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Abstract

Background: With the recent use of IT in health care, a variety of eHealth data are increasingly being collected and stored by
national health agencies. As these eHealth data can advance the modern health care system and make it smarter, many researchers
want to use these data in their studies. However, using eHealth data brings about privacy and security concerns. The analytical
environment that supports health care research must also consider many requirements. For these reasons, countries generally
provide research platforms for health care, but some data providers (eg, patients) are still concerned about the security and privacy
of their eHealth data. Thus, a more secure platform for health care research that guarantees the utility of eHealth data while
focusing on its security and privacy is needed.

Objective: This study aims to implement a research platform for health care called the health care big data platform (HBDP),
which is more secure than previous health care research platforms. The HBDP uses attribute-based encryption to achieve
fine-grained access control and encryption of stored eHealth data in an open environment. Moreover, in the HBDP, platform
administrators can perform the appropriate follow-up (eg, block illegal users) and monitoring through a private blockchain. In
other words, the HBDP supports accountability in access control.

Methods: We first identified potential security threats in the health care domain. We then defined the security requirements to
minimize the identified threats. In particular, the requirements were defined based on the security solutions used in existing health
care research platforms. We then proposed the HBDP, which meets defined security requirements (ie, access control, encryption
of stored eHealth data, and accountability). Finally, we implemented the HBDP to prove its feasibility.

Results: This study carried out case studies for illegal user detection via the implemented HBDP based on specific scenarios
related to the threats. As a result, the platform detected illegal users appropriately via the security agent. Furthermore, in the
empirical evaluation of massive data encryption (eg, 100,000 rows with 3 sensitive columns within 46 columns) for column-level
encryption, full encryption after column-level encryption, and full decryption including column-level decryption, our approach
achieved approximately 3 minutes, 1 minute, and 9 minutes, respectively. In the blockchain, average latencies and throughputs
in 1Org with 2Peers reached approximately 18 seconds and 49 transactions per second (TPS) in read mode and approximately 4
seconds and 120 TPS in write mode in 300 TPS.

Conclusions: The HBDP enables fine-grained access control and secure storage of eHealth data via attribute-based encryption
cryptography. It also provides nonrepudiation and accountability through the blockchain. Therefore, we consider that our proposal
provides a sufficiently secure environment for the use of eHealth data in health care research.

(J Med Internet Res 2022;24(10):e37978) doi: 10.2196/37978

KEYWORDS

blockchain; attribute-based encryption; eHealth data; security; privacy; cloud computing; research platform for health care;
accountability; Internet of Things; interoperability; mobile phone

J Med Internet Res 2022 | vol. 24 | iss. 10 | e37978 | p. 1https://www.jmir.org/2022/10/e37978
(page number not for citation purposes)

Kang & KimJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:alwaysgabi@sejong.ac.kr
http://dx.doi.org/10.2196/37978
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
The development of modern technologies such as the Internet
of Things (IoT), cloud computing, big data, and blockchain
affects many aspects of human life. Primarily, these technologies
have introduced changes in health care. The quality of health
care services and operations has also improved because of the
digitization of the health care system. Furthermore, with the
advancement in sensors, the eHealth data generated by IoT
devices for health care are increasingly being collected by health
facilities and national health agencies. These eHealth data
generally include electronic medical records (EMRs) and
personal health records (PHRs), which contain a considerable
amount of personal information such as any disease a patient
may have and the patient’s medical record number. Thus, some
eHealth data subjects have expressed security and privacy
concerns related to the use of eHealth data. For this reason, the
use of eHealth data is currently governed by many legal
regulations, including the Health Insurance Portability and
Accountability Act [1], General Data Protection Regulation
(GDPR) [2], and California Consumer Privacy Act [3].
However, the security of eHealth data has frequently been
breached, and the number of cyberattacks launched to hijack
eHealth data intended for health care services is on the rise [4].

Nevertheless, using eHealth data for health care research has
many advantages (eg, improving treatment and prescriptions
for patients, increasing the efficiency of health care systems,
and expanding knowledge of diseases), so many researchers
hope to use them for their studies [5]. However, the
interoperability, utility, and data linkage of eHealth data as well
as privacy laws (eg, Health Insurance Portability and
Accountability Act, GDPR, and California Consumer Privacy
Act) and analytics tools must be considered when a research
platform for health care is built. Furthermore, security and
privacy measures (eg, anonymization and access control) for
an open research environment for eHealth data are needed, and
many privacy laws must be complied with. Owing to these
complex requirements, most research platforms for health care
development are being led by national governments. For
example, as depicted in Figure 1, the Ministry of Health and
Welfare of South Korea [6] operates a closed network–based
analysis center that supports a research environment for
analyzing eHealth data. However, researchers must visit the
analysis center as they are not able to connect to it remotely or
on the web. Not only is this analysis center inconvenient to visit,
but it also presents a challenge to efficiently analyzing eHealth

data as programming errors can only be corrected via books
because of the closed nature of the network. Moreover, the
eHealth data requested by the researchers are immediately
deleted after use, which reduces the utility of the data.

The National Health Service (NHS) in England also offers
eHealth data to researchers and clinicians through a Data Access
Request Service (DARS) [7]. The NHS DARS provides various
analytical tools such as Databricks, R Studio, and Hue in the
data access environment, and it does not require the researcher
to visit the research analysis center, unlike the center in South
Korea. The NHS DARS also provides many security solutions
(eg, 2-factor authentication, data-sharing audits, and
anonymization) to ensure the security and privacy of eHealth
data. Furthermore, the Swiss Personalized Health Network
offers a secure infrastructure for the exchange and use of eHealth
data for research [8]. In the Swiss Personalized Health Network,
eHealth data can be accessed only from reliable hospitals and
universities or the virtual private network, which are
environments. Researchers must take the web-based ethics
training and are required to complete 2-factor authentication.
However, data subjects (ie, patients) are still concerned about
unauthorized data reuse and sharing, and they hope to be
involved in eHealth data access decisions [9]. In addition, even
if eHealth data are deidentified and anonymized, reidentification
is still possible via other big data [10,11]. In other words, studies
on health care research platforms are needed to provide a more
secure analytical environment in light of the apprehension of
data subjects regarding the security and privacy of their eHealth
data.

