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Abstract

Electronic health records (EHRs) contain valuable data for reuse in science, quality evaluations, and clinical decision support.
Because routinely obtained laboratory data are abundantly present, often numeric, generated by certified laboratories, and stored
in a structured way, one may assume that they are immediately fit for (re)use in research. However, behind each test result lies
an extensive context of choices and considerations, made by both humans and machines, that introduces hidden patterns in the
data. If they are unaware, researchers reusing routine laboratory data may eventually draw incorrect conclusions. In this paper,
after discussing health care system characteristics on both the macro and micro level, we introduce the reader to hidden aspects
of generating structured routine laboratory data in 4 steps (ordering, preanalysis, analysis, and postanalysis) and explain how
each of these steps may interfere with the reuse of routine laboratory data. As researchers reusing these data, we underline the
importance of domain knowledge of the health care professional, laboratory specialist, data manager, and patient to turn routine
laboratory data into meaningful data sets to help obtain relevant insights that create value for clinical care.

(J Med Internet Res 2022;24(11):e40516) doi: 10.2196/40516
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Introduction

The availability of routinely collected laboratory data in
electronic health records (EHRs) provides valuable information
for medical diagnostics and decision-making in routine care
[1]. Data extracted from EHR databases are often reused for
deduction of knowledge to perform health care quality
evaluations, conduct clinical and epidemiological studies, build
clinical decision support systems, and facilitate disease
understanding [2]. Moreover, the continuous increase of

computing power and the introduction of new machine learning
methods will likely further increase the reuse of the vast amounts
of routine laboratory data to further personalize care [3]. As
laboratory data are abundantly present, often numeric, generated
by certified laboratories, and stored in a structured way, one
may assume that the data are immediately suitable for (re)use.
Technically, this may be true, for such data do not require
additional “translation” steps as is the case for unstructured data
(eg, written text). However, behind each laboratory test result
lies an extensive context of choices and considerations, made
by both humans and machines, that introduces hidden patterns
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in the data. Researchers reusing routine laboratory data, such
as epidemiologists and data scientists, who are oblivious to this
“world behind the numbers” may either apply or omit
(un)necessary preprocessing steps important for the creation of
a clinically meaningful data set that may lead to false
conclusions. Understanding different steps involved in the
generation of routine laboratory data and the insights of domain
experts responsible for these steps enables appropriate
multidisciplinary preprocessing in medical research.

We will introduce the reader to these hidden aspects of
laboratory data originating from the EHR database with
examples drawn from our own experience. In 2005, the Central
Diagnostic Laboratory of the University Medical Center Utrecht
(UMCU) began collecting EHRs, including raw data from our
International Organization for Standardization (ISO)-15189
certified laboratory, and compiling them in the Utrecht Patient
Orientated Database (UPOD) [4]. With data from the UPOD,
our department performed numerous studies in various
disciplines over the past 20 years that taught us the necessity
of multidisciplinary teams and preprocessing of routine

laboratory data to make them suitable for (re)use. We describe
the generation of these data in 4 steps and explain how each
step may interfere with reuse of the data (Figure 1). First, we
provide insights into how laboratory diagnostics is used in
clinical care, which largely explains data availability and
meaning. To fully understand why a test was ordered in the first
place may be difficult (if not impossible) to answer, yet
circumstantial evidence can often be found in data patterns and
metadata. We also discuss the collection and analysis of
specimens from patients in our ISO-15198 controlled laboratory
setting. Finally, we elaborate on data processing storage by the
laboratory information system (LIS) and EHR database,
including automatic calculations and data corrections. We show
how every step is reflected in the data, how it can hamper
analysis, and then provide possible multidisciplinary
preprocessing directions. Increasing the awareness of challenges
in preprocessing routine laboratory data and the need for domain
expertise may help turn raw laboratory data into meaningful
laboratory data that can be reused for translation into value for
clinical care.

