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Abstract

Background: The global burden of influenza is substantial. It is a major disease that causes annual epidemics and occasionally,
pandemics. Given that influenza primarily infects the upper respiratory system, it may be possible to diagnose influenza infection
by applying deep learning to pharyngeal images.

Objective: We aimed to develop a deep learning model to diagnose influenza infection using pharyngeal images and clinical
information.

Methods: We recruited patients who visited clinics and hospitals because of influenza-like symptoms. In the training stage, we
developed a diagnostic prediction artificial intelligence (AI) model based on deep learning to predict polymerase chain reaction
(PCR)–confirmed influenza from pharyngeal images and clinical information. In the validation stage, we assessed the diagnostic
performance of the AI model. In additional analysis, we compared the diagnostic performance of the AI model with that of 3
physicians and interpreted the AI model using importance heat maps.

Results: We enrolled a total of 7831 patients at 64 hospitals between November 1, 2019, and January 21, 2020, in the training
stage and 659 patients (including 196 patients with PCR-confirmed influenza) at 11 hospitals between January 25, 2020, and
March 13, 2020, in the validation stage. The area under the receiver operating characteristic curve for the AI model was 0.90
(95% CI 0.87-0.93), and its sensitivity and specificity were 76% (70%-82%) and 88% (85%-91%), respectively, outperforming
3 physicians. In the importance heat maps, the AI model often focused on follicles on the posterior pharyngeal wall.

Conclusions: We developed the first AI model that can accurately diagnose influenza from pharyngeal images, which has the
potential to help physicians to make a timely diagnosis.
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Introduction

Background
According to the Global Burden of Disease Study 2016, the
global burden of influenza is substantial. In the study, the disease
was estimated to cause 39.1 million acute lower respiratory
infection episodes and 58,200 deaths [1]. It has been estimated
that influenza is responsible for 291,243 to 645,832 seasonal
respiratory deaths (4.0-8.8 per 100,000 individuals) annually
[2]. Timely and accurate diagnosis of influenza has the potential
to prevent widespread transmission of the virus within the
population, and subsequent epidemics and pandemics, in
addition to the unnecessary prescription of antibiotics in primary
care, which is a cause of emerging antibiotic-resistant bacteria.
Moreover, early intervention, such as hydration and antiviral
drugs, is expected to reduce the mortality risk among high-risk
patients, including the older adults and individuals with
comorbidities.

The COVID-19 pandemic and surge in the use of telemedicine
highlighted the importance of accurately diagnosing influenza
infection without increasing the risk of spreading the virus
through physical interaction. The gold-standard method for
diagnosing influenza infection is the reverse
transcription–polymerase chain reaction (RT-PCR) of
nasopharyngeal aspirates or swabs [3,4]; however, RT-PCR is
not easily performed in primary care, and the result turnaround
time could delay timely diagnosis and preventive or treatment
interventions. A more commonly used test is the rapid
immunochromatographic antigen detection test; however, its
validity is modest compared with RT-PCR and varies across
studies [5,6]. Neither of these tests can be performed through
telemedicine, and the sensitivity and specificity of diagnosing
influenza using clinical information only are suboptimal [7,8].
Given the recent increase in the number of patients being
diagnosed through telemedicine, an alternative influenza test
that can be conducted through telemedicine is warranted.

Objectives
To address this important knowledge gap, we developed a deep
learning model to diagnose influenza infection using pharyngeal
images and clinical information. We tested the performance of
the artificial intelligence (AI) model for diagnostic prediction
using data from the real-world patient population and compared
it with the diagnostic performance of 3 physicians. We also
investigated the regions of the pharynx on which the AI model
focused to differentiate between individuals with and without
influenza infection.

Methods

Pilot Study to Develop a Medical Camera to Capture
Standardized Pharyngeal Images
For our pilot study, we recruited 4765 patients aged 6 to 90
years with influenza-like symptoms, and they visited 37 clinics
or hospitals between November 28, 2018, and February 4, 2019
(registered as jRCTs032180041). To capture images of the
pharynx in a standardized manner, we developed a pharyngeal
camera with a light-emitting diode light source and a disposable
clear camera cover to hold down the tongue of patients (Figure
1). In this pilot study, we adjusted the size of the pharyngeal
camera and tongue depressors to make them suitable for many
patients. The device contained a full high-definition digital
camera and was connected via Wi-Fi to a cloud service for the
analysis of pharyngeal images, together with clinical
information. During this pilot study, we improved the image
quality of the camera in terms of resolution, brightness, and
contrast. Specifically, we reduced the view angle appropriately
to reduce distortion and improve the resolution because the
angle was excessive. We also placed an imaging sensor near
the tip of the camera to avoid light attenuation and ensure image
brightness. In addition, we improved the image contrast by
coating the clear camera cover with antifogging material to
prevent fogging caused by exhalation. We used a rapid
continuous shooting function to obtain high-quality pharyngeal
images in a short time while avoiding motion blur. The camera
could capture an image every 0.3 seconds, and 30 sequential
images were captured per shot.
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Figure 1. Presentation of the artificial intelligence–assisted camera and a representative pharyngeal image of a patient with polymerase chain
reaction–confirmed influenza infection.

