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Abstract

Background: Typing on smartphones, which has become a near daily activity, requires both upper limb and cognitive function.
Analysis of keyboard interactions during regular typing, that is, keystroke dynamics, could therefore potentially be utilized for
passive and continuous monitoring of function in patients with multiple sclerosis.

Objective: To determine whether passively acquired smartphone keystroke dynamics correspond to multiple sclerosis outcomes,
we investigated the association between keystroke dynamics and clinical outcomes (upper limb and cognitive function). This
association was investigated longitudinally in order to study within-patient changes independently of between-patient differences.

Methods: During a 1-year follow-up, arm function and information processing speed were assessed every 3 months in 102
patients with multiple sclerosis with the Nine-Hole Peg Test and Symbol Digit Modalities Test, respectively. Keystroke-dynamics
data were continuously obtained from regular typing on the participants’ own smartphones. Press-and-release latency of the
alphanumeric keys constituted the fine motor score cluster, while latency of the punctuation and backspace keys constituted the
cognition score cluster. The association over time between keystroke clusters and the corresponding clinical outcomes was
assessed with linear mixed models with subjects as random intercepts. By centering around the mean and calculating deviation
scores within subjects, between-subject and within-subject effects were distinguished.

Results: Mean (SD) scores for the fine motor score cluster and cognition score cluster were 0.43 (0.16) and 0.94 (0.41) seconds,
respectively. The fine motor score cluster was significantly associated with the Nine-Hole Peg Test: between-subject β was 15.9
(95% CI 12.2-19.6) and within-subject β was 6.9 (95% CI 2.0-11.9). The cognition score cluster was significantly associated
with the Symbol Digit Modalities Test between subjects (between-subject β –11.2, 95% CI –17.3 to –5.2) but not within subjects
(within-subject β –0.4, 95% CI –5.6 to 4.9).

Conclusions: Smartphone keystroke dynamics were longitudinally associated with multiple sclerosis outcomes. Worse arm
function corresponded with longer latency in typing both across and within patients. Worse processing speed corresponded with
higher latency in using punctuation and backspace keys across subjects. Hence, keystroke dynamics are a potential digital biomarker
for remote monitoring and predicting clinical outcomes in patients with multiple sclerosis.

Trial Registration: Netherlands Trial Register NTR7268; https://trialsearch.who.int/Trial2.aspx?TrialID=NTR7268
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Introduction

In multiple sclerosis (MS), a vast number of disease-modifying
therapies targeting disease activity are available, and therapies
preventing (and potentially counteracting) disease progression
are emerging [1-3]. Additional treatment modalities include
nonpharmacological therapies, such as rehabilitative and
cognitive therapies [4,5]. This wide array of expanding treatment
options will increasingly lead to patient-centered disease
management. The personalized treatment of MS would strongly
benefit from early and improved recognition of disability
progression or symptom onset. However, disease progression
(ie, deterioration of neurological function independent of
relapses) and newly occurring symptoms are often subtle in MS
[6]. Additionally, the currently most widely used clinical
measure in MS, the Expanded Disability Status Scale (EDSS)
[7], assesses neurological function over a period spanning a
year or almost a year and may need reassessment over time to
confirm deterioration [6]. The Multiple Sclerosis Functional
Composite (MSFC) consists of brief objective measurements
in 3 important domains in MS: ambulatory, upper limb, and
cognitive function. It was designed to complement the EDSS
and improve sensitivity in capturing disease status [8].
Compared to the extensive implementation of the MSFC in
clinical trials, it has been poorly incorporated into clinical
practice, as clinical evaluations are too sporadic for the measure
to be sensitive or provide meaningful temporal information for
monitoring patients on the individual level [9].