Therefore, we propose a secure research platform for health
care, referred to as the health care big data platform (HBDP).
In this study, we considered only a secure and open research
environment, although a research platform for health care has
many requirements. The HBDP uses a private blockchain to
provide a decentralized persistent log database (DB) in which
user activities on the platform are recorded with a time stamp
by a smart contract. This helps the platform administrator
conduct the appropriate follow-up and monitoring of security
threats. Furthermore, the HBDP uses attribute-based encryption
(ABE) to ensure the security and privacy of eHealth data and
prevent eHealth data leakage by insiders. To the best of our
knowledge, this is the first study on a secure research platform
that is focused on accountability to secure the use of eHealth
data in an open environment based on blockchain and ABE.
The main contributions of this study are summarized in Textbox
1.
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Figure 1. Access procedure for analyzing eHealth data in South Korea.

Textbox 1. Main contributions of this study.

Main contributions

• We propose the health care big data platform (HBDP), which supports the accountability, access control, and encryption of stored eHealth data
using attribute-based encryption and a private blockchain in an open environment. In particular, we focused on accountability in access control.
We also analyzed previous research platforms for health care from a security perspective.

• For accountability in access control, a smart contract is designed to record in real time the success or failure of user activities (eg, log-in and use
of eHealth data) on the HBDP. In particular, the contract enables user monitoring and illegal user detection in the HBDP anytime.

• To prove and demonstrate the feasibility of the HBDP, we implemented a framework for the HBDP using Hyperledger Fabric (The Linux
Foundation) [12], OpenABE library (Zeutro) [13], and OpenStack (Open Infrastructure Foundation) [14], and we evaluated its security by using
case studies on the detection of illegal users.

Prior Work

Overview
To analyze prior work, we first collected and analyzed
well-known health care standards for the interoperability of
eHealth data. After analyzing the standards, we searched existing
health care studies related to the blockchain using the terms
“blockchain” AND “access OR data sharing OR access control”
AND “healthcare” for literature review in IEEE Xplore, Wiley
Online Library, ScienceDirect, and MDPI. The results identified
501 papers in IEEE Xplore, 943 articles in the Wiley Online
Library, 2599 articles in ScienceDirect, and 24,219 articles in
MDPI. To select suitable studies, we added some filters (ie,
published from 2018 to 2022 and cited by ≥5 journals) based
on these results. We also reviewed the abstracts and titles of the
papers. On the basis of these works, we finally selected 9 papers
(ie, IEEE Xplore: n=4, 44%; Wiley Online Library: n=2, 22%;
ScienceDirect: n=2, 22%; and MDPI: n=1, 11%).

Furthermore, we searched health care research platforms from
2015 to 2022 using the terms “healthcare research platform”
and “clinical research platform” in Google Scholar. The results
showed approximately 849,000 and 1,480,000 papers for each
keyword, respectively. To identify suitable studies, we also
reviewed the abstracts and titles. In particular, we examined the
security solutions in each study and finally selected 6 papers.
This section analyzes the identified studies via these processes
in detail.

Standards for Interoperability of eHealth Data
For a long time, eHealth data have been limited to being shared
and accessed between health care providers owing to
interoperability issues such as differences in representation (eg,
vocabularies and terminologies), equipment, and data formats.
These issues currently make it difficult for health care providers
to ensure continuity of care for patients or analyze eHealth data
in health care. Therefore, many health care organizations are
publishing interoperability standards for eHealth data in health
care. Clinical Document Architecture (CDA) [15] is an
XML-based markup standard for clinical document exchange
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designed by Health Level 7 (HL7). CDA prescribes the structure
and semantics of clinical documents for interaction between
health care systems. The central aspect of CDA is easily
exchanging clinical documents and making them readable.
However, CDA-based documentation has the disadvantage of
making it complex and difficult. For this reason, CDA has been
extended to Consolidated CDA with improved complexity and
interoperability. Fast Healthcare Interoperability Resources
(FHIR) [16] is a standard to ensure the interoperability of health
care systems or services also developed by HL7. The FHIR
improved the limitations of the previously developed HL7
versions 2 and 3 (eg, implementation complexity and structured
data model) to make the exchange of medical information easier.
Furthermore, it was developed based on the representational
state transfer architecture, so it is easy to implement health care
services for mobile phones, wearable devices, and tablet devices
beyond computers. Thus, the FHIR is currently one of the most
popular standards for the interoperability of eHealth data in
health care. The Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM) [17] is an open
community standard for the eHealth data model managed by
Observational Health Data Sciences and Informatics. The
OMOP CDM solves the interoperability issues of eHealth by
structuring the data model and the content of observational data.
The OMOP CDM structures eHealth data to provide a common
data model and converts them into a common representation
through the OMOP to provide the common physical and logical
interoperability model. When a health care DB is designed via
the OMOP CDM, it can use standardized analysis tools and
help analyze eHealth data systematically. It also increases the
efficiency of joint research. Digital Imaging and
Communications in Medicine (DICOM) [18] is a data format
standard for the interoperability of medical imaging such as
magnetic resonance imaging, computed tomography, and x-rays.
DICOM has defined the format of medical imaging so that
medical images captured by various imaging devices can be
transmitted and exchanged. DICOM is generally stored,
processed, and transmitted via the picture archiving and
communication system and is the best known today in health
care. Cross-Enterprise Document Sharing (XDS) [19] is an
integrated profile for eHealth data developed by Integrating the
Healthcare Enterprise in 2004. In particular, XDS can share
various standard-based clinical documents such as the HL7
CDA, general strings, and binary data. In other words, XDS
represents a comprehensive and universal technology. In
addition to the aforementioned standards, various standards are
being established for the interoperability of eHealth data by
many health care organizations. We consider that these standards
do not provide perfect interoperability of eHealth data but can
still be addressed in the near future. Thus, the interoperability
of eHealth data is the main requirement in the research platform
for health care, but it is not the main focus of this study.

Secure eHealth Data Sharing via Blockchain
The blockchain has many advantages (eg, data integrity,
decentralization, and programmable smart contract), so many
research areas have been trying to use it. In particular, the
blockchain has been widely used to address the integrity,
scalability, and sharing of eHealth data. However, in addition,

eHealth data require security mechanisms such as access control,
cryptography, and authentication owing to privacy and security
issues. For this reason, many studies generally use these security
mechanisms with the blockchain. Table 1 shows the strengths
and weaknesses of these studies and the HBDP. Yang et al [20]
proposed an architecture that can use blockchain in the existing
health care system. The architecture has recorded all accesses,
such as select, insert, and delete, using two smart contracts (ie,
summary contract and record relationship contract) to ensure
the integrity of data records. The architecture also performs
access control via an access control list. Madine et al [21]
proposed a blockchain-based, patient-centric PHR management
system. The system uses trusted oracles that perform proxy
re-encryption to share the PHRs securely. Furthermore, the
system uses a reputation system to track an oracle’s behavior
and give a rating score to identify the misbehaving oracles.
Thus, the system lets them fetch, store securely, and share
medical data. Zhang et al [22] presented the architecture for
sharing clinical data based on blockchain. The architecture used
the FHIR standard and blockchain to solve clinical data
interoperability and is called FHIRChain. The FHIRChain helps
enable collaborative clinical decision-making among physicians.
It also allows for the sharing of clinical data in a trustless and
decentralized environment and for auditing through the smart
contract. Shahnaz et al [23] designed the role-based access
control (RBAC) framework for EMRs using smart contracts.
They focused on solving the scalability problem of blockchain
via the off-chain scaling mechanism.

