13.42
(SD
3.25)

6.8; N/AAdolescentsN/A; 17576ProspectiveN/AKoreaPark et al [43],
2020

LM, NN
(CNN)

N/AN/AAdolescents and
adults

N/A; 374014,96018,700
images

Cross-sec-
tional

2017 to
2018

United
States

Phan et al
[42], 2020

DT, LR≥18100Female patientsN/A; 175325500Cross-sec-
tional

2019TurkeyTaghiyev et al
[41], 2020

LR, NN
(CNN)

≥1854ResidentsN/AN/A9524Cross-sec-
tional

2007 to
2010

ChinaXiao et al
[40], 2020

NNMean
25.19;
range
18-46

N/A; 41.7Smartphone usersN/AN/A67; 24Cross-sec-
tional

N/AChinaYao et al [39],
2020

GB8 to 1261.8ChildrenN/A; 2469771223Cross-sec-
tional

2014; 2015
to 2016

United
Kingdom

Alkutbe et al
[27], 2021

NN (U-
Net)

Mean
67.85
(SD
7.90)

69.5Older adultsN/A; 26104130Prospective2003 to
2006

SingaporeBhanu et al
[38], 2021
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AIa modelAge
(years)

Female
participants
(%)

Sample character-
istics

Validation
set size;
test set size

Train-
ing set
size

Sample
size

Study designData collec-
tion period

CountryAuthors, year

NB, KNN,

MEFCx,
DT, NN
(MLP)

20 to
85

48.6AdultsN/AN/A7162Cross-sec-
tional

2003 to
2004; 2005
to 2006

United
States

Cheng et al
[37], 2021

GB, RFN/AN/AParticipants with
different ranges
of obesity

N/A; 45176221Retrospec-
tive

N/AItalyDelnevo et al
[36], 2021

LM, RF,
NN

20 to
44

100Obstetric patients
and their new-
borns

N/A; 78923703159Retrospec-
tive

2015 to
2020

KoreaLee et al [35],
2021

Two-step
cluster
analysis, k-
means

21 to
36

67.4Participants with
different ranges
of obesity

N/A; 16138822495Retrospec-
tive

2010 to
2019

AustraliaLin et al [34],
2021

DT, NB,
LR, SVM,
GB, NN

<249.2ChildrenN/A; 544121,76227,203Prospective2009 to
2017

United
States

Pang et al
[33], 2021

NB, SVM,
NN (CNN,

LSTMy)

Mean
51.91
(SD
17.20)

60.7Twitter usersN/A; 50045005000
tweets

Cross-sec-
tional

2014 to
2016

United
States

Park et al [32],
2021

SVM, NB,
RF

8 to 1150Children120; 60420600 im-
ages

Cross-sec-
tional

2020IndiaRashmi et al
[31], 2021

NN (VGG,
ResNet,
DenseNet)

Mean
45
(SD
2.5)

N/AAdults500; 20020002700 im-
ages

Cross-sec-
tional

N/AIndiaSnekhalatha
and
Sangamithirai
[30], 2021

DT, NB,
LR

≥18N/AAdultsN/A;
61,890

557,008618,898Cross-sec-
tional

2018IndonesiaThamrin et al
[29], 2021
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AIa modelAge
(years)

Female
participants
(%)

Sample character-
istics

Validation
set size;
test set size

Train-
ing set
size

Sample
size

Study designData collec-
tion period

CountryAuthors, year

DT, LR,
RF, NN

5 to 649ChildrenN/A;
81,351

162,702244,053Prospective2003 to
2019

United
States

Zare et al [28],
2021

aAI: artificial intelligence.
bN/A: not applicable.
cNN: neural network.
dAIM: abductory induction mechanism.
eLR: logistic regression.
fMLP: multilayer perceptron.
gSVM: support vector machine.
hNB: naïve Bayes.
iDT: decision tree.
jMR: multiple regression.
kMARS: multivariate adaptive regression splines.
lELM: extreme learning machine.
mRF: random forest.
nBN: BayesNet.
oGB: gradient boosting.
pCNN: convolutional neural network.
qKNN: k-nearest neighbor.
rLASSO: least absolute shrinkage and selection operator.
sPLS: partial least squares.
tLM: linear model.
uPCA: principal component analysis.
vPU: positive and unlabeled.
wGFA: group factor analysis.
xMEFC: multiobjective evolutionary fuzzy classifier.
yLSTM: long short-term memory.

Data Sources and Outcome Measures
Table 2 summarizes the data sources and outcome measures of
the studies included in the review. Input data were obtained
from a variety of sources, including health surveys (eg, National
Health and Nutrition Examination Survey), electronic health
records, magnetic resonance imaging (MRI) scans, social media
data (eg, tweets), and geographically aggregated data sets (eg,

InfoUSA and Dun & Bradstreet). Of the 46 studies, 34 (74%)
analyzed tabular data (eg, spreadsheet data)
[26-29,33-37,39,41,44-47,49-51,53-56,58-68,70], 8 (17%)
analyzed digital image data [30,31,38,40,42,43,57,71], and 4
(9%) analyzed text data [32,48,52,69]. Obesity-related measures
used across the studies included anthropometrics (eg, body
weight, BMI, BFP, WC, and WHR) and biomarkers.
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Table 2. Data sources and measures of outcomes in the studies included in the review.

Unit of analysisOutcome measuresOutcome data
type

Input features (indepen-
dent variables)

Input data
format

Input data sourceAuthors, year

IndividualWHRaContinuous13 health parametersTabularMedical survey dataAbdel-Aal and Man-
goud [26], 1997

IndividualAbdominal adipose tissue
distribution

BinarySubcutaneous adipose tis-
sue and visceral adipose
tissue

ImageMRIbPositano et al [71],
2008

IndividualClassification of obesityBinary24 obesity parametersTabularObtained from partic-
ipants

Ergün [70], 2009

IndividualObesity statusBinaryClinical discharge sum-
maries

TextClinical dataYang et al [69], 2009

IndividualObesityBinaryData recorded regarding
the weight of the child

TabularObjective measureZhang et al [68], 2009

during the first 2 years of
the child’s life

IndividualObesityBinaryAge, systole, diastole,

weight, height, BMI, WCc,

TabularQuestionnaire and
objective measure

Heydari et al [67],
2012

HCd, and triceps skinfold
and abdominal thicknesses

IndividualBFPeContinuousGender, age, and BMITabularObjective measureKupusinac et al [66],
2014

IndividualBFPContinuous13 body circumference
measurements

TabularObjective measureShao [65], 2014

IndividualOverweightContinuous18 blood indexes and 16
biochemical indexes

TabularObjective measureChen et al [64], 2015

IndividualObesityContinuous167 clinical data attributesTabularQuestionnaire and
objective measure

Dugan et al [63], 2015

CommunityObesogenic and obesopro-
tective environments

Binary44 community characteris-
tics

TabularTwo secondary data
sources (InfoUSA
and Dun & Brad-
street)

Nau et al [62], 2015

IndividualBFPContinuousAge, sex, BMI z score, and
calf circumference

TabularObjective measureAlmeida et al [61],
2016

IndividualObesityBinaryEHR dataTabularEHRfLingren et al [60],
2016

IndividualObesityBinaryClinical factors and genetic
risk factors

TabularObjective measureSeyednasrollah et al
[59], 2017

SchoolObesityBinarySchool environmentTabularObjective measureHinojosa et al [58],
2018

Census tractPrevalence of obesityContinuousBuilt environmentImageObjective measureMaharana and Nsoe-
sie [57], 2018

IndividualObesity riskBinarySingle-nucleotide polymor-
phisms

TabularObjective measureWang et al [56], 2018

IndividualExcess body fatBinaryAge, height, weight, and
WC

TabularNHANESgDuran et al [55], 2018

IndividualObesity: BMI, WC,
WHR, and BFP

Binary and con-
tinuous

Human plasma lipidomesTabularObjective measureGerl et al [54], 2019

IndividualObesity statusBinary and con-
tinuous

EHR dataTabularEHR and publicly
available data

Hammond et al [53],
2019

IndividualIdentification of obesityBinaryDischarge summariesTextEHRHong et al [52], 2019

IndividualEnergy stores: body
weight

Binary and con-
tinuous

Energy balance compo-
nents

TabularQuestionnaireRamyaa et al [51],
2019
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Unit of analysisOutcome measuresOutcome data
type

Input features (indepen-
dent variables)

Input data
format

Input data sourceAuthors, year

CountyObesity prevalenceContinuousDemographic factors, so-
cioeconomic factors,
health care factors, and en-
vironmental factors

Tabular2018 Robert Wood
Johnson Foundation
County Health
Rankings

Scheinker et al [50],
2019

IndividualBFPContinuousUpper body impedance
and lower body anthropo-
metric data

TabularObjective measureShin et al [49], 2019

IndividualWeight management
program

BinaryDialogueTextFrom recorded dia-
logue

Stephens et al [48],
2019

IndividualIdentification of obesityBinary32 variablesTabularEHR of HULAFEhBlanes-Selva et al
[47], 2020