Figure 1. The 4 steps involved in generating structured routine laboratory data and how domain experts and researchers should collaborate in establishing
meaningful data sets for reuse.

Setting the Scene

Before diving into the ordering, (pre)analysis, and storage of
routine laboratory data, one needs to be aware of large- and
small-scale system characteristics that may affect the data at
hand. For example, on a macrolevel, in many health care
systems, first-line care is characterized by a more protocolized
type of care aimed at the screening and exclusion of severe
conditions; therefore, first-line care data carry a high number
of “normal” values of a restricted set of laboratory tests. In
contrast, specialized physicians in academic hospitals who look
for less common diseases may require measurements of more
“exotic” parameters, since standard examinations have not yet
provided a definite diagnosis, resulting in a high number of

abnormal values of a wide range of tests. An interesting
development in this regard is the upcoming use of home testing.
These tests are performed in uncontrollable collection
circumstances and without connection to widely used laboratory
information systems, circumventing the auditable data
generating, approval, and release procedures we will discuss
later in this paper. Limited interoperability between laboratory
information systems and home devices may result in duplicate
procedures for patients referred to different health care
professionals or data storage in different systems that may be
available to the treating clinicians but not to the researcher.
Moreover, some health care systems reflect a more defensive
way of practicing medicine because of medicolegal issues, which
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means more laboratory data are generated as a result of routine
screening procedures, attenuating the meaning of the results.

More specific system characteristics may include the 24/7
availability of resources such as expert laboratory staff, where
the absence of laboratory values during the night may simply
reflect a closed facility or the other way around—the presence
of laboratory values may indicate acute disease during the night
and laboratory testing could not wait until the morning.
Available metadata in the form of time stamps is indeed
collected in the laboratory process and may be used to determine
the consecutive steps of the diagnostic workflow. Yet, some of
these time stamps outside the lab may be less accurate, as they
are written down by hand or indicate preferred collection times.
Inside the lab, most time stamps are generated by analyzers and
analysis tracks, leading to more precise metadata. Moreover,
standard workflow protocols either following international
guidelines or local policy may lead to the use of predefined sets
of laboratory tests, reflex testing according to specific reference
values, or point-of-care testing (POCT), in which the central
diagnostic facility is not used due to warranted rapid analysis,
preferably near the bedside.

According to the specific research question, patients, physicians,
and laboratory specialists can help to provide insights into the
local implications of health care systems and indicate
workarounds and applicable current and historic clinical and
laboratory guidelines that may affect data availability and
meaning.

Step 1. Ordering Laboratory Tests

Ordering laboratory analyses is part of the process in which the
patient and the health care professional interact to limit the
number of possible differential diagnoses to a minimum.
Medical tests meant to confirm or at least discard a potential
diagnosis should always be ordered with a clear intent. For
instance, a “shotgun approach” (ie, ordering many tests in the
hope of being guided by their outcomes) may be a good strategy
in the identification of new biomarkers. In modern medicine,
however, such an approach will likely only result in high costs
with a high chance of spurious findings [5]. The latter is a logical
consequence of reference value or reference range definition.
In laboratory medicine, reference ranges are defined as the 95%
confidence interval. In other words, 95 out of 100 tests of any
given parameter will fall within that reference range, and the
remaining 5 will be considered an outlier. Statistically, assuming
that all parameters to be completely independently regulated,
testing for 5 parameters would result in 23% chance of at least

1 outlier, testing for 10 would result in a 40% chance, and testing
for 20 would result in a 64% chance. While multiple
comparisons in studies can be managed by applying correction
factors, this is not done in clinical practice. Fortunately,
diagnostic means such as laboratory tests are ordered with this
knowledge in mind. Conversely, not testing for a specific
parameter also needs to be regarded as meaningful, as the said
parameter was most likely not considered to contribute to
clinical decision-making. This is referred to as missing not at
random (MNAR) patterns (ie, the choice for or against a test
itself already contains meaning) [6].