Study Design and Participants
This study included a training stage (registered as
jRCTs032190120) and a validation stage (registered as
Pharmaceuticals and Medical Devices Agency clinical trial
identification code AI-02-01). We enrolled patients with
influenza-like symptoms who visited clinics or hospitals and
satisfied the following inclusion and exclusion criteria at 64
hospitals between November 1, 2019, and January 21, 2020, in
the training stage, and 11 hospitals between January 25, 2020,
and March 13, 2020, in the validation stage. A list of study sites
is provided in Table S1 in Multimedia Appendix 1.

The inclusion criteria were as follows: (1) patients who provided
written consent by themselves or their parents (if they were
aged <18 years) to participate in the study, (2) those aged ≥6
years, and (3) those who satisfied at least one of the following
4 conditions in the training stage and at least 2 in the validation
stage: first, body temperature of ≥37.0 °C; second, systematic
influenza-like symptoms, such as joint pain, muscle pain,
headache, tiredness, and appetite loss; third, respiratory
symptoms, such as cough, sore throat, and nasal discharge or
congestion; and fourth, an episode of close contact with patients
with influenza or influenza-like symptoms within 3 days, or in
any other scenario in which the consulting physician suspected
influenza infection. The exclusion criteria included the
following: (1) patients with fluctuating teeth; (2) those with
severe oral lesions; (3) those with severe nausea; (4) those with
difficulty in opening the mouth sufficiently for the use of the
camera (eg, small mouth, temporomandibular joint pain,
incompatibility of dentures, disturbed consciousness, or
respiratory failure); (5) those who had participated in another
clinical trial within 7 days before this study, those who were
scheduled to participate in another clinical trial (excluding

postmarketing surveillance), or those with difficulty in follow-up
owing to mental, family, social, geographic, or other reasons;
(6) pediatric patients who clearly did not agree to participate in
the study; and (7) those judged to be inappropriate to participate
in the study by the responsible physician at each site. In addition,
we excluded patients with only poor-quality images from the
analysis.

In the training stage, we aimed to collect clinical information
and pharyngeal images from patients with RT-PCR–confirmed
influenza-positive and influenza-negative results in a ratio of
approximately 1:1 to enable the most efficient supervised
learning of the AI model. There is no consensus on the size of
the samples (ie, number of patients) that should be used to train
an AI model; thus, we arbitrarily set the size to 7500 patients,
including 3750 patients with RT-PCR–positive results and 3750
patients with RT-PCR–negative results. In the validation stage,
we aimed to determine the lower bound of the 95% one-sided
CI of sensitivity to achieve ≥70% and that of specificity to
achieve ≥85%. With a 1-sided P value of 5% and power of 85%,
assuming an actual sensitivity of 80% and specificity of 90%
as suggested by our training stage, we calculated the required
sample sizes to be 137 for patients with RT-PCR–positive results
and 323 for RT-PCR–negative results. Therefore, we planned
to stop the recruitment of study participants on the day when
150 patients with positive results and 350 patients with negative
results were obtained.

In Japan, the first case of SARS-CoV-2 infection (COVID-19)
was reported on January 15, 2020, and the first wave of the
pandemic occurred in late March 2020. During the study period,
in the validation stage, we asked the participating clinics and
hospitals to report any suspected cases of COVID-19 in the
study participants. There were no such reports from any study
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site throughout the study, which suggests that our study sample
was not affected by the COVID-19 pandemic.

Collection of Pharyngeal Images, Clinical Information,
and Nasopharyngeal Specimens
In addition to the pharyngeal images of the study participants,
the following clinical information was obtained using a
standardized case report form based on electronic data capture:
age; sex; time (hours) from symptom onset; highest body
temperature before study site visit; episode of close contact;
status and date of the most recent influenza vaccination; use of
antipyretics; subjective symptoms, including tiredness, appetite
loss, chill, sweating, joint pain, muscle pain, headache, nasal
discharge or congestion, cough, sore throat, and digestive
symptoms; and objective findings by the consulting physicians
at study sites, including body temperature, pulse rate, and
tonsillar findings (tonsillitis, white moss, and redness).