The advent of digital devices allows for more continuous and
more fine-grained measurements of biometrics that could be
related to functioning in patients with MS. With the
digitalization of society, smartphones have become widespread
and part of everyday living. Consequently, keystroke dynamics
(KD) from typing on smartphones has been investigated for
quantifying disability in MS. KD encompasses quantitative
metrics of keyboard interactions during regular typing. In our
previous work, KD was found to be correlated with upper limb
and cognitive function, and, to a lesser extent, overall disability,
as measured with the EDSS [10]. Across a wide range of KD
features and aggregation methods, KD was also found to reach
adequate responsiveness to meaningful change in radiological
disease activity, ambulatory function, and upper limb function
over a period of 3 months [11]. Additionally, analysis of KD
data using a nonlinear time-series approach identified potential
indicators of clinical change [12]. Based on these previous
findings, 2 keystroke clusters were derived, one specific to upper
limb function and the other to cognition, since these 2 domains
are most directly related to typing. In order to translate this new
biomarker into clinical practice for monitoring upper limb
function and cognition in MS, the association with clinical
measures over time and within individual patients needs
investigation.

Our objective was to investigate the longitudinal associations
between KD features, passively derived from regular typing on
a smartphone, and upper limb function and cognition in patients
with MS. Additionally, we sought to differentiate these
longitudinal associations for both between-subject differences
and within-subject changes in order to enable disease monitoring
on the individual-patient level.

Methods

Study Design and Participants
This was a prospective cohort study at the MS Center of the
Amsterdam University Medical Centers (VU University Medical
Center location). The study design and interim analyses have
been reported previously [10,11]. In brief, after a baseline
assessment (M0), we followed the patients for 1 year, with
clinical visits every 3 months (M3, M6, M9, and M12). During
the study, participants used the Neurokeys keyboard app on
their own smartphones [13]. Participants were patients with MS
and were consecutively included in the study between August
2018 and December 2019 until a cohort size of 100 participants
was reached. Patients were eligible if they were aged between
18 and 65 years, had a definite diagnosis of MS, had an EDSS
score below 7.5, had access to a smartphone with the Android
(5.0 or higher) or iOS (10 or higher) operating systems, had no
visual or upper extremity deficits affecting regular smartphone
use, and had no mood or sleep disorders impacting daily living
(based on medical history-taking by a screening physician).

Ethical Considerations
The study received ethical approval from the Medisch Ethische
Toetsingscommissie Vrije Universiteit medisch centrum
(reference 2017.576) and conformed to legislation regarding
data privacy and medical devices (Dutch Health and Youth Care
Inspectorate; reference VGR2006948). All patients gave written
informed consent. The study was registered as trial number
NTR7268 at the Netherlands Trial Register.

Clinical Outcomes
Clinical outcomes for important aspects of MS were assessed,
including clinically reported relapses, conventional magnetic
resonance imaging (MRI) for disease activity, the EDSS, the
MSFC, patient-reported outcomes, quantitative MRI, and optical
coherence tomography for evaluation of domain-specific and
overall disease severity and disease progression over time. As
KD is most directly related to upper limb function and cognition,
the current analysis focuses on the clinical assessments made
every 3 months with the Nine-Hole Peg Test (NHPT) and
Symbol Digit Modalities Test (SDMT). The NHPT is a measure
of upper limb function that records the time needed to place,
with a single hand, 9 pegs into 9 holes and then remove them
[14]. The task is performed twice for each hand, and the 4 trials
are averaged into a single score, with a higher score reflecting
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worse performance. The SDMT is a measure of information
processing speed, the cognitive domain that is most commonly
affected in MS and indicates overall cognitive functioning [15].
Using a key with 9 symbol-digit pairings, the number of correct
digits corresponding to symbols during a 90-second trial is
recorded as the total score [16]. A higher score reflects better
performance.