In other words, many factors affect data availability. This has
major implications for handling missing values. In general, it
is not recommended to carelessly impute routine laboratory
data, given the many different possible underlying reasons for
missingness (Table 1). Unfortunately, the preceding
deliberations that climax in the test order are usually not
captured by order forms, in contrast to radiology or pathology
requests, where the clinical question is an integral part
(“pneumonia?” or “metastasis?”) [7]. A single laboratory test
order can also be used to rule out or confirm more than 1 clinical
question. Accordingly, the interpretation of a laboratory test
result may differ between different clinical questions so that an
identical result can have completely different meanings. This
may be obvious in many cases. For example, a normal
hemoglobin level in an elite athlete can be expected. In a patient
with chronic fatigue, this may mean that the fatigue is probably
not caused by anemia, whereas a normal hemoglobin level in
a polytrauma patient with severe blood loss most likely only
reflects successful blood transfusions. To make it more
complicated, the interpretation of laboratory test results depends
on the acuteness of the disease. For example, acute versus
chronic anemia can acutely result from subacute severe
hemorrhage but can also follow chronic blood loss in small
amounts, iron deficiency, or bone marrow suppression.

The process of clinical reasoning is not part of laboratory
standard operating procedures, so unfortunately, from a reuse
point of view, it is not captured in any (meta)data. Because it
is influenced by multiple factors, it can introduce patterns in
data. Therefore, clinical characteristics influence availability
and meaning in this very first step of data generation and are
among the hardest to discover and, consequently, the hardest
to model in projects reusing laboratory data. Physicians and
patients as domain experts may help shed some light in this
step, for example on how to distinguish between the different
meanings of missing data (see Table 1 as a conversation starter),
yet the specific choices that affect data availability may vary.
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Table 1. Examples of physician-initiated and system-initiated processes that may affect the presence of laboratory values.

Meaningful missingness patternExampleReasons (not) to perform laboratory diagnostics

Physician-initiated

CRP missing: most likely means a normal valueNo CRPa measurement was ordered because
patient did not have a fever

No laboratory measurements needed be-
cause there is no sign the of the disease

Antibodies missing: most likely means an abnormal
value

No herpes zoster antibodies were ordered
because the patient displayed shingles

No laboratory measurements needed be-
cause the disease is very obvious

Hemoglobin missing: may either mean normal value or
abnormal value

Hemoglobin ordered for anemiaTo confirm a diagnosis

Metanephrines missing: may either mean normal value
or abnormal value

Metanephrines ordered for pheochromocy-
toma

To exclude diagnosis

Kidney function missing: probably means a normal
value.

Assess kidney function to titrate dosage of
antibiotics

To determine treatment

INR missing: probably means a normal value.Determination of INRb before thrombolysisPreprocedural risk assessment

Lactate missing: most likely means a normal valueBacterial infection followed up by a lactate
measurement

To monitor disease activity

CA125 missing: most likely means a normal valueCA125 ovarian tumor marker orderedTo monitor treatment effect

LDLc missing: probably means a normal valueLow density lipoprotein cholesterol orderedDrug adherence

Lyme disease screening missing: most likely means a
normal value

Lyme disease screening orderedPhysician uncertainty or the reassurance
of a patient

Fecal occult blood test missing: probably means a nor-
mal value.

Fecal occult blood test for colorectal cancerScreening

Fasting glucose missing: most likely means a normal
value

Fasting glucose test for diabetesPeriodic health check-ups

System-initiated

Missingness describes the patient population: sepsis not
suspected

Specific triaging protocol in the emergency
department for suspected sepsis

Standard protocol within EHRd

Missingness of either may indicate the measurement
has failed

Hemoglobin and hematocritStandard combinations of parameters that
cannot be ordered separately

Missingness of free T4 if TSH is available means that
free T4 is most likely normal

Free T4 is measured only when TSHe is
outside reference range

Reflex tests

Missingness of immature blood cells means there are
none detected

Immature cells detected in blood by hema-
tology analyzer

Automatic alerts in laboratory analyzers

aCRP: c-reactive protein.
bINR: international normalized ratio.
cLDL: low-density lipoprotein.
dEHR: electronic health record.
eTSH: thyroid-stimulating hormone.