Furthermore, nasopharyngeal swabbing was conducted to obtain
nasopharyngeal specimens from the participants, which were
sent to the central clinical laboratory (LSI Medience
Corporation) for RT-PCR testing, which is the gold standard
(reference standard) for the diagnosis of influenza infection.
We standardized the process of collecting the nasopharyngeal
specimens among the study sites using our own Japanese manual
(not publicly available).

Development of the AI Model to Predict
RT-PCR–Confirmed Influenza
We developed an ensemble AI model (version FLU2021.06)
to predict the probability of RT-PCR–confirmed influenza using
pharyngeal images and clinical information (Figure S1 in
Multimedia Appendix 1). This model consists of 3 main machine
learning models: a multiview convolutional neural network
(MV-CNN), a multimodal convolutional neural network
(MM-CNN), and boosting models. In the training stage, we
trained these 3 types of machine learning models and integrated
them using ridge regression [9] into the ensemble AI model.

First, we trained the MV-CNN using SE-ResNext-50 as an
image feature extractor, which was pretrained on ImageNet
[10,11]. The MV-CNN architecture used several pharyngeal
images that contained views from various angles [12]. On
pharyngeal imaging, the tongue and uvula often overlap with
the posterior pharyngeal wall. The MV-CNN addressed this
issue by gathering information from various image angles. From
30 (or more if several shots were taken) sequential images, 1
to 5 of the most appropriate images per patient were selected
as the input to the MV-CNN using an automatic image quality
evaluation system. We determined the number of input images
by considering the MV-CNN performance and the memory size
limitation of the graphics processor units. Although, in general,
the MV-CNN performs better with more input images, the
memory size of the graphics processor unit constrains the
number of images. If the number of selected images was <5,
we padded them with uninformative images filled with zeros,
similar to zero padding in the boundary region of an image. To
quantify the visual image quality criteria, we trained the image
quality evaluation system that used a lightweight CNN model
[13] in the training stage using human-annotated visual image

quality criteria (eg, visibility of the posterior pharyngeal wall,
brightness, focus, motion blur, and exhalation fog) defined by
one of the authors (MF) who is a physician. The input images
for the MV-CNN were resized and then augmented (eg, flipped,
rotated, blurred, and contrast-changed) to improve the accuracy
and generalization performance. To prevent overfitting, we used
well-established training strategies, including batch
normalization, learning rate decay, and cross-validation. To
manage various pharyngeal magnification rates, we trained the
MV-CNNs with multiple image sizes and combined their scores
by averaging them.

Second, we developed the MM-CNN based on the MV-CNN
to process both multiview pharyngeal images and clinical
information as input data [14,15]. In detail, we extended the
final classification layer of the MV-CNN and connected it to
the neural network to manage clinical information. The image
feature extractor of the MM-CNN was initialized using trained
MV-CNN weights. Then, we applied the same training and
ensemble strategies as those used for the MV-CNN.

Third, we trained boosting models based on the prediction
results of MV-CNN and clinical information. We selected
LightGBM and CatBoost as the boosting models [16,17].
Finally, the probability of influenza was obtained by integrating
each prediction from the MV-CNN, MM-CNN, and boosting
models using ridge regression. We trained the ridge regression
weights using cross-validation. The probability of influenza
was obtained by averaging all the folds of the ridge regression
model predictions.

Statistical Analysis
In the training stage, we compared the clinical characteristics
of the study participants according to the RT-PCR test results
(positive or negative) using t tests (2 tailed) for continuous
variables with a normal distribution (age, highest body
temperature before the study site visit, body temperature at visit,
and pulse rate), Mann-Whitney U test for continuous variables
with a nonnormal distribution (time from symptom onset), and
chi-square tests for categorical variables. We repeated these
analyses in the validation stage.

In the training stage, using a 5-fold cross-validation method,
we conducted a receiver operating characteristic (ROC) curve
analysis to measure the discrimination ability of (1) the
probability score of the MV-CNN, which uses only pharyngeal
images in the prediction; (2) the probability score of the clinical
information AI, which is an AI model that uses all the
aforementioned clinical information, except for the pharyngeal
images, in the prediction; and (3) the probability score of the
ensemble AI model using both the pharyngeal images and
clinical information. We also measured the reclassification
ability of the pharyngeal images by comparing the clinical
information AI model and the ensemble AI model by calculating
the continuous reclassification improvement and integrated
discrimination improvement [18].