CountryNationwide obesity
prevalence

ContinuousNational sales of a small
subset of food and bever-
age categories

TabularEuromonitor data setDunstan et al [46],
2020

IndividualObesityBinaryDemographic characteris-
tics, maternal anthropomet-
rics, perinatal clinical histo-
ry, laboratory tests, and
postnatal feeding practices

TabularClinical dataFu et al [45], 2020

IndividualMechanisms of obesityBinary42 clinical variablesTabularClinical dataKibble et al [44], 2020

IndividualBMIContinuousNeuroimaging biomarkersImageOpenly accessible
database

Park et al [43], 2020

StateObesityBinary, continu-
ous

Neighborhood built envi-
ronment characteristics

ImageObjective measurePhan et al [42], 2020

IndividualObesityBinaryResults of blood testsTabularEHRTaghiyev et al [41],
2020

IndividualObesityBinaryVertical greenness levelImageObjective measureXiao et al [40], 2020

IndividualBMIContinuousCharacteristics of body
movement captured by
smartphone’s built-in mo-
tion sensors

TabularObjective measureYao et al [39], 2020

IndividualBFPBinary and con-
tinuous

Weight, height, age, and
gender

TabularSelf-reported and
objective measures

Alkutbe et al [27],
2021

IndividualAbdominal fatBinarySATi and VATjImageMRIBhanu et al [38], 2021

IndividualObesityBinaryPhysical activityTabularObjective measureCheng et al [37], 2021

IndividualBMI values and BMI
status

Binary and con-
tinuous

Positive and negative psy-
chological variables

TabularQuestionnaireDelnevo et al [36],
2021

IndividualBMIContinuous64 independent variables:
nationwide multicenter ul-
trasound data and maternal
and delivery information

TabularObjective measureLee et al [35], 2021

IndividualObesity classification
criterion

BinaryKey clinical variablesTabularObjective measureLin et al [34], 2021

IndividualObesityBinaryDemographic variables
and 54 clinical variables

TabularEHR data from pedi-
atric big data reposi-
tory

Pang et al [33], 2021

IndividualBMI and obesityBinary and con-
tinuous

TweetsTextCorpus of geotagged
tweets

Park et al [32], 2021

IndividualObesityBinary600 thermogramsImageObjective measureRashmi et al [31],
2021

IndividualDiagnosis of obesityBinaryThermal imagingImageObjective measureSnekhalatha and
Sangamithirai [30],
2021
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Unit of analysisOutcome measuresOutcome data
type

Input features (indepen-
dent variables)

Input data
format

Input data sourceAuthors, year

IndividualObesityBinaryRisk factors for obesityTabularPublicly available
health data

Thamrin et al [29],
2021

IndividualObesity by grade 4BinaryKindergarten BMI z scoreTabularBMI panel data setZare et al [28], 2021

aWHR: waist-hip ratio.
bMRI: magnetic resonance imaging.
cWC: waist circumference.
dHC: hip circumference.
eBFP: body fat percentage.
fEHR: electronic health record.
gNHANES: National Health and Nutrition Examination Survey.
hHULAFE: Hospital Universitari i Politècnic La Fe.
iSAT: subcutaneous adipose tissue.
jVAT: visceral adipose tissue.

Main Findings
Table 3 summarizes the estimated effects and main findings of
the studies included in the review. Four key findings have
emerged.

First, the studies found that ML or DL models were generally
effective in detecting clinically meaningful patterns of obesity
or relationships between covariates and weight outcomes; for
example, ML and DL models were found useful in classifying
obesity severity [30,47,52], identifying anthropometric [34] and
genetic characteristics of obesity [56], and predicting obesity
onset in children [28,53,63]. ML algorithms (eg, random forest
[RF] and conditional RF) revealed meaningful relationships
between school and neighborhood environments and overweight
and obesity [45,58,62]. DL algorithms (eg, convolutional neural
network [CNN]) effectively extracted built environment features
from satellite images to assess their associations with the local
obesity rate [57].

Second, most (18/22, 82%) of the studies comparing AI models
with conventional statistical methods reported that the AI models
achieved higher prediction accuracy on test data, whereas others
(4/22, 18%) found similar model performances; for example,
ML and DL models were found to explain a larger proportion
of variations in county-level obesity prevalence than

conventional statistical approaches [50]. ML models showed
flexibility in handling various variable types [36,41] and
large-scale data sets [32] and producing robust, generalizable
inferences [41,54,64,65] with higher prediction accuracy [61,66].
By contrast, Cheng et al [37] reported that ML algorithms and
conventional statistical approaches had similar performance.

Third, some (5/46, 11%) of the studies comparing the
performances of different AI models yielded mixed results,
reflecting the interdependence between model and data or task;
for example, logistic regressions were reported to achieve higher
prediction accuracy than DTs, naïve Bayes (NB) [29], and DL
[35]. By contrast, Heydari et al [67] found that logistic
regressions and DL models performed equally well in solving
classification problems. Zhang et al [68] and Ergün [70] reported
that data mining and DL techniques outperformed logistic
regressions in classification accuracy.

Fourth, newer studies increasingly adopted state-of-the-art DL
models to address CV and NLP tasks; for example, chatbots
built on NLP models were used to support pediatric obesity
treatment [48]. CNN-based CV models were used to construct
indicators for the built environment using images from Google
Street View [42]. DL-based tools were used to efficiently
visualize and analyze abdominal visceral adipose tissue and
subcutaneous adipose tissue [38].
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Table 3. Estimated effects and main findings of the studies included in the review.

Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

Abdel-Aal and Mangoud
[26], 1997

• Compared with other statistical and neural

network approaches, AIMc abductive

• Models for WHRb as a continuous variable predict the actual values
within an error rate of 7.5% at the 90% confidence limits.

networks provide a faster and more auto-• Categorical models predict the correct logical value of WHR with
an error in only 2 of the 300 evaluation cases. mated model synthesis.

• Analytical relationships derived from simple categorical models
explain global observations on the total survey population to an
accuracy rate as high as 99%.

• Simple continuous models represented as analytical functions
highlight global relationships and trends.

• There is a strong correlation between WHR and diastolic blood
pressure, cholesterol level, and family history of obesity.

Positano et al [71], 2008 • The CV between manual and unsuper-
vised analyses was significantly improved

• CVd values in VATe, SATf, and VAT/SAT ratio assessment by the
standard algorithm without image inhomogeneities correction were

by inhomogeneities correction in SAT10.7%, 11.9%, and 17.3%, respectively. Correlation coefficients
evaluation. Systematic underestimationwere r=0.97, r=0.93, and r=0.95, respectively (all P<.001).
of SAT was also corrected. A less critical• When correction for field inhomogeneities was applied, VAT, SAT,

and VAT/SAT ratio CVs became 9.8%, 6.7%, and 13.1%, respec- performance improvement was found in
VAT measurement.tively. Correlation coefficients became r=0.97, P<.001 for VAT;

• The compensation of signal inhomo-
geneities improves the effectiveness of

r=0.99, P<.001 for SAT; and r=0.97, P<.001 for VAT/SAT ratio.

the unsupervised assessment of abdominal
fat.

• Correction of intensity distortions is nec-
essary for SAT evaluation but less signif-
icant in VAT measurement.

Ergün [70], 2009 • The classifying performance of a neural
network is better than that of logistic re-

• The classification rate of neural networks in obesity is 90.2%, and
the classification rate of logistic regression in obesity is 87.8%.

gression.• After these classifications, in obesity, the BMI is more affected than
the divergent arteries.

Yang et al [69], 2009 • Text mining may provide an accurate and
efficient prediction of disease statuses

• The implemented method achieved the macroaveraged F-measure
of 81% for the textual task and 63% for the intuitive task. The mi-

from clinical discharge summaries.croaveraged F-measure showed an average accuracy of 97% for
textual annotations and 96% for intuitive annotations.

Zhang et al [68], 2009 • SVMg and Bayesian algorithms seem to• Prediction at 8 months’ accuracy is improved very slightly, in this
case by using neural networks, whereas for prediction at 2 years, be the best algorithms for predicting
the obtained accuracy is enhanced by >10%, in this case by using overweight and obesity from the Wirral
Bayesian methods. database.

• The incorporation of nonlinear interac-
tions could be important in childhood
obesity prediction. Data mining tech-
niques are becoming sufficiently well es-
tablished to offer the medical research
community a valid alternative to logistic
regression.

Heydari et al [67], 2012 • Neural networks and logistic regression
were good classifiers for obesity detection

• Regarding logistic regression and neural networks, the respective
values were 80.2% and 81.2% for correct classification 80.2% and

but were not significantly different with79.7% for sensitivity, and 81.9% and 83.7% for specificity; the
regard to classification.values for the area under the receiver operating characteristic curve

were 0.888 and 0.884, respectively, and the values for the kappa
statistic were 0.600 and 0.629, respectively.

• Abdominal thickness, weight, BMI, and HCh were significantly
associated with obesity.