Tanwar et al [24] proposed a permission-based system
architecture that could share eHealth data using blockchain. In
this architecture, patients can join the blockchain network
through the client application and update their eHealth data on
the blockchain network via chain code. They can also grant or
revoke permission to clinicians and researchers for their eHealth
data. In conclusion, the architecture achieves patient-centric
eHealth data sharing. Figueroa et al [25] used attribute-based
access control for the security of a radio frequency identification
system for health care. They focused on solving system
problems such as scalability, synchronization, and single point
of failure using blockchain. Ultimately, the system offers access
control to use the medical assets from a suitable location.
Daraghmi et al [26] designed a blockchain-based EMR
management system called MedChain. They improved the block
time and system performance using proof of authority. They
also used time-based smart contracts for the privacy and
monitoring of EMRs. In brief, they provided a secure
environment, data integrity, auditability, and accessibility using
authentication techniques, hash function, and proxy
re-encryption. Kaur et al [27] proposed blockchain-based storage
for securely sharing and querying eHealth data. The storage
uses CouchDB considering the unstructured eHealth data. It
also stores EMRs in the off-chain and hash of EMRs on the
blockchain to ensure the integrity of EMRs and improve the
efficiency of storage. Guo et al [28] proposed the multi-authority
ABE scheme for cloud-based telemedicine systems. In
particular, the scheme protects the integrity of eHealth data (eg,
diagnostic opinions) using the blockchain. Furthermore, the
scheme updates and revokes the access policy easily.
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Most studies [20-28] only focused on blockchain for secure
sharing and ensuring the integrity of eHealth data among
hospitals. They generally mentioned traceability and
accountability via the blockchain, but they did not represent
methods for monitoring and accountability. However, these
methods should be presented to ensure a secure environment.
In particular, accountability is essential in a health care research
platform in open environments. For these reasons, unlike other

studies, the HBDP focused on the description of the detection
method based on the blockchain to ensure accountability. In
addition, in the HBDP, even if eHealth data are exported, the
data are not ensured usability as they can only be decrypted and
used in the HBDP. As mentioned previously, this study is the
first to focus on accountability to use eHealth data in an open
environment securely.

Table 1. Strengths and weaknesses of blockchain-based studies and the health care big data platform (HBDP).

WeaknessStrengthSecurity solutionsSystem nameStudies

—aYang et al [20] ••• The proposed architecture only
focused on reading health
records and did not discuss
sharing of health records.

Interoperability among existing health
care systems

Encryption
• Access control

—Madine et al [21] ••• Not useful for an emergency
where the patient is not able to
delegate permission

A patient-centric PHRb management
system is proposed.

Encryption
• Blockchain

FHIRChainZhang et al [22] ••• The architecture only presented
the possibility of health data
tracking.

No SPoFc problem and fine-grained
access control

Audit
• Access control

—Shahnaz et al
[23]

••• The proposed architecture re-
quires transaction costs and
fees for access control.

The proposed architecture solves the
scalability problem of blockchain via
off-chain scaling.

Access control

—Tanwar et al [24] ••• Lack of flexible and fine-
grained access control

A patient-centric eHealth data sharing
is achieved.

Access control

—Figueroa et al
[25]

••• The architecture requires
transaction costs and fees for
access control.

No SPoF problem and fine-grained
access control

Access control

MedChainDaraghmi et al
[26]

••• No detailed description of the
implementation of the pro-

posed system using the PoAd

Efficient consensus mechanism and
ensuring privacy via time-based smart
contracts

Encryption
• Authentication

—Kaur et al [27] ••• Not useful for an emergency
where the patient is not able to
delegate permission

Sharing of unstructured eHealth data
and off-chain storage

Authorization

—Guo et al [28] ••• The specific method is not
presented to ensure the trace-
ability of the schema.

The ABEe scheme is proposed as suit-
able for the distributed telemedicine
system.

Encryption
• Access control

HBDPOurs ••• The platform focuses only on

3 SRsf.

The detailed methods for accountabili-
ty in access control are proposed.

Encryption
• Audit
• Access control

aNot presented.
bPHR: personal health record.
cSPoF: single point of failure.
dPoA: proof of authority.
eABE: attribute-based encryption.
fSR: security requirement.

Health Care Research Platforms
The use of eHealth data in health care research can
fundamentally improve health care owing to the rapid

development of big data analytical technologies. For this reason,
several studies have proposed health care research platforms
that can be used for research using eHealth data. In this section,
we review the literature with a focus on the security perspective
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of these research platforms. Ozaydin et al [29] proposed the
design of a data warehouse, which is a Healthcare Research and
Analytics Data Infrastructure Solution (HRADIS). The HRADIS
focuses on infrastructure for integrating disparate eHealth data
to improve the efficiency of health care. The HRADIS includes
an account management framework for RBAC for some eHealth
data. Lunn et al [30] proposed a cloud-based digital health
research platform for a national longitudinal cohort study. The
platform collects and manages eHealth data of sexual and gender
minority adults. In this platform, all microservices are within
the subnet using virtual private cloud, and eHealth data at rest
are stored in the MySQL DB securely after encryption.
Furthermore, the platform uses open authorization for
programming interfaces, SMS text message–based 2-factor
authentication, and logging services to identify malicious users
and ensure the security of eHealth data. Ashfaq et al [31]
described the regional health care information platform in
Halland, Sweden. The platform basically operates within
Swedish regulations and the GDPR regarding patient data. On
the platform, eHealth data can only be accessed through internal
clients secured in the regional IT firewalls. The client can only
use related researchers in the approved health care project via
the ethical review board in Sweden. In particular, the platform
provides anonymized eHealth data to ensure privacy. Conde et
al [32] presented an open source–based research platform to
support clinical and translational studies, ITCBio. The ITCBio
platform supports role and access management tools to promote
research collaboration and ensure security. It also provides
dynamic consent, which enables ongoing and flexible
communication between patients and researchers. De Moor et
al [33] described a scalable and adaptable platform for the
interoperability of eHealth data systems and clinical research
systems. They also presented the security architecture based on
many security-related standards in detail. In particular, this
architecture supports various security solutions such as identity
management and credential delegation. Jones et al [34] proposed
the Secure Anonymised Information Linkage databank, which
is ensured physical, technical, and procedural control. The
Secure Anonymised Information Linkage databank provides
encrypted communication and prevents eHealth data from being
transferred outside the user’s devices. It also performs user
authentication via user credentials and 2-factor authentication
tokens.