In the validation stage, we also conducted ROC analysis and
calculated the sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) for influenza
infection, according to a selected cutoff point.
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We performed statistical analysis using R software (version
4.1.1; R Foundation) and Python software (version 3.8.5; Python
Software Foundation). P values of <.05 were considered
statistically significant. A third-party organization (Statcom Co
Ltd, Tokyo, Japan) performed the sample size estimation and
calculation of the area under the ROC curve (AUROC) and
validity (sensitivity, specificity, PPV, and NPV) in the validation
stage. To avoid the post hoc adjustment of the developed AI
model to fit the validation data in the regulatory approval
process, the authors were prohibited from directly touching the
validation data or conducting additional analyses in the
validation stage. Therefore, any other analyses (eg, the
calculation of AUROC for pharyngeal images and clinical
information independently or for the MV-CNN, MM-CNN, and
boosting model separately) were not possible in the validation
stage.

Additional Analysis
We conducted 4 types of additional analyses. First, we compared
the performance of the AI-assisted diagnostic camera with that
of the 3 physicians. For this analysis, we used the existing data
(pharyngeal images and clinical information) of 200 patients
(100 patients with RT-PCR–positive results and 100 with
RT-PCR–negative results), which were randomly selected from
study participants in the training stage. A total of 3 physicians
among the authors (SO, MF, and M Ikeda), who were blinded
to the patients’ identifiers and their RT-PCR test results,
assessed the data to assign an influenza prediction score between
0 and 1 (ie, between 0% and 100%). As there is generally no
established practice or criteria for physicians to diagnose
influenza from pharyngeal images and clinical information, the
3 physicians were asked to guess the probability of influenza
infection for each patient, as they usually do in their actual
clinical practice. We applied the diagnostic prediction AI model
to the existing data and compared the AUROC of the diagnostic
prediction AI model with that of each physician and the average
prediction score of the 3 physicians. We recalculated the
AUROC of the AI model for the 200 patients for a fair
comparison.

Second, we attempted to interpret the mechanisms of the
MV-CNN prediction to differentiate between influenza cases
and noninfluenza cases using pharyngeal images. We modified
the guided gradient-weighted class activation mapping for the
MV-CNN to visualize the importance heat maps. The aim was
to determine the focus area of MV-CNN when differentiating
between patients with RT-PCR–positive and RT-PCR–negative
results. We used the same data set of 200 patients (100 patients
with RT-PCR–positive and 100 with RT-PCR–negative results)
that we used in the first additional analysis. To quantify and
interpret the importance heat maps, 2 physicians among the
authors (MF and M Ikeda) independently determined whether
the MV-CNN highlighted each part of the pharynx (classified
into 5 parts: lateral pharyngeal bands, posterior pharyngeal wall,
palatal arch, tonsils, and follicles) for each patient. When the 2
physicians made different judgments (ie, presence vs absence
of highlighting by the MV-CNN), a consensus was reached
through discussion between them. Consequently, for each part
of the pharynx, we calculated the proportion of patients with
images highlighted by the MV-CNN among the 100 patients

with RT-PCR–positive results and 100 RT-PCR–negative results
and compared the groups using chi-square tests.

Third, as a post hoc experiment, using the 200 samples, we
compared the performance of our final model (ie, the ridge
regression ensemble model) with the performance of each of
the component models: the MV-CNN, MM-CNN, and boosting
models.

Finally, as another post hoc experiment, we compared the
performance of the MV-CNN model with the proposed
backbone (SE-ResNext-50) and that of various CNN backbones,
that is, ResNet-50, ResNeXt-50 (32×4d), EfficientNet-B0, and
DenseNet-121, which were available at the time of our model
development.

Ethics Approval
The ethics committee of Hattori Clinic approved the pilot study
and the training study, and the validation study was approved
by the ethics committee of Takahashi Clinic, Kobori Central
Clinical, and Haradoi Hospital.