Kupusinac et al [66], 2014 • An ANN is a new approach to predicting

BFPj with the same complexity and costs

• The predictive accuracy of an ANNi solution is 80.43%.
• ANN showed higher predictive accuracy ranging from +1.23% to

+3.12%. but with higher predictive accuracy.
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Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

• Compared with traditional single-stage
approaches, the proposed hybrid mod-
els—multiple regression, ANN, multivari-
ate adaptive regression splines, and sup-
port vector regression techniques—can
effectively predict BFP.

• Although the 13 body circumference measurements are involved
in the real data set, the proposed models can provide better predic-
tions with fewer body circumference measurements. It is much more
convenient to predict BFP with fewer body circumference measure-
ments for most people.

Shao [65], 2014

• The ELMk performs much more efficient-

ly than the SVM and BPNNl and with
higher recognition rates.

• The proposed ELM-based approach for
overweight detection in biomedical appli-
cations holds promise as a new, accurate
method for identifying participants’
overweight status. It provides a viable al-
ternative to traditional overweight model-
ing tools by offering excellent predictive
ability.

• The most important correlated indexes are creatinine, hemoglobin,
hematocrit, uric acid, red blood cells, high-density lipoprotein, ala-
nine transaminase, triglyceride, and γ-glutamyl transpeptidase.

Chen et al [64], 2015

• Data from a production clinical decision
support system can be used to build an

accurate MLo model to predict obesity in
children after the age of 2 years.

• The ID3m model trained on the CHICAn data set demonstrated the
best overall performance with an accuracy of 85% and sensitivity
of 89%. In addition, the ID3 model had a positive predictive value
of 84% and a negative predictive value of 88%.

• Being overweight between the ages of 12 and 24 months is a key
risk factor for obesity after the second birthday. Furthermore, it is
more of a risk factor if the child was not overweight before 12
months.

Dugan et al [63], 2015

• CRFp allows consideration of the neigh-
borhood as a system of risk factors.

• After examining 44 community characteristics, the researchers
identified 13 features of the social, food, and physical activity envi-
ronment that, in combination, correctly classified 67% of commu-
nities as obesoprotective or obesogenic using the mean BMI z score
as a surrogate. Social environment characteristics emerged as the
most critical classifiers and might leverage intervention.

Nau et al [62], 2015

• BFP can be graded and predicted with
relative accuracy from anthropometric
measurements (excluding skinfold thick-
ness). Fitness and cross-validation results
showed that the multivariable regression
model performed better in this population
than in some previously published mod-
els.

• All BFP-grade predictive models presented a good global accuracy
(≥91.3%) for obesity discrimination. Both overfat and obese as well
as obese prediction models showed, respectively, good sensitivity
(78.6% and 71%), specificity (98% and 99.2%), and reliability for
positive or negative test results (≥82% and ≥96%).

• For boys, the order of parameters, by relative weight in the predic-

tive model, was BMI z score, height, WHtRq squared variable (_Q),

age, weight, CCr_Q, and HCs_Q (adjusted R2=0.847 and

RMSEt=2.852); for girls, it was BMI z score, WHtR_Q, height,

age, HC_Q, and CC_Q (adjusted R2=0.872 and RMSE=2.171).

Almeida et al [61], 2016

• The rule-based exclusion algorithm per-
formed better than the ML algorithm. The
best feature set for ML used Unified
Medical Language System concept unique
identifiers; International Classification of
Diseases, Ninth Revision, codes; and

RxNorm codes.

• Overall, the rule-based algorithm performed the best: 0.895

(CCHMCu) and 0.770 (BCHv).

Lingren et al [60], 2016

• WGRS19 improves the prediction of
adulthood obesity. The model helps
screen children with a high risk of devel-
oping obesity. Predictive accuracy is
highest among young children (aged 3-6
years), whereas among older children
(aged 9-18 years), the risk can be identi-
fied using childhood clinical factors.

Seyednasrollah et al [59],
2017
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Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

• Replication in the BHSw confirmed the researchers’ findings that
WGRSx19 and WGRS97 are associated with BMI. WGRS19 im-
proved the accuracy of predicting adulthood obesity in the training
data (area under the curve=0.787 vs area under the curve=0.744;
P<.001) and validation data (area under the curve=0.769 vs area
under the curve=0.747; P=.03). WGRS97 improved the accuracy
in the training data (area under the curve=0.782 vs area under the
curve=0.744; P<.001) but not in the validation data (area under the
curve=0.749 vs area under the curve=0.747; P=.79). Higher
WGRS19 is associated with a higher BMI at 9 years and WGRS97
at 6 years.

• An RFy algorithm effectively identifies
the relative importance of school environ-
ment attributes.

• Violent crime, English learners, socioeconomic disadvantage, fewer
physical education and fully credentialed teachers, and diversity
index were positively associated with obesity. By contrast, the
academic performance index, physical education participation, mean
educational attainment, and per capita income were negatively as-
sociated with obesity. The most highly ranked built or physical en-
vironment variables were distance to the nearest highway and green
spaces, 10th and 11th most important, respectively.

Hinojosa et al [58], 2018

• CNNz can be used to automate the extrac-
tion of features of the built environment
from satellite images for studying health
indicators. Understanding the association
between specific features of the built en-
vironment and obesity prevalence can lead
to structural changes that could encourage
physical activity and decrease obesity
prevalence.

• Features of the built environment explained 64.8% (RMSE=4.3) of
the variation in obesity prevalence across all US census tracts. Indi-
vidually, the variation explained was 55.8% (RMSE=3.2) for Seattle,
Washington (213 census tracts); 56.1% (RMSE=4.2) for Los Ange-
les, California (993 census tracts); 73.3% (RMSE=4.5) for Memphis,
Tennessee (178 census tracts); and 61.5% (RMSE=3.5) for San
Antonio, Texas (311 census tracts).

Maharana and Nsoesie
[57], 2018

• The ML-based method provides a feasible
means for conducting preliminary analy-
ses of genetic characteristics of obesity.

• The SVM model significantly outperformed other classifiers based
on the same training features. The SVM model exhibits 70.77%
accuracy, 80.09% sensitivity, and 63.02% specificity.

• The selected SNPsaa were effective in the detection of obesity risk.

Wang et al [56], 2018

• The diagnostic performance in identifying
excess body fat was better in male partic-
ipants when an ANN approach was used
than when BMI and WC z scores were
applied.

• The ANN and BMI z scores performed
comparably and significantly better, re-
spectively, than WC z scores in female
participants.

• In female participants, the sensitivity of the BMI, WCbb, and ANN
approaches to predict excess body fat was 0.751 (95% CI 0.730‐
0.771), 0.523 (95% CI 0.487‐0.559), and 0.782 (95% CI 0.754‐
0.810), respectively.

• In male participants, the sensitivity of the BMI, WC, and ANN ap-
proaches to predict excess body fat was 0.721 (95% CI 0.699‐
0.743), 0.572 (95% CI 0.549‐0.594), and 0.795 (95% CI 0.768‐
0.821).

Duran et al [55], 2018

• ML can model and validate obesity esti-
mates better than classical clinical param-
eters such as total triglycerides and
cholesterol.

• The lipidome, based on a LASSOcc model, predicted BFP the best

(R2=0.73). In this model, the strongest positive predictor and
strongest negative predictor were sphingomyelin molecules, which
differ by only 1 double bond, implying the involvement of an un-
known desaturase in obesity-related aberrations of lipid metabolism.

• The regression was used to probe the clinically relevant information
in the plasma lipidome and found that the plasma lipidome also in-

cludes information on body fat distribution because WHR (R2=0.65)

was predicted more accurately than BMI (R2=0.47).

Gerl et al [54], 2019

• Comparable to cohort-based studies,

EHRdd data with area under the receiver
operating characteristic curve values
could be used to predict obesity at the age
of 5 years, reducing the need for invest-
ment in additional data collection.

• LASSO regression predicted obesity with an area under the receiver
operating characteristic curve of 81.7% for girls and 76.1% for boys.

• In each of the separate models for boys and girls, the researchers
found that the weight-for-length z score, BMI between 19 and 24
months, and the last BMI measure recorded before the age of 2
years were the most important features for prediction.

Hammond et al [53], 2019

Hong et al [52], 2019
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Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

• The FHIR-based EHR phenotyping ap-
proach could effectively identify the obe-
sity status and multiple comorbidities us-
ing semistructured discharge summaries.

• As the results of the 4 ML classifiers showed, the RF algorithm
performed the best with micro F1-score 0.9466 and macro F1-score
0.7887 and micro F1-score 0.9536 and macro F1-score 0.6524 for
intuitive classification (reflecting medical professionals’ judgments)
and textual classification (reflecting the decisions based on explic-
itly reported information of diseases), respectively.

• The MIMICee-III obesity data set was successfully integrated for

prediction with minimal configuration of the NLPff2FHIRgg pipeline
and ML models.