KD and Keystroke Features
During the 1-year follow-up period, patients used the Neurokeys
app (Neurocast BV) on their own smartphones [13]. The
Neurokeys app replaces the native keyboard with a
similar-looking keyboard (Figure 1A) that passively and

continuously collects data on press-and-release typing events
during everyday typing. From these keyboard interactions,
keystroke features are derived based on key type (Figure 1B).
For alphanumeric keys, the features include the latency between
presses (press-press latency) and releases (release-release
latency), the keypress time (hold time), and the time between
keys (flight time). For the backspace key, derived features
include latency prior to the use of the key (precorrection
slowing), during use (correction duration) and after use
(postcorrection slowing). Lastly, the time after a punctuation
key was used was also derived (after-punctuation pause). A
keystroke event count threshold of 50 events was used to remove
days with insufficient data.

Figure 1. Overview of the Neurokeys keyboard (A) and a schematic representation of the keystroke dynamics features and clusters (B). APP:
after-punctuation pause; CD: correction duration; FT: flight time; HT: hold time; post-CS: postcorrection slowing; PPL: press-press latency; pre-CS:
precorrection slowing; RRL: release-release latency.

Construction of Keystroke Clusters
To compare the continuously collected keystroke data with
clinical outcomes, the keystroke features were aggregated and
clustered. First, the keystroke features were aggregated per day
by the mean and median values, as both statistical measures
summarize the data well and remain on the same unit scale (ie,
seconds) to retain interpretability. Since mean and median values
of the keystroke features were highly correlated, rather than
discarding one, both summary values were averaged to reduce
potential multicollinearity. Second, the fine motor score cluster
(FMSC) and cognition score cluster (CSC) were derived based
on the hypothesis that timing-related features (press-press
latency, release-release latency, hold time, and flight time) are
more related to fine motor skills, while error-related
(precorrection slowing, correction duration, and postcorrection
slowing) and paralinguistic (after-punctuation pause) features
are more specific to events reflecting cognitive function. This

concept-based clustering was then analyzed with principal
component analysis and correlation analysis (Multimedia
Appendices 1 - 3). Only features that contributed equally in the
component analysis and were highly correlated (r>0.50) were
included in the final cluster [17]. Finally, near the time of each
clinical visit, 28-day (the 14 days before and after the clinical
visit) and 14-day (the 7 days before and after the clinical visit)
aggregation periods for the keystroke clusters was chosen for
FMSC and CSC, respectively, since fine motor function can be
considered more stable over time than cognitive function. The
28-day and 14-day periods for the keystroke clusters were
aggregated by the mean value. Using these criteria, FMSC
included press-press latency, release-release latency, and flight
time, whereas CSC included precorrection slowing,
postcorrection slowing, and after-punctuation pause.
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Statistical Analysis
Analysis was performed with SPSS (version 26; IBM Corp)
and R (version 4.0.3; R Foundation for Statistical Computing).
Categorical data were summarized as the frequency and
percentage. Numerical data were summarized as the mean and
SD (or median and IQR or range if normally distributed). A
linear mixed model analysis was used to determine the
longitudinal association between KD clusters and clinical
outcomes, so as to take into account clustering of repeated
measurements within subjects [18]. Separate intercepts were
estimated for each subject, over which a normal distribution
was drawn. Then, the variance was estimated from that normal
distribution and added to the model as a random intercept (ε),
to adjust for repeated measurements within subjects, as follows:
Y = β0 + β1X + ε. For upper limb function, the dependent
variable was the NHPT score, the independent variable was
FMSC, and the covariates were age and sex. For information
processing speed, the dependent variable was the SDMT score,
the independent variable was CSC, and the covariates were age,
sex, and level of education. Since there was a significant
relationship between time and SDMT performance, most likely
due to practice effects, an additional random intercept for time
(in days) was added to the cognition model. This allowed
varying intercepts based on time in order to account for practice
effects and imbalances in time intervals between clinical visits
across subjects [19].

Importantly, given that the effect estimates of a linear mixed
model analysis in a cohort with repeated measures are overall
effects (ie, effect estimates entangle both differences across
subjects and changes within subjects over time), a “hybrid”
linear mixed model analysis was performed to disentangle the
between-subject and within-subject effects of the longitudinal
association [20]. This was done by centering around the mean

and calculating deviation scores at each clinical visit for each
subject. The mixed model analysis was then performed with
both the centered values and the deviation score of this centered
value  for  each individual ,  as  fo l lows:

, where βbetween is the
between-subject effect and βwithin is the within-subject effect
[18].