Several studies [29-34] have proposed health care research
platforms for using eHealth data. However, most studies have
focused on an efficient research environment. Some studies also
did not describe security solutions in detail despite the security
and privacy of eHealth data being major considerations in health
care research platforms. Moreover, as mentioned previously in
the Background section, eHealth data subjects are still concerned
about the security and privacy of eHealth data. Thus, a study is
necessary for a more secure platform for health care research
that guarantees the usability of eHealth data while focusing on
its security and privacy. The next section proposes a secure and
expandable collaborative research platform for health care called
the HBDP.

Methods

Overview
This study designed a secure and open environment for health
care research. To accomplish this, we first identify potential
security threats on a health care research platform. Second, we
propose security requirements (SRs) for a secure health care
research platform based on these threats. Finally, we present a
secure collaborative research platform for health care called the
HBDP that can provide a secure analysis environment while
meeting these requirements.

Security Threats and Requirements on a Health Care
Research Platform

Overview
A health care research platform should properly understand and
mitigate security threats to provide a secure analytical
environment. This subsection first identifies potential security
threats of health care research platforms. We then define the
SRs for mitigating these threats.

Security Threats
Various security threats, such as the abuse and illegal export of
eHealth data, can arise on a health care research platform.
However, we identified well-known security threats in the health
care domain as threats to the health care research platform. In
other words, many threats can occur on the platform, but we
explicitly focused on threats that can occur frequently. A
detailed description of the leading security threats is outlined
in Textbox 2.

Textbox 2. Leading security threats on a health care research platform.

Leading security threats

• Unauthenticated users: on a health care research platform, unauthenticated users attempt an attack to obtain the authenticated user’s credentials
[35-37]. In addition, attackers can invalidate the authentication factor to access eHealth data [38]. Hence, a health care research platform must
ensure, through user authentication, that only authenticated users have access.

• Unauthorized users: a health care research platform must ensure that only approved eHealth data are available to authorized users through
appropriate authorization mechanisms [38,39]. Moreover, the abuse and illegal sharing of eHealth data can occur on a health care research
platform even by authorized users. Therefore, a health care research platform also requires a security solution that audits for these activities.

• Leaks of eHealth data by insiders: the greatest security threat for a health care research platform is a breach of eHealth data by insiders [35-37,40].
A prime example of an insider is the eHealth data administrator of the health care research platform. The administrator can easily leak eHealth
data as they have general authorization over them. Furthermore, insiders are difficult to detect as they are defined as suitable users within the
health care research platform. For these reasons, even if eHealth data on a platform are illegally leaked, the utility of leaked data must not be
ensured.
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SRs for Mitigating These Threats
A collaborative health care research platform in an open
environment should satisfy the diverse SRs that mitigate many
types of security threats. However, in this study, we only focused

on 3 SRs, which are highly related to accountability in access
control for a secure health care research platform based on the
aforementioned identified threats. The detailed descriptions of
the SRs are outlined in Textbox 3.

Textbox 3. Security requirements (SRs) for mitigating security threats.

SRs for threat mitigation

• SR 1 (access control): access control is a framework that includes authentication and authorization, which is the primary SR and the most important
consideration for a health care research platform. It must be performed on this platform so that only authenticated and authorized users can use
eHealth data via appropriate devices. For this reason, many existing health care research platforms provide authentication or authorization using
various methods [29-34].

• SR 2 (encryption of stored eHealth data): on a health care research platform, the encryption of stored eHealth data ensures the security and privacy
of eHealth data when the data are not being used [30,34]. In addition, even if eHealth data are leaked, the data should not be useful. Hence, the
encryption of stored eHealth data is one of the most important SRs.

• SR 3 (accountability): when the authenticated and authorized user exports or uses eHealth data via the research platform for health care, the
platform administrator or eHealth data provider needs to be able to track and search all the user’s activities on the platform at any time. In addition,
the platform administrator must identify illegal users and conduct the appropriate follow-up or monitoring in the event of security issues. For
these reasons, some health care research platforms provide logging systems or services [30,34].

• Other SRs: the collaborative research platform in an open environment should satisfy various other SRs. For example, anonymization and
deidentification are needed for the privacy of eHealth data as the data are sensitive and private [31,32,34]. Secure communication is also necessary
to prevent sniffing and tampering with eHealth data and network packets [30,31,34]. In addition, more SRs for the integrity and availability of
eHealth data are required [41]. However, as mentioned previously, we focused on the three SRs (ie, access control, encryption of stored eHealth
data, and accountability) to support accountability in access control.

Proposed HBDP

Overview
The HBDP uses ABE for the privacy and access control of
eHealth data. In particular, the privacy of eHealth data is ensured
through column-level encryption even if insiders leak the data.
The platform also uses a smart contract to record user activities
(eg, log-in and decryption) in the blockchain. Thus, the
blockchain allows platform administrators to identify illegal
users and conduct appropriate follow-up and monitoring. In
other words, the blockchain operates as a distributed logging

system in real time and ensures the integrity and nonrepudiation
of recorded user activities. In this section, to present the HBDP,
we first explain the assumptions and main components in a
framework. We then describe the phases of the HBDP in detail.

Assumptions
To describe a framework and scenarios of HBDP, we first define
some assumptions. In particular, we present assumptions about
other SRs (eg, secure communication, deidentification, integrity,
and availability) that the HBDP does not cover. The detailed
assumptions are outlined in Textbox 4.

Textbox 4. Assumptions about other security requirements.

Assumptions

• As eHealth data contain a considerable amount of personally identifiable information, they are generally provided to users after deidentification
and anonymization on the platform. Data linkage is also performed to increase the usability of eHealth data before they are provided to users.
However, this study did not cover deidentification, anonymization, and data linkage. Thus, all the eHealth data on the platform are assumed to
be deidentified and linked via trusted third-party organizations. In addition, eHealth data are assumed to be provided by institutions registered
on the platform.