• SVM regression was the best-suited pre-
dictive and inferential tool for this task,
closely followed by neural network and
KNN algorithms. Although the overall
data model showed a good fit and predic-
tive ability, clustering produced relatively
superior fit statistics.

• SVM, neural network, and KNNhh algorithms performed modestly
for the numerical predictions, with mean approximate errors of 6.70
kg, 6.98 kg, and 6.90 kg, respectively.

• K-means cluster analysis improved prediction using numerical data
and identified 10 clusters suggestive of phenotypes, with a minimum
mean approximate error of approximately 1.1 kg. A classifier was
used to phenotype participants into the identified clusters, with mean
approximate errors of <5 kg for 15% of the test set (approximately,
n=2000). SVM performed the best (54.5% accuracy), followed
closely by the bagged tree ensemble and KNN algorithms.

Ramyaa et al [51], 2019

• ML may be used to explain more varia-
tion in county-level obesity prevalence
than traditional epidemiologic models.
The top-performing ML model explained
two-thirds of the variation in county-level
obesity prevalence, significantly more
than conventional multivariate linear
models.

• Multivariate linear regression and gradient boosting machine regres-
sion (the best-performing ML model) of obesity prevalence using
all county-level demographic, socioeconomic, health care, and en-

vironmental factors had R2 values of 0.58 and 0.66, respectively
(P<.001).

Scheinker et al [50], 2019

• The test results validated that the inclu-
sion of anthropometric data helped to

improve accuracy, primarily when a DLii

approach was used to predict the regres-
sion values.

• The performance of the proposed system was compared with those
of 2 commercial systems that were designed to measure body
composition using either a whole body or upper body impedance

value. The results showed that the correlation coefficient (R2) value
was improved by approximately 9%, and the SE of the estimate
was reduced by 28%.

Shin et al [49], 2019

• An AI chatbot is feasible as an adjunct to
treatment. The feasibility and benefit of
support through AI, specifically in a pedi-
atric setting, could be scaled to serve
larger groups of patients.

• Adolescent patients reported experiencing positive progress toward
their goals 81% of the time. The 4123 messages exchanged and
patients’ reported usefulness ratings (96% of the time) illustrate
that adolescents engaged with the chatbot and viewed it as helpful.

Stephens et al [48], 2019

• The implementation of the PU learning
methodology in identifying obesity pro-
duced results that were satisfactory, pro-
viding high sensitivity, and consistent
with the World Health Organization’s
obesity report.

• The PUjj learning algorithm presented a high sensitivity (98%) and
predicted that approximately 18% of the patients without a diagnosis
were obese.

Blanes-Selva et al [47],
2020

• RF shows the best performance for pre-
dicting obesity from food, followed

closely by XGBkk.

• Using only 5 categories, RF could predict obesity prevalence with
absolute error <10% for approximately 60% of the countries consid-
ered and absolute error <20% for 87%.

• The most relevant food category with regard to predicting obesity
consists of baked goods and flours, followed by cheese and carbon-
ated drinks.

Dunstan et al [46], 2020

Fu et al [45], 2020
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Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

• An ML algorithm is applied to identify
risk factors contributing to childhood
overweight or obesity based on a large
longitudinal study and addresses the rela-
tionships between all collected features
and outcomes without any assumption.

• A novel unified framework, Shapley addi-
tive explanations, is used to interpret pre-
dictions, and the identified predictive
factors are robust.

• The 2 most important features—trajectory of infant BMI z score
change and maternal BMI at enrollment—were identified from the
ML algorithm.

• The aforementioned features showed similar predictive capacity
compared with all features (area under the curve=0.68 vs 0.68;
P=.83; DeLong test). The sensitivity analyses identified the same
2 features (ie, trajectory of infant BMI z score change and maternal
BMI at enrollment), and the ranking of these features’ Shapley ad-
ditive explanations value was unchanged.

• In the independent test cohort, the area under the curve for childhood
overweight and obesity classification using the aforementioned 2
features was 0.71 (95% CI 0.66 to 0.76), which was comparable to
that based on all features (0.72, 95% CI 0.67 to 0.76).

• An integrative ML method called group
factor analysis was used to identify the
links between multimolecular-level inter-
actions and the development of obesity.

• New potential links between cytokines and weight gain are identi-
fied, as well as associations among dietary, inflammatory, and epi-
genetic factors.

Kibble et al [44], 2020

• The constructed model using functional
connectivity of the selected regions pro-
vides robust neuroimaging biomarkers for
predicting BMI progression.

• The actual and predicted ΔBMI showed a significant intraclass
correlation value with a low RMSE, and classification between
people with increased BMI and those with nonincreased BMI result-
ed in a high area under the receiver operating characteristic curve
value using only the degree centrality values obtained at the baseline
visit.

Park et al [43], 2020

• DL techniques were used to create indica-
tors for neighborhood-built environment
characteristics.

• A DNNll was used for neighborhood indicator recognition and
achieved high accuracies (85%-93%) for the separate recognition
tasks.

Phan et al [42], 2020

• The proposed hybrid system provides a
more accurate classification of patients
with obesity and a practical approach to
estimating the factors affecting obesity.

• The proposed hybrid system demonstrated 91.4% accuracy, which
is higher than that of other classifiers (ie, 4.6% higher than the
performance of logistic regression and 2.3% higher than the perfor-

mance of DTmm).

Taghiyev [41], 2020

• The VGI of the DL approach using Baidu
Street View images could effectively
capture the eye-level greenness in high-
density–population areas. Thus, VGI can
be used to effectively promote walking
and other physical activities to prevent
obesity.

• All aspects of horizontal greenery, vertical greenery, and proximity

of green levels affected body weight; however, only the VGInn

consistently had an adverse effect on weight and obesity.

Xiao et al [40], 2020

• The proposed DL model with the motion
entropy–based filtering strategy outper-
forms the baseline approaches significant-
ly.

• Jogging may be a more suitable activity of daily living for BMI
prediction than walking and walking up stairs.

Yao et al [39], 2020

• ML models and newly developed centile
charts could be valuable tools for estimat-
ing and classifying BFP.

• For the gradient boosting models, the predicted fat percentage values
were more aligned with the actual value than those in regression
models. Gradient boosting achieved better performance than the
regression equation because it combined multiple simple models
into a single composite model to take advantage of this weak clas-
sifier.

• The developed predictive model archived RMSE values of 3.12 for
girls and 2.48 for boys.

Alkutbe et al [27], 2021

• DL-based, comprehensive superficial
SAT, deep SAT, and VAT analysis tools
showed high accuracy and reproducibility
and provided a comprehensive fat com-
partment composition analysis and visual-
ization in <10 seconds.

• The accuracy of segmentation was superficial SAT: 0.92, deep SAT:
0.88, and VAT: 0.9. The average Hausdorf distance was <5 mm.

Automated segmentation significantly correlated R2>0.99 (P<.001)
with ground truth for all 3-fat compartments. Predicted volumes
were within 1.96 SD from Bland-Altman analysis.

Bhanu et al [38], 2021

Cheng et al [37], 2021
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• With physical activity and basic demo-
graphic information of all methods ana-
lyzed, the random subspace classifier al-
gorithm achieved the highest overall accu-
racy and area under the receiver operating
characteristic curve value.

• In general, most algorithms showed simi-
lar performance.

• Logistic regression was middle ranking
in terms of overall accuracy, sensitivity,
specificity, and area under the receiver
operating characteristic curve value
among all methods.

• Physical activity was an important factor in predicting weight status,
with gender, age, and race or ethnicity being less important factors
associated with weight outcomes.

• The durations of vigorous-intensity activity in 1 week and moderate-
intensity activity in 1 week were essential attributes.

• Certain psychological variables such as
depression are highly predictive of BMI.

• ML has several advantages over tradition-
al statistics and can be used to compare
the impact of many variables on predict-
ing a chosen outcome and can handle
various types of variables.

• The psychological variables in use allow one to predict both BMI
values (with a mean absolute error of 5.27-5.50) and BMI status
with an accuracy of >80% (metric: F1-score).

Delnevo et al [36], 2021

• ML approaches based on ultrasound
measures would be a useful noninvasive
tool for predicting a newborn’s BMI.

• Linear regression and RF were better
models than ANNs for predicting a new-
born’s BMI.

• For predicting a newborn’s BMI, linear regression (2.0744) and RF
(2.1610) were better than ANN with 1, 2, and 3 hidden layers
(150.7100, 154.7198, and 152.5843, respectively) in the mean
squared error.

• On the basis of variable importance from the RF, the major predic-
tors of a newborn’s BMI were the first abdominal circumference
value and estimated fetal weight in week 36 or later, gestational age
at delivery, the first abdominal circumference value during week
21 to week 35, maternal BMI at delivery, maternal weight at deliv-
ery, and the first biparietal diameter value in week 36 or later.

Lee et al [35], 2021

• ML automatically identified 4 subtypes
of obesity in clinical characteristics in 4
independent patient cohorts. This proof-
of-concept study provided evidence that
a precise diagnosis of obesity can poten-
tially guide therapeutic planning and deci-
sions for different subtypes of obesity.