Results

Training Stage
Figure S2 in Multimedia Appendix 1 shows the flowchart of
patient selection during the training stage. We obtained informed
consent from 9029 patients with influenza-like symptoms who
visited one of 64 clinics or hospitals between November 1, 2019,
and January 21, 2020. Among them, 199 patients (2.20%)
experienced nausea during the examination when pharyngeal
images were being captured, including 1 (0.01%) patient with
severe nausea and 14 (0.16%) patients who vomited. We did
not complete the image-capturing procedure for these 15 patients
(0.17%). Among the remaining 9014 patients, we selected 7831
patients (mean age 33.8, SD 18.4 years; female patients:
3901/7831, 50%) with 25,168 high-quality images (out of
approximately 300,000 images), which consisted of 3733
(47.67%) patients with influenza RT-PCR–positive results with
12,154 (48.29%) pharyngeal images and 4098 (52.33%) patients
with RT-PCR–negative results with 13,014 (51.71%) pharyngeal
images. Table 1 compares the clinical characteristics of the
patients based on the RT-PCR test results. Compared with the
patients with RT-PCR–negative results, the patients with
RT-PCR–positive results yielded the following: the average age
was slightly lower; the time from symptom onset to the study
site visit was shorter; the proportion of close contact, use of
antipyretics, and most subjective symptoms were higher; and
the temperature and pulse rate were higher, whereas the
proportion of recent influenza vaccinations, digestive symptoms,
and tonsillar findings were lower. There was no difference in
the proportions of sex and sore throat between the groups.

Using the training data set, we established the ensemble AI
model to estimate the probability of influenza in individual
patients. The feature importance of each variable in the
LightGBM and CatBoost models is shown in Figures S3 and
S4 in Multimedia Appendix 1, which suggest that pharyngeal
images were the most important variable in the diagnostic
prediction AI model, followed by body temperature and cough.
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In the 5-fold cross-validation, the AUROC of the MV-CNN
probability score for pharyngeal images was 0.76 (95% CI
0.75-0.77) and that of the AI model with clinical information
(ie, all the clinical information in Table 1) was 0.83 (95% CI
0.82-0.84; Figure 2). The AUROC of the diagnostic prediction
AI model with pharyngeal images and clinical information was
0.87 (95% CI 0.86-0.87), which means that the AUROC
significantly increased because of the addition of pharyngeal
images to the AI model with clinical information (P<.001).

Regarding reclassification ability, the continuous reclassification
improvement was 0.25 (95% CI 0.22-0.29) among patients with
RT-PCR–positive results and 0.33 (95% CI 0.30-0.36) among
patients with RT-PCR–negative results and the integrated
discrimination improvement was 0.08 (95% CI 0.07-0.08),
which also indicate that the accuracy of the diagnostic prediction
AI model significantly improved because of the addition of
pharyngeal images to the AI model with clinical information.

Table 1. Characteristics of the study participants with or without reverse transcription–polymerase chain reaction (RT-PCR)–confirmed influenza.

Participants in the validation stageParticipants in the training stageCharacteristics

RT-PCR test resultAll (n=659)RT-PCR test resultAll (n=7831)

P valueNegative
(n=463)

Positive
(n=196)

P valueNegative
(n=4098)

Positive
(n=3733)

.00834.5 (17.0)30.4 (18.6)33.3 (17.6)<.00134.5 (18.4)33.0 (18.5)33.8 (18.4)Age (years), mean (SD)

.54.54Sex , n (%)

227 (49.0)91 (46.4)318 (48.3)2043 (49.9)1887 (50.5)3930 (50.2)Male

236 (51.0)105 (53.6)341 (51.7)2055 (50.1)1846 (49.5)3901 (49.8)Female

.6728.7 (36.5)24.6 (10.8)27.5 (31.2)<.00133.8 (28.6)28.3 (20.6)31.2 (25.3)Time from onset (hours),
mean (SD)

<.00138.0 (0.8)38.6 (0.7)38.2 (0.8)<.00138.0 (0.9)38.6 (0.8)38.2 (0.9)Highest BTa before visit (°C),
mean (SD)

<.00188 (19.0)120 (61.2)208 (31.6)<.001833 (20.3)1687 (45.2)2520 (32.2)Close contact, n (%)

.09205 (44.3)73 (37.2)278 (42.2)<.0011625 (39.7)1248 (33.4)2873 (36.7)Recent influenza vaccination,
n (%)

.25202 (43.6)95 (48.5)297 (45.1)<.0011445 (35.3)1530 (41)2975 (38)Use of antipyretics, n (%)

Subjective symptoms , n (%)

.09347 (74.9)159 (81.1)506 (76.8)<.0012927 (71.4)3010 (80.6)5937 (75.8)Tiredness

<.001163 (35.2)96 (49)259 (39.3)<.0011538 (37.5)1823 (48.8)3361 (42.9)Appetite loss