The output of all linear mixed models included effect estimates,
95% CIs, P values, and percentage explained variance.
Covariates were considered relevant if the effect estimate
between the dependent and independent variables changed by
10% or more after including the covariates into the model [21].

Results

A total of 102 patients with MS were included, of whom 91
completed the follow-up at M12; 6 patients dropped out at M3,
1 at M6, 1 at M9, and 3 at M12. The demographic and clinical
characteristics at baseline are summarized in Table 1. The
patients had a mean age of 46.4 years, most were female
(75/102, 73.5%), and most had the relapsing-remitting MS
subtype (61/102, 59.8%). The median disease duration since
diagnosis was 5.7 years and the median EDSS score was 3.5.
The mean follow-up duration was 376.9 (SD 109.4) days. At
M12, the retention rate of patients with active keyboard use was
83.3% (85/102). Figure 2 shows the monthly retention rate and
the average number of keystroke events per day. The clinical
outcomes per visit and keystroke cluster data corresponding
with each clinical visit are summarized in Table 2 and
Multimedia Appendices 4 and 5. Part of the study follow-up
coincided with the COVID-19 pandemic, which resulted in
missing clinical visits, most prominently at M6 and M9.

Table 1. Baseline patient demographic and clinical characteristics.

Patients with multiple sclerosis (N=102)Characteristics

46.4 (10.4)Age (years), mean (SD)

Sex, n (%)

75 (73.5)Female

27 (26.5)Male

Education levela, n (%)

3 (2.9)Low

34 (33.3)Middle

65 (63.7)High

Multiple sclerosis type, n (%)

11 (10.8)Primary progressive

30 (29.4)Secondary progressive

61 (59.8)Relapsing remitting

5.7 (3.0-13.1)Disease duration since diagnosis (years), median (IQR)

3.5 (1.5-7.0)Expanded Disability Status Scale score, median (range)

aEducation levels were defined according to Rijnen et al [22].
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Figure 2. Bar graph depicting the retention rate (left y-axis, “user percentage”) of patients per month with superimposed box plots of the number of
daily keystroke events (right y-axis, “event count”). The values above the bars show the retention rates as percentages.

Table 2. Clinical outcomes and keystroke dynamics clusters for each clinical visit.

M12M9M6M3M0Outcomes

Nine-Hole Peg Testa

89587693102Subjects, n

20.3 (18.7-23.0)20.2 (18.5-22.0)20.5 (18.8-22.5)21.0 (18.7-24.0)21.2 (19.4-25.0)Time (seconds), median (IQR)

Symbol Digit Modalities Test

90587693102Subjects, n

60.3 (12.9)61.3 (12.8)57.9 (12.0)56.8 (10.4)54.4 (10.3)Mean score (SD)

Fine motor score cluster

7155728896Subjects, n

0.42 (0.17)0.39 (0.15)0.44 (0.17)0.44 (0.16)0.45 (0.16)Time (seconds), mean (SD)

15.5 (5.5)25.5 (5.4)26.2 (4.8)26.4 (4.8)14.3 (2.4)Daysb (n), mean (SD)

Cognition score cluster

72557089101Subjects, n

0.90 (0.44)0.86 (0.38)0.92 (0.40)0.95 (0.40)1.01 (0.42)Time (seconds), mean (SD)

8.4 (2.7)13.1 (2.1)13.3 (2.2)13.7 (1.0)7.8 (1.0)Daysb (n), mean (SD)

aFor the Nine-Hole Peg Test, an average outlier threshold of 40 seconds was implemented, excluding 14 of 387 samples (3.6%).
bOnly days with ≥50 keystroke events.