• ML revealed the following 4 stable metabolically distinct obesity
clusters in each cohort:

• Metabolic healthy obesity (44% of the patients) was characterized
by a relatively healthy metabolic status with the lowest incidents
of comorbidity.

• Hypermetabolic obesity–hyperuricemia (33% of the patients) was
characterized by extremely high uric acid and an increased incidence
of hyperuricemia (adjusted odds ratio 73.67 to metabolic healthy
obesity, 95% CI 35.46-153.06).

• Hypermetabolic obesity–hyperinsulinemia (8% of the patients) was
distinguished by overcompensated insulin secretion and an increased
incidence of polycystic ovary syndrome (adjusted odds ratio 14.44
to metabolic healthy obesity, 95% CI 1.75-118.99).

• Hypometabolic obesity (15% of the patients) was characterized by
extremely high glucose levels, decompensated insulin secretion,
and the worst glucolipid metabolism (diabetes: adjusted odds ratio
105.85 to metabolic healthy obesity, 95% CI 42.00-266.74;
metabolic syndrome: adjusted odds ratio 13.50 to metabolic healthy
obesity, 95% CI 7.34-24.83).

• The assignment of patients in the verification cohorts to the main
model showed a mean accuracy of 0.941 in all clusters.

Lin et al [34], 2021

• The presented ML model development
workflow can be adapted to various EHR-
based studies and is valuable for develop-
ing other clinical prediction models.

• XGB yielded a mean area under the curve value of 0.81 (SD 0.001),
which outperformed all other models. It also achieved a statistically
significant better performance than all other models on standard
classifier metrics (sensitivity fixed at 80%): precision, mean 30.9%
(SD 0.22%); F1-score, mean 44.6% (SD 0.26%); accuracy, mean
66.14% (SD 0.41%); and specificity, mean 63.27% (SD 0.41%).

Pang et al [33], 2021

Park et al [32], 2021
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Main findingsEstimated effects of AIa technologies on obesity prevention or treatmentAuthors, year

• The study demonstrated the strengths of
ML techniques in handling large data sets.
Social scientists can use ML techniques
to scale up traditional content analysis.

• ML algorithms were used to determine the stances of tweets on
Black Lives Matter. ML models showed better performance than

lexicon-based sentiment analysis (accuracy: 61%). The NBoo

model had an overall accuracy of 85%, slightly higher than that of
the CNN model (83.8%); both had higher accuracy than the other
models.

• However, NB had the highest recall and F1-score for predicting the
against stance, whereas CNN performed poorly on identifying the
against stance.

• The regional thermography and computer-
aided diagnostic tool with ML classifier
could be used as a primary noninvasive
prognostic tool for evaluating obesity in
children.

• The PCApp method provides the best classification accuracy for
SVM (98%), followed by NB and RF (97%).

Rashmi et al [31], 2021

• The DL system based on custom CNN
provided a reliable classification perfor-
mance to identify the occurrence of obesi-
ty in test participants.

• Custom CNN network-2 provided a
commendable accuracy in classifying
normal participants and participants who
were obese from the thermal images.

• The trained custom-2 CNN model can be
used for computer-aided screening of test
participants for obesity detection.

• Among the region of interest studied, the abdomen region exhibited
a high temperature difference of 4.703% between normal partici-
pants and participants who were obese compared with other regions.
The proposed custom network-2 provided an overall accuracy of
92%, with an area under the curve value of 0.948. By contrast, the
pretrained model VGG16 produced an accuracy of 79% and an area
under the curve value of 0.90 for discrimination into obese and
normal thermograms.

Snekhalatha and
Sangamithirai [30], 2021

• Logistic regression has a better perfor-
mance than the classification and regres-
sion tree and NB methods.

• Kappa coefficients show only moderate
concordance between predicted and mea-
sured obesity.

• The constructed obesity classification
model can evaluate and predict the risk
of obesity using ML methods for the
population of Indonesia, which can then
be applied to publicly available open data.

• Location, marital status, age group, education, sweet drinks, fatty
or oily foods, grilled foods, preserved foods, seasoning powders,
soft drinks or carbonated beverages, alcoholic beverages, mental
or emotional disorders, diagnosed hypertension, physical activity,
smoking, and fruit and vegetable consumption are significant in
predicting obesity status in adults.

• The classification prediction using the logistic regression method
achieves the best performance based on the accuracy metric (72%),
specificity (71%), precision (69%), kappa (44%), and Fβ-score
(70%). Classification prediction by the classification and regression
tree method achieves the highest sensitivity (82%) and the highest
F1-score (72%).

• With regard to the area under the receiver operating characteristic
curve performance of the respective classification methods with
10-fold cross-validation, the logistic regression classifier has the
highest average area under the receiver operating characteristic
curve value (0.798).

Thamrin et al [29], 2021

• Data from the Arkansas, United States,
BMI screening program significantly im-
prove the ability to identify children at a
high risk of obesity to the extent that bet-
ter prediction can be translated into more
effective policy and better health out-
comes.

• The ability to predict obesity by grade 4
was robust across the ML algorithms and
logistic regression with these data.

• The kindergarten BMI z score is the most important predictor of
obesity by grade 4.

• Including the kindergarten BMI z score of students in the model
meaningfully increases the prediction accuracy.

• Logistic regression, RF, and neural network algorithms performed
similarly in terms of accuracy, sensitivity, specificity, and area under
the curve values. The 95% CIs around the area under the curve
overlap among these 3 algorithms.

• The DT showed lower performance with an area under the curve
value that was statistically lower than the area under the curve values
from each of the other algorithms. Nevertheless, the performance
of the DT algorithm was close to that of the others.

Zare et al [28], 2021

aAI: artificial intelligence.
bWHR: waist-to-hip ratio.
cAIM: abductory induction mechanism.
dCV: coefficient of variation.
eVAT: visceral adipose tissue.
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fSAT: subcutaneous adipose tissue.
gSVM: support vector machine.
hHC: hip circumference.
iANN: artificial neural network.
jBFP: body fat percentage.
kELM: extreme learning machine.
lBPNN: back propagation neural network.
mID3: iterative dichotomizer 3.
nCHICA: Child Health Improvement Through Computer Automation.
oML: machine learning.
pCRF: conditional random forest.
qWHtR: waist-to-height ratio.
rCC: calf circumference.
sHC: hip circumference.
tRMSE: root mean square error.
uCCHMC: Cincinnati Children’s Hospital and Medical Center.
vBCH: Boston Children’s Hospital.
wBHS: Bogalusa Heart Study.
xWGRS: weighted genetic risk score.
yRF: random forest.
zCNN: convolutional neural network.
aaSNP: single-nucleotide polymorphism.
bbWC: waist circumference.
ccLASSO: least absolute shrinkage and selection operator.
ddEHR: electronic health record.
eeMIMIC: Multiparameter Intelligent Monitoring in Intensive Care.
ffNLP: natural language processing.
ggFHIR: Fast Healthcare Interoperability Resources.
hhKNN: k-nearest neighbor.
iiDL: deep learning.
jjPU: positive and unlabeled.
kkXGB: extreme gradient boosting.
llDNN: deep neural network.
mmDT: decision tree.
nnVGI: Visible Green Index.
ooNB: naïve Bayes.
ppPCA: principal component analysis.

Methodological Review

AI Overview
AI symbolizes the effort to automate intellectual tasks usually
performed by humans [72]. In general, AI consists of 2 domains
or developmental periods: symbolic AI and modern AI [73].
Symbolic AI prevailed from the 1950s to the 1980s,
characterized by the endeavors to achieve human-level
intelligence by having programmers handcraft a sufficiently
large set of explicit rules for manipulating knowledge [74].
Although symbolic AI proved suitable for solving well-defined,
logical problems, such as a rule-based question-answer system,
it became intractable when creating rules to solve more complex,
fuzzy issues such as image classification, speech recognition,
and language translation [74]. The definition of ML is “the field
of study that gives computers the ability to learn without being
explicitly programmed” [75]. Instead of hard coding all the
rules in the symbolic AI, researchers provide examples (eg,