• This study did not cover secure communication between the health care big data platform (HBDP) and the users. Therefore, we assume that the
HBDP is securely communicating with its users by using transport layer security protocol–based communication, which is used for secure
communication on the internet and across networks. This assumption also holds for communication on the blockchain network.

• Users are assumed to be researchers or physicians with a specific institution that is registered on the HBDP. Thus, they do not need to prove that
they are researchers or physicians affiliated with the institution when they register on the platform, but authentication and authorization for access
to eHealth data for users are performed on the platform. Furthermore, we also assume that the HBDP provides a variety of analytical tools and
methods for researchers to efficiently analyze eHealth data and that the user analysis process is recorded on the distributed ledger, including the
analytical tools used.

Main Components
We present a secure collaborative platform for health care
research that ensures the privacy and security of eHealth data,
called the HBDP. Figure 2 shows a brief overview of our

proposed framework for the HBDP. Our proposed framework
has 3 main components: users, the HBDP, and the blockchain
network. A detailed description of the main components is
outlined in Textbox 5.
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Figure 2. Overview of our proposed framework for the health care big data platform.

Textbox 5. Main components of our proposed framework.

Framework components

• Users: physicians and researchers who analyze and use eHealth data to treat patients or use them for health care research are representative of
this group. They should be required to have a device such as a smartphone or a fingerprint scanner with a GPS for authentication and access
control on the platform.

• Health care big data platform (HBDP): the HBDP keeps eHealth data secure and provides an environment where users can use and analyze the
data. The platform consists of a security agent and databases (DBs) in a cloud computing environment. DBs are configured as eHealth DBs and
user DBs. The eHealth data DB stores eHealth data. The user DB stores user information such as the user ID, hashed password, and user attributes
(eg, user department and position). The security agent is a key component of the platform. It performs encryption and decryption of eHealth data
using attribute-based encryption. It also requests, as a blockchain client, the blockchain network to record or obtain user activities.

• Blockchain network: the blockchain network consists of a single smart contract, a distributed ledger, and peers. The transactions recorded on the
blockchain network are immutable unless the ledgers of all peers are modified. For this reason, the blockchain can be used as a distributed logging
system that provides strong accountability, so we use the blockchain network for the tracking of user activities on the HBDP. More specifically,
the blockchain communicates with the security agents on the HBDP and helps ensure the accountability and nonrepudiation of the platform.
Peers are health facilities and research institutes registered on the platform. They can be endorsing peers or committing peers depending on their
system performance. The smart contracts record user activities with time stamps on the distributed ledger, which helps the distributed ledger in
the blockchain act as logs for the HBDP.

Phases of the HBDP

Overview

To support secure analytical environments, the HBDP has 4
phases (ie, user registration, storage, download, and use). Each
phase is configured to satisfy our defined SRs (ie, the user
registration and download phases meet the access control
requirement, the storage phase meets the encryption of stored
eHealth data requirement, and the use phase achieves
accountability). A detailed description of each phase is provided
in the following sections.

User Registration Phase

The user registration phase is the first operation for
authentication in “access control,” which is one of the SRs of

a health care research platform. This phase is stored with the
user ID and attributes in the user DB on the HBDP. Figure 3
shows a sequence of the user registration phase; the details are
described in this section. The user accesses the HBDP and enters
the user ID, password, and attributes (eg, the user’s department
and position). At this time, we assume that this user is authorized
by an institution participating in the HBDP. The security agent
on this platform then inserts the entered user information into
the user DB. The security agent requests device enrollment from
the user with the registration result. The user accesses the
platform using their device and enters the registered ID,
password, and device identifier. The user device then requests
the security agent to enroll it along with the entered ID and
password. The security agent performs password-based
authentication using the received ID and password. If this
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authentication is successful, the device ID value is inserted into
the user DB, and the security agent relays the result of the device

enrollment to the device. After that, the user can access the
HBDP at any time.

Figure 3. User registration phase.

Storage Phase

Attempts to leak eHealth data stored by the HBDP may
frequently occur. Even if eHealth data are inevitably leaked in
these attempts, the nonusability of the data should be ensured.
For this reason, in the storage phase, as shown in Figure 4, the
security agent encrypts eHealth data using the locations of
institutions registered on the platform before storing the eHealth
data on the platform.

In particular, some columns are sensitive columns that provide
usability for researchers during the analysis of eHealth data or

can be combined with other big data to identify individuals.
The storage phase is the operation that ensures the “encryption
of stored eHealth data,” which is one of the SRs for health care
research platforms. This phase ensures that, even if eHealth data
are illegally shared or leaked by the administrator or a malicious
attacker on the platform, their usability is not ensured because
of column-level encryption. Moreover, column-level encryption
allows users to use decrypted eHealth data only at their
institutions as the decryption of eHealth data fails if the user’s
real-time location does not match the user’s institution.

Figure 4. Storage phase.

Download Phase

The download phase is the prerequisite for the authorization
process in the “access control” for the SRs of the health care
research platform. This phase encrypts all contents of
column-level–encrypted eHealth data via user attributes (eg,

user position and department) to enable the user to download
eHealth data. Therefore, the data provided during the download
phase are encrypted, so they are impossible to analyze even if
a third party obtains them. The download phase is not an
essential phase but can increase the efficiency when
collaborative research is conducted. For example, if all
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collaborative researchers are authorized on the platform, the
researcher sends eHealth data after the first analysis to another
researcher for collaboration. Another researcher can then
proceed with further work based on the analyzed eHealth data
on the platform. Figure 5 shows the download phase on the
platform. A detailed description of the download phase is
provided in the following paragraph.

The user first logs into the HBDP and selects the eHealth data
on the download page. The security agent on the platform then
sends a query for the eHealth data requested by the user to the

eHealth data DB. The eHealth data DB provides
column-level–encrypted eHealth data to the security agent. After
that, the security agent requests user information, such as the
user’s attributes and ID, from the user DB. The user DB provides
the requested user information to the security agent. The security
agent encrypts the column-level–encrypted eHealth data one
more time using the provided user information and offers the
full encrypted eHealth data. The eHealth data provided during
the download phase are encrypted, so they are impossible to
analyze even if a third party obtains them.

Figure 5. Download phase.

Use Phase

The use phase performs “access control,” which is one of the
SRs for the health care research platform. This phase also
ensures “accountability” as the use activity of the user on the
platform is recorded with a time stamp in the distributed ledger.
Figure 6 shows the sequence of the use phase; the details are
described in the following paragraphs.