Step 2. Before the Laboratory:
Preanalysis Phase

Depending on the considerations by the health care professional
and their patient, the clinical presentation, and the ordered test,
the next choice to be made concerns the collection of biological
material. Blood and urine collection are widely known, but
modern laboratories run diagnostic tests on many more body
fluids and materials, such as spinal fluid, serosal fluids, or feces.
The number of possibilities further increases by (1) the method
of sample collection (eg, venous vs capillary blood sampling)
and (2) the collection material (eg, ethylenediaminetetraacetic
acid vs citrate-buffered blood collection tubes). These 2 factors

may seem minor at first glance but have a major impact on the
“test menu” (ie, which analyses can be performed as well as
result reliability). For example, in the UMCU, there are over
2900 different tests. Some tests can only be performed using
specific collection tubes, and while some can be performed in
minute amounts, others may require sample volumes that
preclude capillary blood sampling. Finally, time is relevant. For
example, glucose levels in whole blood samples significantly
decrease over time due to their consumption by blood cells
[8]—not to mention circadian variations of numerous analytes.
Laboratory specialists are trained to support the treating
physician in assessing the possibilities and making the right
decision to avoid diagnostic and treatment delay, unnecessary
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additional testing, and associated costs. Altogether, this phase
is usually referred to as “preanalysis.”

The following example illustrates the often-underestimated
impact of the preanalytic choices: A “simple” glucose level can
be measured in various body fluids, such as blood or liquor
(spinal fluid) in this case. Glucose levels in liquor are usually
30% to 40% lower than in blood [9]. Another well-known
example is the concentration difference of creatinine in blood
and urine. On an individual level, such factors may be easy to
look up and adjudicate. In large data sets, this becomes
impossible. A glucose level of 50 mg/dL may mean that it was
measured in liquor and can be considered “normal,” whereas
when measured in blood, it may indicate a hypoglycemia.
Therefore, is it essential to account for specimen types in
available metadata and perform the preprocessing accordingly
by either filtering out measurements or annotating them as
separate variables to avoid false interpretation. Standards for
laboratory test identification and naming have been proposed
but are unfortunately not widely adopted [10]. Hence, laboratory
specialists and data managers must cooperate when interpreting
available data sources and deduce specimen type in the absence
of unique identifiers that account for the available combinations
of the aforementioned factors.

In addition to intrinsic circadian variations, patient behavior
and actions before and/or during specimen collection (eg,
medication or food intake) can affect test results. A well-known
example is the variability of blood glucose levels in relation to
recent food intake. Therefore, blood glucose concentrations are
usually measured after at least 8 hours of fasting. In practice,
not all patients faithfully report previous eating or drinking
(other than water, unsweetened tea, or coffee) before sample
collection. Therefore, even controlled and lege artis performed
sample collection and analysis cannot guarantee a valid
reflection of patient status. As such, accurate annotation
(fasting/nonfasting), where possible, is important to either
remove or include these measurements depending on the
research question. Patient compliance to drugs or instructions
varies significantly between treatments or patient groups.
Physicians can help identify or even point to specific patients
or patient groups that might distort the data set, thereby
providing additional meaning to the data.