images with labels that identify the objects in them) to train
modern ML models to output rules [74]. As a subdomain of
ML, DL is based on artificial neural networks in which multiple
(deep) layers of artificial neurons are used to progressively
extract higher-level features from data [76]. This layered
representation enables the modeling of more complex, dynamic
patterns compared with traditional ML (which sometimes is
called shallow learning in contrast to DL), which finds its utility
in analyzing big data: data massive in scale and messy to work
with (eg, unstructured texts and images) [77]. The first ML and
DL algorithms were developed in the 1950s, attracting initial
excitement but then lying dormant for several decades [72].
Since the late 1980s, partly because of the rediscovery of
backpropagation algorithms, the invention of CNNs, and the
strong growth in computational capacity, ML and DL have
regained their popularity vis-à-vis symbolic AI [72].
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AI Versus Conventional Statistical Methods
Admittedly, the concept of conventional statistical methods is
dubious at best because the development of statistical theories
and algorithms is continual in time and intertwines at all levels
[78]. Indeed, many conventional models fall into the ML
domain, such as linear and logistic regressions. Despite the
poorly defined domain and overlapping algorithms, at least 2
distinctions could be made between modern AI (ie, ML and
DL) and other statistical methods. In terms of aims, the objective
of AI models and their evaluation metrics predominantly
concern prediction precision (often at the cost of compromising
interpretability as models become complex) [78,79]. By contrast,
conventional statistical approaches usually attempt to reveal
relationships among variables (statistical inference) and focus
on model interpretability [80]. In terms of procedures, it is
standard practice to split data into training, validation, and test
sets so that an AI model can be trained using the training set
with the aim of achieving the optimal performance on some
predefined evaluation metrics (eg, accuracy and mean squared
error) when testing on the validation set [81,82]. The fine-tuned
AI model is subsequently tested on the test set. The utility of
the validation set is to prevent model overfitting (ie, too tailored
to the training set while losing generalizability to new, unseen
data) and fine-tune hyperparameters (ie, parameters external to
the model, whose values cannot be automatically learned from
data). The test set is preserved to test the final model’s
performance on unseen data. By contrast, conventional statistical
methods do not usually fit and evaluate models using training,
validation, and test sets but use other model selection criteria
(eg, adjusted R-squared and Akaike and Bayesian information
criteria) to evaluate model performance [83].

ML Subcategories

Overview

ML is classified into 2 subcategories: unsupervised ML and
supervised ML [84]. Unsupervised ML analyzes and clusters
unlabeled data sets, discovering hidden patterns or data
groupings without the need for human intervention [85]. Its
capability to reveal similarities and differences in information
makes it ideal for exploratory data analysis. Unsupervised ML
models are used for 3 main tasks: clustering, association, and
dimensionality reduction [86]. Clustering algorithms (eg,
k-means clustering, hierarchical clustering, and Gaussian
mixture) group unlabeled data based on similarities [86].
Association algorithms (eg, Apriori, Eclat, and FP-Growth)
identify rules and relations among variables in large databases
[87]. Dimensionality reduction algorithms (eg, principal
component analysis [PCA], singular value decomposition, and
multidimensional scaling) deal with an excessive number of
features during data preprocessing, reducing them to a
manageable size while preserving the integrity of the data set
as much as possible [88]. Supervised ML uses a training set
consisting of input-output pairs to enable the algorithm to learn
a function that maps input to output over time [89]. The
algorithm measures its accuracy through the loss function,
adjusting until the error is minimized sufficiently. The critical
difference between supervised ML and unsupervised ML is that
the former requires labeled data (ie, input-output pairs), whereas

the latter only requires inputs (ie, unlabeled data) [84].
Supervised ML models are used for 2 main tasks: classification
and regression [84]. Classification algorithms assign data to
specific categories (eg, obese or nonobese). Regression
algorithms learn the relationship between input features and
continuously distributed outcomes and are commonly used for
projections (eg, BMI in 5 years).

Unsupervised ML

K-means Clustering

K-means clustering is an iterative algorithm that tries to partition
the data set into a total of k nonoverlapping groups (ie, clusters)
[86,90]. Each data point belongs to only 1 group. The algorithm
attempts to make the intracluster data points as similar as
possible while keeping the clusters apart. In particular, it assigns
data points to a cluster such that the sum of the squared distance
between the data points and the cluster’s centroid (ie, arithmetic
mean of all the data points belonging to that cluster) is
minimized. As the number of clusters k needs to be determined
before implementing the algorithm, silhouette coefficients are
commonly used to identify the optimal k value. Lin et al [34]
used k-means clustering to classify patients with obesity into 4
groups based on 3 biomarkers concerning glucose, insulin, and
uric acid.

Fuzzy C-means Clustering

In nonfuzzy clustering (also known as hard clustering; for
example, k-means clustering), data are divided into distinct
clusters, where each data point can only belong to 1 cluster [86].
In fuzzy clustering, data points can potentially belong to multiple
clusters [91]. Fuzzy c-means clustering assigns each data point
membership from 0% to 100% in each cluster center [92]. The
fuzzy partition coefficient is often used to determine the optimal
number of clusters with a value ranging from 0 (worst) to 1
(best) [93]. Positano et al [71] used the fuzzy c-means algorithm
to classify MRI pixels into clusters to assess abdominal fat.

Group Factor Analysis

Factor analysis describes relationships among the individual
variables of a data set [94]. Group factor analysis (GFA) extends
this classical formulation into describing relationships among
groups of variables, where each group represents either a set of
related variables or a data set [95]. GFA is commonly formulated
as a latent variable model consisting of 2 hierarchical levels:
the higher level models the relationships among the groups, and
the lower-level models the observed variables given the higher
level [95]. Kibble et al [44] used GFA to jointly analyze 5 large
multivariate data sets to understand the multimolecular-level
interactions associated with obesity development.

PCA for Large Data Sets

Large data sets are increasingly common nowadays. PCA is a
classic, widely adopted method to reduce the dimensionality of
a large data set while preserving as much statistical information
(ie, variability) as possible [86]. In particular, PCA attempts to
find new variables, called principal components, that are linear
functions of those in the original data set. The new variables
are uncorrelated with each other (ie, orthogonal) and maximize
the projected data variance. Rashmi et al [31] used PCA to
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reduce the feature dimensions of a thermal imaging data set to
classify children by their obesity severity level.

Supervised ML

Linear Regression

Linear regression is considered a conventional statistical model
and a classical architecture to develop a predictive model [96],
but it fulfills all criteria from an ML point of view and is widely
used as an ML algorithm to predict continuous outcomes such
as BMI or BFP [97]. Trainable weights (ie, coefficients) of
linear regression are commonly estimated using ordinary least
squares or gradient descent. Compared with many other ML
models, linear regression has the advantages of simplicity and
interpretability [98]. It is easy to understand how the model
reaches its predictions. Wang et al [56] used linear regressions
to identify features of single-nucleotide polymorphisms that
predict obesity risk. Phan et al [42] used linear regressions to
estimate the associations between built environment indicators
and state-level obesity prevalence.

Regularized Linear Regression

The bias-variance tradeoff is a fundamental issue faced by all
ML models [86,99]. Bias is an error from erroneous assumptions
in a learning algorithm. High bias may cause the algorithm to
miss the relevant relations between features and outputs (called
underfitting). Variance is an error from a learning algorithm’s
sensitivity to small fluctuations in the training set. A high
variance may result from the algorithm modeling the random
noise in the training data, often leading to the algorithm’s poor
generalizability to new, unseen data (called overfitting). In
general, decreasing variance increases bias and vice versa, and
ML algorithms need to be fine-tuned to balance these 2
properties. Regularization is an essential technique to prevent
model overfitting and improve generalizability (at the cost of
increasing bias) by adding a penalty term of trainable weights
to the loss function [86]. Optimization algorithms that minimize
the loss function will learn to avoid extreme weight values and
thus reduce variance. The penalty term with the sum of squared
trainable weights is called L2 regularization, used in Ridge
regression. The penalty term with the sum of the absolute values
of trainable weights is called L1 regularization, used in the least
absolute shrinkage and selection operator (LASSO) regression.
Unlike Ridge regression, LASSO regression often shrinks some
feature weights to absolute zero, making it useful for feature
selection. Finally, ElasticNet regression uses a weighted sum
of L1 and L2 regularizations. Gerl et al [54] used LASSO
regression to estimate the relationship between human plasma
lipidomes and body weight outcomes, including BMI, WC,
WHR, and BFP.

Logistic Regression

In its simplest form, logistic regression uses a logistic function,
called the sigmoid function, to model a binary outcome [100].
A sigmoid function is a continuous, smooth, differentiable
S-shaped mathematical function that maps a real number to a
value in the range of 0 and 1, making it ideal for modeling
probabilities. The estimated probabilities are converted to
predictions (0 or 1, denoting exclusive group membership) based
on some predefined threshold (eg, >0.5). In ML, logistic

regression often incorporates regularizations (L1, L2, or both)
to prevent overfitting. Another common extension of logistic
regression in ML is to solve multiclass classification problems
when classification tasks involve >2 (exclusive) classes. A
typical strategy uses the one-vs-rest method (also called
one-vs-all) that fits 1 classifier (eg, a logistic regression) per
class against all the other classes [101]. A data point is assigned
to the class with the highest confidence score among all
classifiers. Thamrin et al [29] used logistic regressions to assess
the predictability of various obesity risk factors. Cheng et al
[37] used logistic regressions to classify obesity status based
on participants’ physical activity levels.