The user logs into the HBDP (ie, password-based authentication)
and uploads encrypted eHealth data. The security agent on the
platform then requests user and device information from the
user DB for decryption and fingerprint authentication. The user
DB provides the security agent with the user attributes and user
device ID. The security agent uses the device ID value to request
fingerprint authentication and real-time location from the user
device. The user enters a fingerprint via the enrolled device on
the platform for second user authentication. If the user succeeds
in fingerprint authentication, the device sends a real-time GPS
location to the security agent. The security agent decrypts the
eHealth data uploaded by the user using the location and user
attributes. In particular, at this time, full decryption is performed
on encrypted rows, and column-level decryption is then
performed on column-level–encrypted columns (ie, sensitive
columns). After the decryption of the eHealth data, the security
agent requests the blockchain peer to record the decryption
result with a time stamp in the blockchain. Blockchain peers
execute a smart contract to record the decryption result on the

distributed ledger, and the smart contract inserts the decryption
result on the distributed ledger. When the decryption result is
recorded in the distributed ledger, the smart contract returns the
execution result to the blockchain peers. The blockchain peers
send the received execution result to the security agent. Finally,
the security agent provides the decrypted eHealth data to the
user, and the user is able to use the data only on the platform.
In conclusion, for the user to use eHealth data on the HBDP,
the data must be decrypted on the platform.

Algorithms 1 and 2 are a pseudocode of the security agent.
Algorithms are composed of password-based authentication
and decryption of the eHealth data along with the detection of
illegal users. In particular, algorithm 1 (Figure 7) first checks
whether the user’s ID is locked; if the user’s ID is not locked,
it authenticates the user’s credentials. The security agent then
requests to record the result of the user log-in activity in the
blockchain.

By contrast, algorithm 2 (Figure 8) first performs
fingerprint-based authentication for the user’s real-time location.
After that, the security agent decrypts the data using the created
policy via user information, including the location. Finally, the
security agent requests to record the result of the use activity
of the user in the blockchain. In particular, before recording the
result from the procedure, the security agent checks the
distributed ledger for the most recent consecutive failed
activities in the previous records.
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Figure 6. Use phase.

Figure 7. Algorithm 1: pseudocode of authentication for the security agent.
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Figure 8. Algorithm 2: pseudocode of use for the security agent.

Implementation
To demonstrate and prove the feasibility of the HBDP, we
implemented the main components of a framework based on
the software development life cycle. The software development
life cycle is generally configured as requirement analysis,
design, implementation, testing, and evolution steps. Following
these steps, we first identified SRs (see the SRs in the Security
Threats and Requirements on a Health Care Research Platform
section). Second, the components were designed based on 3
identified SRs (ie, access control, encryption of stored eHealth
data, and accountability). Third, we implemented these
components. Textbox 6 shows the specifications for the
configuration and implementation environment in detail. We
configured the blockchain network for detecting illegal users
and a cloud environment to create a scalable, collaborative, and
secure environment in the HBDP. In particular, we built the
cloud environment using OpenStack (Open Infrastructure
Foundation), an open-source cloud operating system, and then
developed a web server using the Python-based Flask framework
(Python Software Foundation) [42]. We also developed an

Android app for user authentication, the security agent for
detecting illegal users and monitoring, and a chain code to record
and manage user activities. Fourth, the components are tested
using a security analysis of the HBDP via case studies in the
Results section. Finally, the components are analyzed in the
Discussion section to evaluate them.

Figure 9 shows an overview of our implementation and the
interactions between the main components. As mentioned
previously, our implementation is a proof of concept for
demonstrating the features realized by the HBDP.

On a research platform for health care, the cloud environment
not only provides various big data analytical tools in the form
of software as a service but also provides an environment where
researchers can collaborate. The cloud environment also
provides scalability and an open environment.

Figure 10 shows some pages from the HBDP. Figure 10A is a
page that is shown when a user successfully logs in by entering
a registered user ID and password. Users who successfully log
in can access this platform at any time and download eHealth
data that can be used on the page shown in Figure 10B.
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Textbox 6. Specifications of our implementation environment.

Environment specifications

• Processor: Intel Xeon processor E5620 2.40 GHz

• Memory: 32 GB

• Operating system: Ubuntu Linux 18.04.5 LTS

• Smartphone: Galaxy S21 (SM-G991N)

• Languages: Go language, Java, Python, and C++

• Docker engine: version 20.10.7

• OpenStack: version 5.2.0 (Stein)

• MySQL: version 5.7.36

• Android: version 11

• Hyperledger Fabric: version 1.4

Figure 9. Overview of our implementation.

Figure 10. Implemented health care big data platform (HBDP).
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We also developed an Android app to use fingerprint
authentication and real-time location information. In particular,
we used Firebase (Firebase Inc) [43] for messaging the Android
app. Figure 11 shows some pages of the implemented app. In
Figure 11A, the app performs user registration and device
enrollment on the platform. In addition, Figure 11B shows
device enrollment for fingerprint authentication and real-time
location information. Finally, Figure 11C shows a fingerprint
authentication request when the user wants to use encrypted
eHealth data.

Furthermore, we used the OpenABE library (Zeutro) to perform
the encryption and decryption of eHealth data. The eHealth data
were anonymous and deidentified open data from the Korea
Disease Control and Prevention Agency. The data were from
the National Health and Nutrition Examination Survey in South
Korea, and they included ID, gender, age, region, and income.
In particular, we defined the sensitive columns in our
implementation as age and region. Figure 12 shows the eHealth
data at each phase on the platform. Figure 12A shows the
eHealth data with column-level encryption when they are stored

on the platform by the security agent. In addition, when the user
downloads eHealth data, they are offered after full encryption
of the column-level–encrypted eHealth data using the user
attributes stored on the platform, as shown in Figure 12B.
Finally, Figure 12C shows the decrypted eHealth data, which
can be used by authorized users on the platform.

Generally, blocks in the blockchain are identified by hashes,
and the blocks are connected because they have a hash of the
previous block. In other words, alteration is impossible unless
the blocks of all participants are modified. Therefore, on the
platform, the private blockchain is used as a decentralized
persistent logging system. We built the blockchain network
using Hyperledger Fabric (The Linux Foundation) and designed
a smart contract for accountability. Figure 13 shows a web page
for detecting illegal users (ie, unauthenticated and unauthorized
users) using the distributed ledger. This page helps platform
administrators search for specific user activities as well as
identify and respond to the actors when security threats arise.
In short, the distributed ledger in our implementation provides
accountability and nonrepudiation to the HBDP.

Figure 11. Android app.