Step 3. In the Laboratory: Analysis Phase

Clinical laboratories use different types of analyzers to perform
tests on the obtained sample. New analyzers, reagents,
biomarkers, and software packages are introduced and updated
frequently, and tests can be added, removed, or changed.
Analyzers are regularly calibrated, but both distribution shifts
and continuity imperfections within calibration ranges may
occur over time and become apparent in large data sets.
Although in most cases analytes are named identically across
different laboratories, their actual level may differ significantly
even when the same sample is measured. This can be due to
different types of analyzers, different assay types, or different
analyzer/assay manufacturers [11]. It is critical to note that the
resulting differences in reported analyte concentrations can be
substantial when comparing assays from different providers. In

a nutshell, analyte X from provider Y is not the same as analyte
X from provider Z. Harmonization efforts are ongoing but not
yet widely implemented [12].

Within a given laboratory, the usual lifespan of analyzers is
around 10 years. In other words, even in 1 hospital, analyzers
need to be replaced every now and then. Accordingly, after
transition, reported analyte concentrations can change from one
day to the next. In certified laboratories, transition between
analyzers is accompanied by an intermediate calibration phase
in which the new analyzer is aligned. These calibration data are
generated on specific test samples and do not usually appear in
clinical data. However, when data are analyzed over a longer
period, the analyzer transition can still be visible in the data.
As an example, in 2013, our laboratory recalibrated the serum
creatinine analysis; as a result, mean serum creatinine values
were lower in the following years. Not having this background
knowledge could easily result in the misinterpretation laboratory
values over time and is therefore an essential step in quality
control. Metadata analysis can help with identifying such
changes and performing adequate correction actions.

Population-specific reference ranges (eg, age or sex dependent)
are a form of clinical decision support, as they guide the
physician in interpreting test results in clinical practice.
Researchers reusing routine laboratory data can use these
reference ranges to establish whether a test result deviates from
a healthy population, assuming said reference indeed reflects
health status. Reference ranges correspond to a set of values
covering 95% of the results from testing a reference, such as a
healthy population. Such populations are carefully selected in
the approval process of any assay and analyzer based on defined
criteria, such as sex, age, and pregnancy. These ranges are
usually known along with the test result but may differ between
laboratories, limiting the interoperability of findings. Grossly
increased values that significantly deviate from reference values
(eg, creatinine kinase in myocardial infarction and human
chorionic gonadotropin in pregnancy) may seem outliers from
a statistical point of view, but they may actually reflect the state
of the human body and need to be interpreted on a log scale, as
they are almost never the result of analytical error.

Initial outlier detection takes place in the laboratory as part of
quality assurance and validation, where measurement errors are
typically identified, signified, and even corrected. Therefore,
applying rigorous outlier detection and removal by data reusers
may remove highly informative test results and should be
carefully deployed. Moreover, reference ranges can be modified
over time. This can be the case when analyzers or assays change,
as mentioned earlier in this paper, but can also be the case when
new evidence becomes available. In cardiovascular medicine,
for example, sex-specific reference thresholds are currently
applied for cardiac troponin levels, a marker of cardiomyocyte
damage or injury [13].

The LIS is the interface between analyzers and the EHR
database. In addition to its role in test order management, it
performs a variety of automated tasks essential for routine
clinical care. It plays a central role in identifying aberrant
measurements and performing simple and complex calculations
such as low-density lipoprotein (LDL) cholesterol calculation
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with the Friedewald formula [14]. These alerts and formulas
may change over time, potentially resulting in inconsistent data
or breaks in trends. Kidney function is usually monitored using
an estimation of the glomerular filtration rate (GFR) instead of
performing a “real” measurement, including urine collection,
for 24 hours. Several formulas have been established and are
applied clinically to this end. Our laboratory replaced the
Modification of Diet in Renal Disease (MDRD) with the Chronic
Kidney Disease Epidemiology Collaboration (CDK-EPI)
formula in 2013. Consequently, the distribution of GFR
measurements changed significantly over time due to
considerable variations between the resulting minimum and
maximum results. Depending on the research question at hand,
such ambiguities may be resolved by recomputing the GFR for
all patients with the same formula to obtain a single distribution
when studying physiological processes. However, when studying
health care processes, GFR values should not be recomputed,
as health care professionals were only provided with the value
calculated at that time and made their decisions accordingly.
Thus, the choice whether using reported or recomputed data
largely depends on the research question.