Upper Limb Function
For the association between the NHPT and FMSC, 98 patients
with MS were included in the mixed model analysis with an
average of 3.9 observations per patient. Overall, the mean (SD)
for FMSC was 0.43 (0.16) seconds and the median (IQR) for
the NHPT was 20.6 (18.8-23.3) seconds. The results of the
mixed model analysis are shown in Table 3 and depicted visually

in Figure 3. In the overall model, FMSC was significantly
associated with the NHPT and explained 42% of the variance
in the NHPT results. Age and sex were not found to be relevant
confounders in this association. In the hybrid model, a one-SD
(0.16-second) increase in FMSC was significantly associated
with an increase in NHPT of 2.5 seconds between patients and
1.1 seconds within patients.
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Table 3. Results of linear mixed model analyses of Nine-Hole Peg Test results over time with a random intercept on subject level.

Explained variance, %Random effect variance, %P valueβ (95% CI)

N/Aa13.7Intercept only

428<.00112.62 (9.61-15.63)Fine motor score cluster

43.97.7<.00112.56 (8.96-16.16)Fine motor score cluster and covariatesb

43.77.7Hybrid model

N/AN/A<.00115.91 (12.18-19.63)Between subjects

N/AN/A<.0016.94 (2.00-11.87)Within subjects

aN/A: not applicable.
bCovariates included age and sex.

Figure 3. Scatter plots and linear mixed model fit for the Nine-Hole Peg Test and fine motor score cluster by covariates (sex and age), with random
intercepts on subject level, and the number of days that constituted the keystroke cluster data points. FMSC: fine motor score cluster; NHPT: Nine-Hole
Peg Test.

Information Processing Speed
All 102 patients with MS were included in the analysis of the
association between information processing speed and the
cognition keystroke cluster. The patients had an average of 3.8
repeated observations. The overall mean (SD) was 0.94 (0.41)
seconds for CSC and 58.9 (12.1) points for SDMT. The output
of the mixed model analyses is summarized in Table 4 and

shown visually in Figure 4. In the overall model, CSC was
significantly associated with SDMT and, together with age, sex,
and level of education, explained 30.4% of the variance in
SDMT. In the hybrid model, an increase of 1 SD (0.41 seconds)
in CSC was significantly associated with a decrease of –4.6 in
SDMT between patients. The within-subject association between
CSC and SDMT, however, was not statistically significant.
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Table 4. Results of linear mixed model analyses of the Symbol Digit Modalities Test results over time with random intercepts on subject level and
time (in days).

Explained variance, %Random effect variance, %P valueβ (95% CI)

N/Aa110.9Intercept only

25.482.7<.001–8.57 (–12.02 to –5.12)Cognition score cluster

30.477.1.02–5.02 (–9.02 to –1.02)Cognition score cluster and covariatesb

32.974.4Hybrid model (including covariatesa)

N/AN/A<.001–11.25 (–17.28 to –5.21)Between subjects

N/AN/A.9–0.35 (–5.60 to 4.89)Within subjects

aN/A: not applicable.
bCovariates included age, sex, and level of education.

Figure 4. Scatter plots and linear mixed model fit for Symbol Digit Modalities Test and cognition score cluster by covariates (level of education, age,
and sex) and random intercepts on subject level. SDMT: symbol digit modalities test; CSC: cognition score cluster.

Discussion

Principal Findings
This study investigated the longitudinal association between
smartphone KD and commonly used clinical measures for upper
limb function and information processing speed in patients with
MS. In the overall model, the fine motor keystroke cluster was
significantly associated with the NHPT (β=12.6, 95% CI
9.6-15.6); higher latency for presses and releases of
alphanumeric keys during typing was related to a worse
performance on the NHPT. When splitting the model for
between-subject and within-subject effects, the association
remained significant for both (β=15.9, 95% CI 12.2-19.6, and
β=6.9, 95% CI 2.0-11.9, respectively). For the association
between the cognitive keystroke cluster and SDMT, the time