Figure 12. Encryption and decryption of eHealth data in the health care big data platform.
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Figure 13. Web page for detection of illegal users.

Results

Overview
To show the proof of concept, the previous section implemented
the HBDP. This section describes case studies of illegal user
detection for security analysis via the implemented HBDP. This
section also presents the results of several conducted
experiments, which show the efficiency of the private blockchain
and ABE cryptography.

Case Studies of Detection of Illegal Users

Overview
In addition to the aforementioned security threats, many security
threats (eg, the misuse and abuse of eHealth data) can arise on
a health care research platform in an open environment. Thus,

a secure health care research platform must be able to detect
and trace the threats. This subsection describes how to detect
two representative security threats—unauthenticated and
unauthorized users—through the distributed ledger on the HBDP
in an open environment. Moreover, we present the possibility
of detecting other security threats through monitoring and access
control processes.

Detection of an Unauthenticated User
One of the most common attacks attempted by unauthenticated
users is the brute-force attack. Therefore, in this scenario, we
assume that an unauthenticated user continuously tries to log
into (ie, launches a brute-force attack on) the HBDP by stealing
the user ID. Figure 14 shows the sequences for detecting an
unauthenticated user on the platform. A detailed explanation of
this case study is provided in the following paragraphs.

Figure 14. Detection of unauthenticated user.
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The attacker first steals the user ID that is used on the HBDP
and then connects to the platform and inputs the stolen user ID
and a random password. The security agent that receives the
user ID and password retrieves the user information from the
user DB and performs password-based user authentication. After
that, the security agent requests the blockchain peer to record
the log-in result in the distributed ledger. The blockchain peer
records the log-in result through the execution of a smart
contract and sends the recorded result to the security agent. The
security agent receives the recorded result and then informs the
attacker of the log-in failure. The attacker receives the result of
the failed log-in and then continuously tries to log in using a
random password with the stolen user ID. If the aforementioned
sequence is repeated and the log-in fails 2 more times, the user
ID is blocked by the security agent. In addition, the security
agent requests fingerprint authentication to unblock the user ID

from the device enrolled in the HBDP. As a result, platform
users will be able to recognize that there has been an illegal
log-in attempt. Furthermore, the security agent forwards these
attempts to the platform administrator to help them analyze
illegal log-in attempts based on the distributed ledger in detail.

Prevention of the Misuse (or Abuse) of eHealth Data by
an Unauthorized User
The eHealth data that can be downloaded from the HBDP
depend on the user’s department and position. For this reason,
there is a possibility that unauthorized users can receive
encrypted eHealth data from an authorized user. Therefore, we
assume that an unauthorized user of the eHealth data wants to
use illegally shared or leaked eHealth data. Figure 15 shows
the procedure for detecting the illegal sharing of eHealth data.
The details are described in the following paragraphs.

Figure 15. Detection of unauthorized user.

The unauthorized user first obtains encrypted eHealth data in
the wrong way from the authorized user. After that, the
unauthorized user connects to the HBDP and uploads the
illegally shared eHealth data to be used after log-in to the
platform. The security agent that receives the eHealth data
obtains user information from the user DB and requests
fingerprint authentication from the enrolled device. The
unauthorized user performs fingerprint authentication. If
authentication is successful, the device sends a real-time location
along with the signature to the security agent. The security agent
then decrypts the eHealth data with the received attributes and
real-time location after verification of the signature. However,
the decryption of eHealth data fails because the unauthorized
user’s attributes do not match the user attributes used for the
encryption of the eHealth data. The security agent requests that
the decryption result be recorded on the distributed ledger and
then informs the unauthorized user that the decryption has failed
after the unauthorized user’s activity is recorded on the ledger.

If the aforementioned sequence is repeated and the decryption
fails one more time, the user ID is blocked by the security agent.
The security agent also sends these attempts to the platform
administrator to help them analyze illegal use attempts based
on the ledger in detail.

In our implementation, various security threats can be detected
and blocked, as can unauthenticated and unauthorized users.
For example, even if attackers try to decrypt the eHealth data
by stealing the user’s ID and password, decryption is impossible
as fingerprint authentication fails. In addition, even if fingerprint
authentication is successful by manipulating the device,
decryption is impossible because of incorrect real-time location
information. In other words, the HBDP has ensured the security
and privacy of eHealth data. Furthermore, the platform
administrator can detect illegal users through periodical
monitoring as all user activities on the HBDP are recorded in
the distributed ledger. In particular, to use even leaked data,
they should be decrypted on the HBDP depending on the use
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phase. Thus, the administrator can detect this behavior through
monitoring. Finally, the HBDP also does not ensure the
usefulness of eHealth data via column-level encryption even if
leaks by malicious users occur. In conclusion, the HBDP can
provide researchers with an open and secure environment in
which to efficiently analyze eHealth data.

Performance Evaluation of the HBDP

Overview
Our main concepts are the proposal of a secure research platform
for health care and the detection of illegal users using the
distributed ledger. For this concept, we presented case studies
in the previous section. However, performance is an important
factor in proving system efficiency, so we briefly present and
describe a performance evaluation of the implemented HBDP
in this section.

Average Time for Cryptography
To measure the average time, we performed 10 rounds of
encryption and decryption with changes in the number of rows
and sensitive columns, as shown in Textbox 7.

Figure 16 shows the average encryption and decryption times
for the number of rows per number of sensitive columns. Figure

16A shows the average column-level encryption time based on
the number of rows. In Figure 16A, if the maximum number of
rows is 200,000 and the number of sensitive columns is 5, the
maximum average time is approximately 10 minutes.
Furthermore, Figure 16B shows the average full encryption
time for changes in the number of rows versus each number of
encrypted sensitive columns when the user downloads eHealth
data from the platform (see the Download Phase section).
Significantly, as this work encrypts the rows, the number of
encrypted sensitive columns does not greatly affect the full
encryption time. In other words, the encryption time is not
dramatically increased with an increase in the number of
encrypted sensitive columns. Figure 16C shows the average full
decryption including column-level decryption time for the
number of rows versus each number of encrypted sensitive
columns when the user uses eHealth data on the HBDP (see the
Use Phase section). As this work performs decryption twice,
the decryption time required increases dramatically compared
with full encryption. If the maximum number of rows is 200,000
and the number of sensitive columns is 5, the average time is
approximately 27 minutes, so the HBDP has limitations in use
for actual cases. However, we believe that several methods can
solve this problem. A discussion of these methods is detailed
in the following subsections.

Textbox 7. Simulation parameters for evaluation of cryptography.