Laboratory values are only released into the LIS and EHR
database after they have been approved by a laboratory specialist
or a prespecified protocol. Values that surpass the preset assay
specification (ie, lower limit of detection and upper limit of
quantification) may be reported as “less than” or “greater than,”
respectively, and these modifiers may be found as a text variable
in a different data location. The “greater than” and ”less than”
signs mean that the results fall outside the measurement range
of the assay. However, this does not mean that they are incorrect,
as laboratory specialists review these values and check their
plausibility before approving them for reporting in the EHR.
Some analyses may be of such complexity that they cannot be
done by an automated analyzer and thus require manual
interpretation by a laboratory specialist before release (eg, blood
smears, bone marrow morphology, or specific blood type
analyses). These are often accompanied by a free text comment
from the laboratory specialist to aid the clinician with
interpretation and may require natural language processing
before being used further.

Step 4. After the Laboratory: Postanalysis
Phase

After having been checked and approved, test results are
reported in the LIS together with metadata describing analyzer
configurations, sampling time, assay time, and more. The
clinical laboratory is responsible for the correct laboratory value
provision in clinical practice. However, for some analytes, only
the result of the test ordered by the physician, accompanying
comments of the laboratory specialist are eventually stored in
the EHR, and raw data and metadata may be only available in

the LIS. For specific research questions, such metadata can be
indispensable for correct data analysis and interpretation and
should therefore be retrieved in collaboration between data
managers and laboratory specialists.

As previously exemplified in this paper, data continuity can be
infringed at various levels. Analyzer updates may lead to
different parameter names. Switching to a different analyzer,
LIS, or EHR system can cause significant data variation. A
parameter name change may seem minor for a human, like the
addition of a single letter. In database terms, this may mean that
a data column is added at a point in time, while no new data are
added to the column reflecting the “old” name. This can be
overcome with specialist knowledge input to merge data before
and after the name was changed, provided that the change was
indeed limited to the name and that the distribution of results
has not changed over time. Doing so leads to a strong reduction
in missing data. A variable name change can also be
accompanied by a change in the definition of that parameter,
resulting in aberrant distributions. Quantile-quantile and density
plots can be used to demonstrate shifts after which they can be
substantiated with, for example, a Kolmogorov-Smirnov test.
Laboratory specialists are needed to help pointing out the cause
of the change and help decide on preprocessing protocols and
if data can be merged. In the future, data standards such as
Logical Observation Identifiers Names and Codes (LOINC) or
Systematized Nomenclature of Medicine Clinical Terms
(SNOMED) may partly resolve some of these issues.

Conclusion

Routine laboratory data are a potential information gold mine
for reuse beyond their purpose for care, as they are abundantly
present, most often numeric, generated by certified laboratories,
and stored in a structured manner. However, they can be a wolf
in sheep’s clothing. To fully exploit their potential, one should
be aware of their caveats because statistical methods are
generally not designed to incorporate their intricate clinical
context, particularly not in the absence of metadata. Laboratory
values are only part of the full clinical picture that health care
professionals use to diagnose and treat patients. Moreover, this
picture is merely reflected and not fully captured by routine
health care data. Therefore, as researchers reusing routine
laboratory data, we underline the prerequisite of collaboration
between the health care professional, laboratory specialist, data
manager, and patient to accurately recreate a valuable proxy of
the clinical state of the patient by addressing and resolving all
imperfections in electronic health record data, especially
laboratory data [15]. Instead of massive computing power, this
collaborative human effort may well be the only way to leverage
the potential of artificial intelligence by turning routine data
into meaningful data sets to help obtain relevant insights that
create value for clinical care.
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