in days was included to account for practice effects on the
SDMT and the imbalance in intervals between visits across
subjects. CSC was found to be significantly negatively
associated with SDMT; higher latency for backspace and
punctuation mark keypresses was related to a worse SDMT
score. This association had a β of –5.0 (95% CI –9.0 to –1.0)
after adjusting for age, sex, and level of education. In the hybrid
model for the cognitive keystroke cluster, the between-subject
effect increased to β=–11.2 (95% CI –17.3 to –5.2), whereas
the within-subject effect decreased to β=–0.4 (95% CI –5.6 to
4.9). To improve the interpretability of these associations, rather
than considering 1-unit changes in keystroke clusters, the effect
sizes can be recalculated to represent a change of 1 SD in
keystroke clusters. In this distribution-based approach, a 1-SD
change in FMSC corresponded with a change in NHPT of 1.1
seconds within patients or a 2.5-second difference between
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patients. Likewise, a 1-SD change in CSC corresponded with
a change in SDMT of –0.14 points (although this was not
significant) within patients or a –4.6-point difference between
patients. Therefore, in our current cohort, a 2-SD change in
FMSC and a 1-SD change in CSC would correspond to clinically
relevant changes, as a 20% change in NHPT and a 4-point
change in SDMT are considered clinically relevant based on
group studies [14,16].

Comparison With Prior Work
Measurements of task or activity performance are an integral
part of assessing and monitoring chronic neurological disorders
such as MS. Typing on a smartphone is a near-daily activity
from which biometric information pertaining to physical or
mental functions can be derived. Despite this, the use of KD in
the assessment of diseases is relatively underutilized, especially
considering that touchscreen typing has existed for over a
decade. Hence, our objective was to validate the use of passive
KD, measured with the Neurokeys app, to improve disease
management in MS. To this end, earlier investigations by our
research group reported on the clinimetric properties of
reliability, validity, and 3-month responsiveness of KD in MS
[10,11]. To the best of our knowledge, other applications of KD
analysis in diseases are limited to the detection of early-stage
Parkinson disease [23-28], upper limb dysfunction in
amyotrophic lateral sclerosis [29], and severity in mood
disorders [30,31]. The objective of the studies of Parkinson
disease was to differentiate subjects with disease or early disease
from those without, making the study endpoints not directly
comparable to ours. Nevertheless, the study on amyotrophic
lateral sclerosis found worse typing to be associated with
progression of the disease, which is similar to our current
findings. Last, the 2 studies on mood disorders found significant
regression effects between severity of depressive symptoms and
smartphone keyboard activity. This is in line with our findings,
in which worse typing parameters corresponded to worse
performance on the clinical tests. In addition, concurrent to our
findings, these studies showed that KD can be utilized and can
even outperform clinical standards in the detection and
assessment of disease status through capitalizing on motor
anomalies and, to some extent, cognitive dynamics that affect
typing behavior.

Of note is that, besides our 3-month responsiveness interim
analysis, there are currently no studies investigating KD in a
longitudinal setting in patients with MS. While research
investigating differences between subjects is of great
importance, especially in early validation research, differences
across subjects cannot directly be extrapolated to changes that
occur within individuals over time. Therefore, analyzing change
over time within patients is essential for monitoring or predictive
modeling in MS. Splitting our model to separately determine
between-subject and within-subject effects showed that the latter
were stronger than the former. This suggests that in our sample,
differences in upper limb function and information processing
speed tended to be greater across patients than within patients,
as shown by the SD of the outcomes across patients being much
larger than the average change over time. This is not surprising,
given that research in outcome measures in MS often struggles
to achieve adequate sensitivity to change over time compared

to correlations across patients [32]. For upper limb function,
our model that separated the between-subject and within-subject
effects still showed a strong, significant within-subject effect
estimate, indicating that the fine motor keystroke cluster is
sensitive to change within individuals.