.01223 (48.2)115 (58.7)338 (51.3)<.0011984 (48.4)2231 (59.8)4215 (53.8)Chill

.82146 (31.5)60 (30.6)206 (31.3)<.0011060 (25.9)1128 (30.2)2188 (27.9)Sweating

.12213 (46)103 (52.6)316 (48)<.0011743 (42.5)1992 (53.4)3735 (47.7)Joint pain

.36130 (28.1)62 (31.6)192 (29.1)<.0011086 (26.5)1276 (34.2)2362 (30.2)Muscle pain

.28277 (59.8)126 (64.3)403 (61.2)<.0012311 (56.4)2414 (64.7)4725 (60.3)Headache

.03276 (59.6)134 (68.4)410 (62.2).0012270 (55.4)2202 (59)4472 (57.1)Nasal discharge or con-
gestion

<.001223 (48.2)161 (82.1)384 (58.3)<.0012166 (52.9)3053 (81.8)5219 (66.6)Cough

.38314 (67.8)126 (64.3)440 (66.8).862575 (62.8)2353 (63)4928 (62.9)Sore throat

.0997 (21)30 (15.3)127 (19.3)<.001740 (18.1)558 (14.9)1298 (16.6)Digestive symptoms

Objective findings

<.00137.3 (0.8)37.9 (0.9)37.5 (0.9)<.00137.3 (0.8)38.0 (0.9)37.6 (0.9)BT at visit (°C), mean
(SD)

<.00190.9 (16.4)100.8 (18.6)93.8 (17.7)<.00190.3 (16.6)100.2 (17.7)95.0 (17.8)Pulse rate, mean (SD)

.00255 (11.9)8 (4.1)63 (9.6)<.001709 (17.3)529 (14.2)1238 (15.8)Tonsillitis, n (%)

.00722 (4.8)1 (0.5)23 (3.5)<.001109 (2.7)17 (0.5)126 (1.6)Tonsillar white moss, n
(%)

.0456 (12.1)13 (6.6)69 (10.5)<.001752 (18.4)540 (14.5)1292 (16.5)Tonsillar redness, n (%)

aBT: body temperature.
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Figure 2. Receiver operating characteristic curves of the diagnostic prediction models in the 5-fold cross-validation of the training data set. In the
figure, all combined indicates ensemble artificial intelligence (AI) model using pharyngeal images and clinical information; pharyngeal images only
indicates multiview convolutional neural network using multiple pharyngeal images; clinical information only indicates ensemble AI model without
pharyngeal image information. AUROC: area under the receiver operating characteristic.

Validation Stage
Figure S5 in Multimedia Appendix 1 shows the flowchart of
patient selection during the validation stage. In the validation
stage, we obtained informed consent from 706 patients with
influenza-like symptoms who visited one of 11 clinics or
hospitals between January 25, 2020, and March 13, 2020, which
comprised a safety analysis set. Of the 706 patients, 12 (1.7%)
felt nauseous during the examination when the pharyngeal
images were being captured, including 1 patient (0.1%) with
severe nausea for whom we did not complete the image-taking
procedure. In addition, 33 patients (4.7%) did not satisfy the
predefined criteria of the protocol for the full analysis set, mostly
because of the difficulties in saving pharyngeal images at the
study sites. Furthermore, 13 (1.8%) patients were excluded from
the automated image quality evaluation system that removed
low-quality pharyngeal images. Thus, we used the pharyngeal

images and clinical information of the remaining 659 patients
(mean age 33.3 years, SD 17.6 years; female patients: 341/659,
51.7%) for the validation stage analysis. Similar to the training
stage, compared with noncases, the RT-PCR–confirmed cases
yielded the following results: the average age was slightly lower;
the proportion of close contact and several subjective symptoms
(tiredness, chills, nasal discharge or obstruction, and cough)
was higher; and the temperature (both before the clinic or
hospital visit and on site) and pulse rate were higher, whereas
the proportion of tonsillar findings was lower (Table 1).

In the validation stage, the AUROC of the diagnostic prediction
AI model was 0.90 (95% CI 0.87-0.93). At a selected cutoff
point on the ROC curve (Figure 3), the sensitivity and specificity
were 76% (95% CI 70%-82%) and 88% (95% CI 85%-91%),
respectively, and the PPV and NPV were 73% (95% CI
69%-79%) and 90% (95% CI 87%-92%), respectively (Table
2).

J Med Internet Res 2022 | vol. 24 | iss. 12 | e38751 | p. 7https://www.jmir.org/2022/12/e38751
(page number not for citation purposes)

Okiyama et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Receiver operating characteristic curve for the diagnostic prediction model in the validation data set. AI: artificial intelligence; AUROC:
area under the receiver operating characteristic curve.