NB Classifier

NB algorithms apply the Bayes theorem with the naïve
assumption of conditional independence among each pair of
features given the value of the class [102]. Despite this
oversimplified assumption, NB classifiers have been widely
used and have worked well in solving many real-world
problems. The decoupling of conditional feature distributions
allows each distribution to be independently estimated as 1D,
making the training of NB classifiers much faster than more
sophisticated ML models [86]. By contrast, the predicted
probabilities of NB classifiers are less trustworthy owing to the
algorithm’s naïve assumption. Rashmi et al [31] used NB to
classify childhood obesity based on thermogram images.
Thamrin et al [29] adopted NB to predict adult obesity using
Indonesian health survey data [29].

K-nearest Neighbor

K-nearest neighbor (KNN) is a nonparametric, supervised
learning algorithm suitable for classification and regression
tasks [103]. The input consists of the k closest training data
points based on a prespecified distance measure (eg, Euclidean,
Manhattan, or Minkowski distance). For classification tasks,
the output is a class membership. A test data point is assigned
to the class most common among its k-nearest neighbors (if
k=1, the test data point is assigned to the class of the single
nearest neighbor). For regression tasks, the output is the average
value of its k-nearest neighbors. KNN should not be confused
with k-means. The former is a supervised ML algorithm to
determine the class or value of a data point based on its k-nearest
neighbors, whereas the latter is an unsupervised ML algorithm
to classify data points into k clusters that minimize the distances
within clusters while maximizing those between clusters [90].
KNN is a memory-based learning algorithm that requires no
training (called a lazy learner) but can become significantly
slower when the sample size increases. Wang et al [56] used
KNN to predict obesity risk based on features of
single-nucleotide polymorphisms. Ramyaa et al [51] performed
KNN to predict body weight using physical activity and dietary
data.

Support Vector Machines

Support vector machines (SVMs), which are supervised learning
models that construct a hyperplane in a high-dimensional space,
can be used for classification and regression tasks [104]. SVMs
attempt to identify the hyperplane separating different classes
while maximizing the distance to any class’s nearest training
data point (ie, margin). Intuitively, the larger the margin, the
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more likely the model’s generalizability to new, unseen data.
The choice of margin type can be critical for SVMs [86].
Hard-margin SVMs maximize the margin by minimizing the
distance from the decision boundary to the training points.
However, hard-margin SVMs may lead to overfitting and have
no solution if the training data are linearly inseparable.
Soft-margin SVMs modify the constraints of the hard-margin
SVMs by allowing some data points to violate the margin (ie,
misclassified). In practice, data are seldom linearly separable
in the original feature space, and kernel methods are applied to
map the input space of the data to a higher-dimensional feature
space where linear models can be trained [105]. Many kernel
functions, such as the Gaussian radial basis, sigmoid, and
polynomial kernel, can be chosen. Wang et al [56] used SVM
to predict obesity risk based on the features of single-nucleotide
polymorphisms. Ramyaa et al [51] applied SVM to predict body
weight using physical activity and diet data.

DT Algorithms

DTs are nonparametric supervised learning methods for
classification and regression tasks [106]. In DT algorithms, a
tree is built by splitting the source set that constitutes the tree’s
root node into subsets, which comprise the successor children
[107]. The splitting is based on a set of rules applied to input
features. Different splitting rules exist, such as variance
reduction for regression tasks and Gini impurity or information
gain for classification tasks. The splitting process is repeated
on each derived subset recursively (ie, recursive partitioning).
The recursion is completed when all subsets at a node share the
same target value or when splitting no longer adds value to the
predictions. DTs have several advantages over other ML
algorithms, such as high transparency and interpretability and
few requirements for data preprocessing [108]. However, DTs
can be prone to overfitting (ie, too confident about the rules
learned from the training set, which does not generalize well to
the test set) and instability (minor variations in the data resulting
in a very different tree). Using features extracted from electronic
medical records, Hong et al [52] used DTs to predict obesity
and 15 other comorbidities. Taghiyev et al [41] performed DTs
to identify risk factors associated with obesity onset.

RF Models

Ensemble methods are approaches that aggregate the predictions
of a group of models aiming for improved performance in
classification or regression tasks [109]. Various ensemble
methods exist, such as bagging, pasting, boosting, and stacking
[86]. Bagging and pasting use the same training algorithm for
every predictor included in the ensemble and train it on different
random subsets of the training set. When sampling is performed
with replacement, the method is called bagging; when sampling
is performed without replacement, it is called pasting. RF is an
ensemble of DTs commonly trained via the bagging or pasting
method [110]. Specifically, RF fits many DTs on various subsets
of the data and uses averaging to improve the predictive
accuracy and prevent overfitting. For classification tasks, the
RF output is the class selected by most trees; for regression
tasks, the mean prediction of the individual trees is used. Some
common hyperparameters of RF for fine-tuning include the
number of trees in the forest, the maximum number of features
considered for splitting a node, the maximum number of

branches in each tree, the minimum number of data points placed
in a node before the node is split, the minimum number of data
points allowed in a leaf node, and the method for sampling data
points (ie, with or without replacement) [86]. RF typically
produces more accurate and robust predictions than DTs and is
one of the most popular supervised ML algorithms [111]. Using
RF models, Hinojosa et al [58] examined the relationship
between social and physical school environments and childhood
obesity in California, United States. Dunstan et al [46]
performed RF to predict national obesity prevalence using food
sales data from 79 countries.

Extreme Gradient Boosting

Boosting refers to any ensemble method that combines several
weak models into a strong one [112]. The difference between
boosting and bagging and pasting is that in boosting, different
models are applied to the entire training set sequentially, the
new model attempting to address the weaknesses (eg,
misclassified targets and residual errors) of the previous model.
By contrast, in bagging and pasting, the same models are trained
on different random subsets of the training set. A popular
boosting algorithm is gradient boosting, in which the new model
is trained on the residual errors made by the previous model
[113]. Extreme gradient boosting (XGBoost) implements an
optimized, parallel-tree gradient boosting algorithm, aiming to
be highly efficient, flexible, and portable [114]. XGBoost is
considered one of the most powerful ML algorithms, often
serving as an essential component of winning entries in ML
competitions [86]. A few drawbacks of XGBoost include lacking
interpretability and being prone to overfitting. Pang et al [33]
used XGBoost to predict early childhood obesity based on
electronic health records. Alkutbe et al [27] applied gradient
boosting to predict BFP based on cross-sectional health survey
data collected in Saudi Arabia.

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is a
nonparametric regression technique that automatically models
nonlinearities and interactions among variables by combining
≥2 linear regressions using hinge functions [115,116]. A hinge
function is a function equal to its argument where that argument
is >0 and 0 everywhere else. MARS builds a model using a
2-phase procedure [117]. The forward phase starts with a model
consisting of only the intercept term (ie, mean of the target) and
repeatedly adds basis functions (ie, constant or hinge function)
in pairs to the model that minimizes the squared error loss of
the training set. The backward (or pruning) phase usually starts
with an overfitted model and removes its least effective term
at each step until the best submodel is found. MARS requires
little or no data preparation, is easy to understand and interpret,
and can address classification and regression tasks. However,
it often underperforms boosting ensemble methods. Shao [65]
applied MARS to predict BFP using a small-scale health record
data set.

DL Models
In the obesity literature reviewed, DL models were applied to
3 distinct data types: tabular data (eg, spreadsheet data), images,
and texts. The model architectures differ systematically across
these data types.
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DL on Tabular Data

Although shallow ML models perform well on tabular data sets
in most cases, some complex relationships between the features
and the target could be more effectively learned by a deep neural
network model [118]. A fully connected neural network consists
of a series of fully connected layers, with each artificial neuron
(ie, node) of a layer linking with all neurons in the following
layer [76]. A multilayer perceptron (MLP) is a classic fully
connected neural network consisting of at least 3 layers of
neurons: an input layer, a hidden layer, and an output layer
[119]. One advantage of fully connected neural networks is that
they are structure agnostic, requiring no specific assumptions
about the input. However, neural networks trained on tabular
data can sometimes be prone to overfitting [120]. Park and
Edington [121] used MLP to identify individuals at elevated
diabetic risk. Heydari et al [67] performed MLP to predict
obesity status using data from a cross-sectional study of military
personnel in Iran.

DL on Images

CV is a field of AI that enables computers to learn from digital
images, videos, or other visual inputs and derive meaningful
information for decision-making and recommendations
[122,123]. Nowadays, most CV applications use DL models,
which prove more capable than their shallow-learning (ie, ML
models) counterparts in representing and revealing
high-dimensional, complex nonlinear patterns inherent in image
data. Specifically, CNNs consistently outperform the traditional
densely connected neural networks (eg, MLP) and achieve
human-like or superhuman accuracy in many challenging CV
tasks ranging from image classification to object detection and
segmentation [124,125]. The main advantages of CNNs over
densely connected neural networks are locality, translation
invariance, and computational efficiency [126]. Locality refers
to the repeated use of small-sized kernels (or filters) in CNNs
to identify local patterns at an increasing level of complexity
(eg, from basic shapes such as lines and edges to complex
objects such as adipose tissue or brain tumor). Translation
invariance refers to CNNs’ capacity to detect an entity
independent of its position in the image. The computational
efficiency of CNNs is achieved by using kernels, global pooling,
and other techniques, which typically make the models much
smaller (ie, fewer learnable parameters) than their densely
connected counterparts. Over the past decade, numerous
CNN-based DL models were built and adopted to tackle
domain-specific CV problems [76,127]. Some landmark models
include, but are not limited to, LeNet, AlexNet, VGG, Inception,
ResNet, Xception, ResNeXt, and U-Net.