For information processing speed, prior to adjustment for time,
we also found a significant within-subject effect estimate for
the cognitive keystroke cluster (data not shown). However,
accounting for practice effects by adding the time point as a
random effect to the model resulted in a lower, statistically
nonsignificant within-subject effect. This suggests that the
association between SDMT and the cognitive keystroke cluster
in our current cohort was affected more strongly by the effect
of learning than by changes in the keystroke cluster within
patients. This explanation is supported by the results of modeling
the effect of time as a fixed term instead of a random effect. In
this model, the effect of time was stronger than the
within-subject effect of the cognition keystroke cluster. In
addition, when time as a fixed term was modeled categorically
(such as M0, M3, or M6), instead of being linear, the effect of
time on the association between SDMT and cognition keystroke
cluster was larger at later time points than earlier time points.
As the amount of learning differs between patients, patients
who are less severely affected by MS tend to have stronger
practice effects than patients with more severe disability [33],
and the larger positive slopes at later time points can be
explained by practice effects causing a larger spread in SDMT
data over time while the cognition keystroke cluster stays more
or less stable.

Despite practice effects most likely diluting our findings on the
within-subject association, the strong between-subject effect
demonstrates the promise of the use of KD as a biomarker of
information processing speed. Therefore, monitoring of
cognition using KD needs further investigation with clinical
cognitive outcomes that are more sensitive or less affected by
practice effects and with a study population that allows a closer
focus on cognitive function (ie, by including the presence of
cognitive deficits as a selection criterion or using a longer
follow-up duration) to demonstrate effects larger than
measurement variability or learning effects. Similarly, a
smartphone-based cognition test in the same cohort was found
to be valid on the cross-sectional level, but lacked
responsiveness when looking at change longitudinally, as
changes within subjects are subtler than differences across
subjects and measurements can be variable [34]. Additionally,
more advanced analysis methods, such as nonlinear models,
may increase sensitivity and allow higher frequency keystroke
data and further investigation [12,35].

Limitations
A few limitations should be considered. First, despite modeling
time in the analyses to take into account score changes over
time, practice effects were not adjusted for, such by having
healthy controls throughout the study. In addition, practice
effects may have been exacerbated in the current cohort by their
weekly performance of a smartphone variant of the SDMT
concurrently with the digital biomarkers. Second, we
investigated 2 commonly affected domains in MS that are

J Med Internet Res 2022 | vol. 24 | iss. 11 | e37614 | p. 8https://www.jmir.org/2022/11/e37614
(page number not for citation purposes)

Lam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


directly involved with typing on the smartphone: upper limb
function and information processing speed. In reality, MS entails
a much broader array of functional spheres and relevant
treatment outcomes. We collected a broad scope of clinical
outcomes in our current cohort, and these data should be
examined in future work in order to incorporate KD as a
complete tool for monitoring MS. Lastly, a significant number
of patients had missing clinical data, most prominently at M6

and M9, due to the COVID-19 pandemic. This also created a
bias, as patients with secondary or primary progressive MS
missed their clinical visits more often than patients with
relapsing-remitting MS.

Conclusions
Keystroke clusters constructed from passively acquired
smartphone KD data were shown to reflect function in patients
with MS in a longitudinal setting, as measured with commonly
used clinical outcome measures of upper limb function and
cognitive functioning. In the longitudinal repeated measures

analysis, the fine motor keystroke cluster was found to be
associated with upper limb function across and within patients.
This attests to the use of KD for monitoring and predictive
purposes in MS. Monitoring cognitive function with KD needs
further investigation, as a significant association was found in
the overall model, but this relied mostly on differences between
patients rather than changes within patients, likely exacerbated
by practice effects related to the clinical measures. Altogether,
KD during typing provided detailed data on the temporal and
granular level on everyday upper limb and cognitive function.
Our current findings are the first to demonstrate associations
between clinical outcomes in MS and smartphone typing
performance. With the ongoing expansion of therapeutic
interventions, KD as a remote passive biomarker may improve
clinical assessment and patient-centered disease management
in MS. Important steps for future research are investigating
other highly relevant MS outcomes, such as disease activity,
and the external validity of the current results by monitoring
function in clinical practice on the individual-patient level.
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