Table 2. Validity of the artificial intelligence (AI)–assisted device compared with the gold-standard diagnosis of influenza virus infection based on
reverse transcription–polymerase chain reaction (RT-PCR).

Values, % (95% CI)Total, nInfluenza virus infection based on RT-PCR

NPVb, % (95% CI)PPVa, % (95% CI)True negativeTrue positive

Prediction by the AI-assisted devicec, n

N/Ad73 (67-79)20455149Positive

90 (87-92)N/A45540847Negative

N/AN/A659463196Total, n

N/AN/AN/AN/A76 (70-82)Sensitivity, % (95% CI)

N/AN/AN/A88 (85-91)N/ASpecificity, % (95% CI)

aPPV: positive predictive value.
bNPV: negative predictive value.
cAccording to the selected cutoff point on the receiver operating characteristic curve of the diagnostic prediction model of the AI-assisted device shown
in Figure 3.
dN/A: not applicable.

Additional Analysis
In our additional analysis, among the 200 randomly selected
patients (100 patients with RT-PCR–positive results and 100
with RT-PCR–negative results), the AUROC of the diagnostic
prediction AI model was 0.89 (95% CI 0.84-0.93), which was
higher than that of each of the 3 physicians (0.76, 0.73, and
0.74). It was also higher than that of the average prediction score
of the 3 physicians (0.79, 95% CI 0.73-0.85; Figure 4).

Figure S6 in Multimedia Appendix 1 and Figure 5 show
examples of the pharyngeal images and those highlighted using
the importance heat maps. An assessment of the importance
heat maps for the 200 patients (100 patients with
RT-PCR–positive results and 100 with RT-PCR–negative
results) conducted by 2 physicians showed that the proportion
of patients with AI model–highlighted images of follicles on
the posterior pharyngeal wall was significantly different between
the patients with RT-PCR–positive and RT-PCR–negative
results (73% vs 38%; P<.001), which suggests that the AI model
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often focused on these parts (Figure S7 in Multimedia Appendix
1).

Finally, our post hoc experiments suggested that the performance
of our final model (ie, the ridge regression ensemble model)

was superior or similar to (at least not inferior to) the
performance of each component model (Table S2 in Multimedia
Appendix 1). In addition, the backbone model proposed in our
final model was superior to various CNN backbones (Table S3
in Multimedia Appendix 1).

Figure 4. Receiver operating characteristic curves for the diagnostic prediction artificial intelligence model and 3 physicians. In the figure, AI indicates
ensemble AI model using pharyngeal images and clinical information. The AI model was the same as that used in the validation stage. However, the
AUROC was slightly different because of the small sample size used in the additional analysis. AI: artificial intelligence; AUROC: area under the
receiver operating characteristic curve. 3 physicians: average prediction score of the 3 physicians.

Figure 5. Examples of pharyngeal images (left) and those highlighted using the importance heatmaps (right). These importance heat maps show areas
in which the artificial intelligence (AI) model focused on differentiating between reverse transcriptase–polymerase chain reaction (RT-PCR)–positive
cases and RT-PCR–negative cases. In example A, the AI model focused on follicles. In example B, the AI model focused on the lateral pharyngeal
bands.
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Discussion

Principal Findings
In this study, we developed an AI-assisted diagnostic camera
using a diagnostic prediction model for influenza (Multimedia
Appendix 2). In the training stage, we found that the pharyngeal
images contributed significantly to the improvement of the
diagnostic prediction AI model compared with the clinical
information AI model. In the validation stage, the AUROC of
the diagnostic prediction AI model was 0.90 (95% CI 0.87-0.93),
with a sensitivity and specificity of 76% (95% CI 70%-82%)
and 88% (95% CI 85%-91%), respectively. In our additional
analysis, the AI-assisted camera performed better than the 3
physicians in predicting influenza. Furthermore, in the
importance heat maps, we found that the AI model often focused
on follicles to differentiate between patients with
RT-PCR–positive and RT-PCR–negative results.

Clinical characteristics associated with RT-PCR–confirmed
influenza infection among people with influenza-like symptoms
were examined in 2 previous studies [7,8]. Both studies
concluded that fever and cough were the best predictors of
influenza diagnosis. However, the sensitivity and specificity of
the combination of these 2 factors were suboptimal, at 78% and
55% in one study [7] and 64% and 67% in another study,
respectively [8]. In our study, considering the feature importance
of each variable in the LightGBM and CatBoost models (Figures
S3 and S4 in Multimedia Appendix 1), body temperature and
cough were highly ranked among clinical information, whereas
the feature importance of pharyngeal images was even larger
than the highly ranked clinical information.