Transfer learning plays a crucial role in modern AI, where a
model developed for a task is reused as the starting point for a
model on a different but related task [128]; for instance, the
ResNet model trained on ImageNet data with >14 million images
in approximately 1000 categories (eg, tables and horses) has
stored many useful visual patterns in its weights, which can
help solve other CV tasks (eg, identifying fat tissues in MRI
scans) [129]. Transfer learning can substantially reduce the
number of images required to train a model for a particular task
and boost model performance compared with models trained
from scratch [130].

Maharana and Nsoesie [57] adopted the VGG model architecture
to examine the relationship between obesity prevalence and the
built environment measured by Google Maps images (eg, parks,
highways, green streets, crosswalks, and diverse housing types).
Similarly, Phan et al [42] used the VGG model to assess the
link between the statewide prevalence of obesity, physical
activity, and chronic disease mortality and the built environment
using images from Google Street View. Bhanu et al [38] applied
the U-Net model to identify adipose tissues from MRI data.
Snekhalatha and Sangamithirai [30] applied transfer learning
on a pretrained CNN model to detect obesity based on thermal
imaging data.

DL on Text

Besides CV, NLP is another field where DL dominates [131].
Early NLP models primarily adopted recurrent neural network
(RNN) architecture, demonstrating broad applicability to various
NLP tasks such as sentiment analysis, text summarization,
language translation, and speech recognition [74,132]. RNN
differs from feed-forward MLP in that it takes information from
prior inputs (stored as memories) to influence the current input
and output, which capitalizes on the structure of sequential data
where order matters (eg, time series or natural languages) [133].
Some popular RNN models used in NLP tasks include gated
recurrent unit and long short-term memory unit [74]. However,
in today’s NLP landscape, transformers, invented by a team at
Google in 2017, have surpassed RNN models such as gated
recurrent unit and long short-term memory unit [134-136].
Transformers are encoder-decoder models that use self-attention
to process language sequences [137]. An encoder maps an input
sequence into state representation vectors. A decoder decodes
the state representation vector to generate the target output
sequence. The self-attention mechanism is used repeatedly
within the encoder and the decoder to help them contextualize
the input data. Specifically, the mechanism compares every
word in the sentence to every other word, including itself, and
reweighs each word’s embeddings to incorporate contextual
relevance. Popular transformer models such as GPT-3, BERT,
XLNet, RoBERTa, and T5 have been widely applied to various
NLP tasks and achieved state-of-the-art results [137]. Stephens
et al [48] tested the efficacy of pediatric obesity treatment
support through Tess, a behavioral coaching chatbot built on
NLP models. The study concluded that Tess demonstrated
therapeutic values to pediatric patients with obesity and
prediabetes, especially outside of office hours, and could be
scaled up to serve a larger patient population.

Discussion

Overview
This study conducted a scoping review of the applications of
AI to obesity research. A keyword search in digital bibliographic
databases identified 46 studies that used diverse ML and DL
models to study obesity-related outcomes. In general, the studies
found AI models helpful in detecting clinically meaningful
patterns of obesity or relationships between specific covariates
and weight outcomes. The majority (18/22, 82%) of the studies
comparing AI models with conventional statistical approaches
found that the AI models achieved higher prediction accuracy
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on test data. Some (5/46, 11%) of the studies comparing the
performances of different AI models revealed mixed results,
likely indicating the high contingency of model performance
on the data set and task it was applied to. An accelerating trend
of adopting state-of-the-art DL models over standard ML models
was observed to address challenging CV and NLP tasks. We
concisely introduced the popular ML and DL models and
summarized their specific applications in the studies included
in the review.

Despite the variety of ML and DL models used in obesity
research, it could well be the beginning of the trend for using
AI applications in the big data era. Future adoptions of AI in
obesity research could be influenced by a broad spectrum of
factors, with 3 prominent ones discussed in the following
sections.

Artificial General Intelligence
The ML and DL models reviewed in this study were primarily
unimodal and task specific: they were built on a single data type
(eg, tabular, text, or image) to solve a specific problem such as
obesity classification or BMI prediction. Recent advances in
AI showcase the feasibility and possibly superior performance
of multimodal, multitask ML and DL models that are trained
on diverse data types (eg, tabular plus text, image, video, or
audio) and can handle many domains of downstream tasks (eg,
text generation, object detection, time series prediction, and
speech recognition) simultaneously [138-140]. However, it
should be noted that the predictive accuracy of AI models may
vary across gender and age groups [27] and sex and age groups
[59]. Different from BMI, BMI z scores adjust for sex and age
differences [141]. Future research may evaluate the potential
disparities in AI model performances in their applications to
BMI versus BMI z scores as outcome measures. Artificial
general intelligence (AGI) refers to the ability of an intelligent
agent to understand or learn any intellectual task performed by
a human being [142,143]. It is too early to tell whether these
multimodal, multitask ML and DL models may lead to AGI (or
whether we could ever achieve AGI through technological
innovations) [144]. Nevertheless, we may soon witness
increasing applications of these models in obesity-related
research.

Synthetic Data Generation
Data access is fundamental to any AI model training. Two
primary barriers with regard to data are limited sample size and
confidentiality concerns [145-148]. ML and DL models are
increasingly used to generate synthetic data as an alternative to
data collected from the real world [149,150]. Synthetic data do
not contain private information requiring human subject review
and, therefore, can be shared with other parties or the public
without confidentiality concerns [151]. By contrast, synthetic
data preserve the original data’s mathematical and statistical
properties, ensuring that the AI model trained on them can be
generalized to real-world data [152]. In addition, given the
unrestrained availability of synthetic data (only limited by the
computational power of data generation), AI models trained on
synthetic data can be robust with regard to data variations [153].
Synthetic data of various types, such as tabular, text, and image,
have been generated in massive quantities to train ML and DL

models cost-effectively. Obesity-related data or, more generally,
health-related data can be expensive to collect (eg, MRI scans)
and contain confidential information (eg, patients’ names or
residential addresses), which could be addressed by synthetic
data generation [154].

Human-in-the-Loop
There have been increasing concerns over AI-related data bias
and ethical issues [155,156]. Fundamentally, AI models should
facilitate but not replace human judgment and decision-making
[157,158]. Human-in-the-loop (HITL) is an AI model that
requires human interaction [159,160]. HITL ensures that
algorithm biases and potentially destructive model outputs can
be identified in a timely manner and corrected to prevent adverse
consequences. However, such interactions between humans and
machines require thoughtful designs in the data-processing
pipeline, model architecture, and personnel management [159].
Data- and model-driven decision-making related to obesity,
such as behavioral modifications (eg, diet or physical activity
interventions) or medical treatment, can be complex [161].
AI-powered wearables and other digital health platforms can
detect change in an individual’s physical activity and provide
actionable information to improve health outcomes [162-164].
Mobile chemical sensors could offer timely dietary information
by monitoring real-time chemical variations upon food
consumption, collecting dynamic data based on an individual’s
metabolic profile and environmental exposure, thus supporting
dietary behavior decision-making to improve precise nutrition
[165]. HITL may integrate AI model outputs with expert inputs
to make informed decisions that capitalize on the strengths of
both and maximize patients’ chances of health restoration and
improvement [166].

Limitations of the Scoping Review and Included
Studies
To our knowledge, this study is the first to systematically review
AI-related methodologies adopted in the obesity literature and
project trends for future technological development and
applications. However, several limitations should be noted
concerning this review and the included studies. As our review
focused on ML and DL methods, study-specific findings (eg,
the effectiveness of an intervention and estimated associations
between covariates and an outcome) were not synthesized in
detail. The included studies were heterogeneous in terms of
hypothesis and research question, study design, population
sampled, data collection method, sample size, and data quality.
The analytic approach chosen was endogenous to these
study-specific parameters; therefore, across-study comparisons
of model performances may not be reliable. Even within the
same study, conclusions about relative model performances (eg,
the prediction accuracy of logistic regression vs SVM) may
lack generalizability because of the interdependency between
data and ML and DL algorithms. AI technologies are rapidly
advancing, with innovations and breakthroughs almost daily.
A review such as this one will have a short shelf life and warrant
periodic updates.
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Conclusions
This study reviewed the AI-related methodologies adopted in
the obesity literature, particularly ML and DL models applied
to tabular, image, and text data for obesity measurement,
prediction, and treatment. It aimed to provide researchers and

practitioners with an overview of the AI applications to obesity
research, familiarize them with popular ML and DL models,
and facilitate their adoption of AI applications. The review also
discussed emerging trends such as multimodal and multitask
AI models, synthetic data generation, and HITL, which may
witness increasing applications in obesity research.
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