Recently, several AI-assisted diagnostic prediction models have
been proposed for influenza diagnosis [19-22]. In a single-center
study from Japan, researchers reported a machine learning–based
infection screening system that incorporates a random tree
algorithm that uses vital signs [19]. The researchers reported a
sensitivity of 81% to 96% and NPV of 81% to 96% in their
training data sets (they did not report specificity and PPV);
however, they did not validate the performance of the model
outside the center. Researchers at the University of Pittsburgh
Medical Center Health System reported machine learning
classifiers for influenza detection from free-text reports of the
emergency department [20,21]. Among the 31,268 emergency
department reports from 4 hospitals, the AUROCs of the 7
machine learning classifiers for influenza detection ranged from
0.88 to 0.93 [21], which was better than an expert-built Bayesian
model [20]. These studies were also limited because
performance outside the health care system of the University
of Pittsburgh was unknown. More recently, a Korean study
reported an influenza screening system based on deep learning
using a combination of epidemiological and patient-generated
health data from a mobile health app [22]. However, the gold
standard in the study was the clinical diagnosis of influenza at
a clinic reported by app users instead of laboratory-confirmed
influenza. Notably, none of the previous studies included an
assessment of pharyngeal images in their diagnostic prediction
models [19-22]. The novelty of our study is that we have
developed the first AI-assisted diagnostic camera for influenza

and prospectively validated its performance through a Good
Clinical Practice-based clinical trial process.

We showed that pharyngeal images significantly improved the
discrimination and reclassification abilities of the diagnostic
prediction AI model. In addition, we considered the mechanisms
by which the AI model differentiated between true influenza
cases and noninfluenza cases using pharyngeal images. To the
best of our knowledge, there is no established approach to
quantitatively scale the regions of images on which the AI model
focuses. Indeed, most previous studies on AI-assisted diagnostic
cameras showed only representative images highlighted using
gradient-weighted class activation mapping or saliency maps
to speculate on the possible mechanisms of AI classification
[23-25]. In our study, we attempted to quantify these regions
by calculating the proportion of patients with images highlighted
by the AI model for each part of the pharynx among the patients
with RT-PCR–positive and RT-PCR–negative results.
Consequently, we found that the AI model mainly focused on
follicles on the posterior pharyngeal wall. Notably, this finding
is in line with previous case reports and case series that suggest
that the follicles on the posterior pharyngeal wall are specific
to influenza infection and are useful for the diagnosis of
influenza [26-29]. Physical examination, including visual
inspection of the pharynx, generally requires the experience of
individual physicians, and physical examination skills may vary
widely among physicians. Our study suggests that AI could
minimize the variation and may help to standardize physical
examination skills among physicians. In addition, when
attempting to discriminate between diseases, doctors may be
able to learn where to focus on their visual examination using
AI systems.

Limitations
Our study has some limitations. First, we recruited participants
with influenza-like symptoms from a large number of clinics
and hospitals in Japan to increase the generalizability of our
study. However, there may be a country or cultural difference
in terms of people with influenza-like symptoms seeking
medical care from health care providers. In Japan, with its
universal health care coverage, people have relatively easy and
timely access to clinics and hospitals compared with those in
other countries. Therefore, generalizing our findings to different
clinical care settings in different countries requires caution and
independent assessment. Second, our additional analysis of the
comparison between the AI-assisted diagnostic camera and the
3 physicians was not planned in the study protocols
(jRCTs032190120 and Pharmaceuticals and Medical Devices
Agency clinical trial identification code AI-02-01); however,
these physicians were blinded to the patients’ identifiers and
their RT-PCR results. Finally, in addition to pharyngeal images,
we collected as many relevant clinical variables (suggested in
previous large studies [7,8]) as possible to establish an accurate
diagnostic prediction AI model. However, there may be other
useful variables for the prediction of true influenza diagnosis
that we did not collect in our study. For example, in some
studies, researchers have suggested that the population-level
trend of influenza outbreaks in an area is useful for predicting
an individual patient’s influenza infection [22]. Further
improvement of the AI-assisted diagnostic camera by including
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additional variables, as well as an improvement of the AI models
to analyze pharyngeal images, is justified.

Conclusions
In conclusion, we developed the first AI-assisted diagnostic
camera for influenza and prospectively validated its high

performance. We found that the AI model often focused on
follicles, which confirmed previous case reports and series
suggesting that visual inspection of the pharynx would help in
the diagnosis of influenza infection.
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