Simulation parameters

• Rounds: 10

• Number of rows: 50,000, 100,000, and 200,000

• Number of sensitive columns within 46 columns: 1, 3, and 5

• Type of cryptography: column-level encryption, full encryption after column-level encryption in the download phase, and full decryption including
column-level decryption in the use phase

Figure 16. Average time of cryptography.

Blockchain Performances
The private blockchain is a distributed logging system that helps
detect illegal users on the HBDP. For this reason, we did not
evaluate the block and query times and focused only on the
accountability and nonrepudiation provided by blockchain
features. Therefore, in this section, the write and read times of
the designed smart contract are evaluated using Hyperledger
Caliper (The Linux Foundation) [44]. We first executed 5 rounds
of writing transactions onto the ledger of the blockchain
network, with 1000 transactions in each round at rates of 100,

150, 200, 250, and 300 transactions per second (TPS), as shown
in Textbox 8. We then executed 5 rounds of reading transactions
into the ledger’s blockchain network at rates of 100, 150, 200,
250, and 300 TPS, with 1000 transactions in each round after
writing 100 transactions. In particular, at this time, we assume
that the platform administrator searches 100 records of previous
user activity.

Figure 17 and Figure 18 show the average latencies and
throughputs of our executions. In Figure 17A, the 1Org with
1Peer in write mode takes <3 seconds in 300 TPS, which is a
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much lower latency than other networks. Conversely, the 1Org
with 1Peer in write mode has a higher throughput
(approximately 150 TPS) than other networks, as shown in
Figure 18A. The 1Org with 1Peer in read mode has an average
latency of approximately 14 seconds and a throughput of
approximately 63 TPS in 300 TPS, as shown in Figure 17B and

Figure 18B. For the 2Orgs with 2Peers in read mode, the average
latency and throughput reach approximately 19 seconds and 47
TPS, respectively, in 300 TPS. The results show that many
organizations and peers reached high latency and low throughput
in both read and write modes, so the latency and throughput are
inversely proportional in write mode.

Textbox 8. Simulation parameters for evaluation of the blockchain.

Simulation parameters

• Rounds: 5

• Transactions: 1000 each

• Transaction rates: 100, 150, 200, 250, and 300

• Transaction mode: read and write

• Networks: 2Orgs with 2Peers, 2Orgs with 1Peer, and 1Org with 1Peer

• Orderer: solo

Figure 17. Average transaction latencies.

Figure 18. Transaction throughputs.
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Discussion

Principal Findings
In the Results section, we first conducted a security analysis of
the HBDP. The results showed that the HBDP provides a secure
environment. We then presented the average times for
cryptography and blockchain performance of the HBDP to
evaluate its efficiency. As a result, some performances (eg, high
decryption time depending on the number of encrypted columns)
showed to need improvement. Therefore, we first discuss these
results in this section. Some limitations of the HBDP are then
presented. In addition, we compare the HBDP with prior works.
Finally, we describe our further works on blockchain and IoT.

The HBDP provides a secure research environment but has
several challenges to solve to be efficient. Thus, this subsection
discusses our results and these challenges in detail. First, to
prove accountability in the HBDP, we presented case studies
on detecting unauthenticated and unauthorized users via the
implemented HBDP. In addition, we described some methods
to detect other security threats via the process of access control
and monitoring. The results showed that the HBDP supports
accountability in access control.

Second, as the number of sensitive columns increased,
column-level encryption and full decryption including
column-level decryption times increased significantly in our
results. This issue would cause inconvenience to users in a real
environment. To address this issue, we present some solutions.
First, when eHealth data have many sensitive columns, efficient
cryptography times can be achieved by merging these columns
into 1 column to perform encryption and decryption. Second,
the security agent can be configured first to perform decryption
of some columns to show eHealth data and then decrypt other
columns in the background process. This method may make the
user feel that the delay is minimal compared with the previous
approach. Finally, in the cloud environment, multiple security
agents can be configured to perform parallel processing [45-47].
This method is efficient and the most widely used approach.
Unfortunately, our work did not use these methods, but they
are expected to provide better cryptography times.

Finally, the read mode in blockchain has higher latency and
lower throughput than the write mode by approximately ≥60%.
In general, blockchain performance has higher latency and lower
throughput in write mode than in read mode, but our evaluation
showed the opposite result. This result might have been due to
the process of looking up and reading all the records of 100
transactions. Nevertheless, the blockchain can be used
sufficiently as a distributed logging system for the HBDP as it
did not show poor performance. To prove this effectiveness,
our discussion can be extended through a performance
comparison evaluation with existing studies. However, we did
not conduct the performance comparison because of differences
in the implementation environment and configuration. The
blockchain performance is generally affected by the role
configuration of peers and orderers, differences in consensus
algorithms, and blockchain type. Furthermore, even if a smart
contract performs the same function, the performance can vary
depending on how the smart contract is implemented. In

conclusion, we consider that a comparison of the performances
is useless in perfect nonequivalent environments.

Limitations
A health care research platform must offer an efficient
environment as the primary purpose of the HBDP is to analyze
eHealth data and then use the resulting values for research. For
this environment, the interoperability of eHealth data, analytical
and visualization tools, and data linkage are needed, but the
HBDP implemented a few functions for eHealth data. Hence,
in our future work, the HBDP will offer an efficient research
platform that provides various analytics and visualization tools
(eg, Hadoop, Tableau, and Spark) as software as a service.

Furthermore, in this study, the HBDP only focused on three
SRs (ie, access control, encryption of stored eHealth data, and
accountability), but various additional SRs (eg, deidentification)
are needed for a more secure environment. In addition, even
after deidentification of eHealth data, the possibility of
reidentification remains. Thus, our future work should also
provide other SRs and methods to reduce the risk of
reidentification through reidentification assessments in advance
[48,49].

Finally, the main scope of this study was access control and
accountability for a research platform for health care, so the
HBDP did not ensure the integrity and availability of eHealth
data. In the HBDP, by also writing the hash of eHealth data on
the distributed ledger, integrity can be ensured but not
completely. For this reason, the HBDP needs solutions to ensure
the integrity and availability of eHealth data for a complete
research platform for health care. Availability and integrity can
be generally ensured by existing cryptography technologies (eg,
diverse types of firewalls, message authentication codes,
intrusion detection systems, and hash functions). We also
consider that some studies [50-54] are helpful for an efficient
health care research platform.

Comparison With Prior Work
For discussions of the HBDP, this section compares the HBDP
with the existing health care research platforms based on defined
SRs. Table 2 shows that the HBDP and previous research
platforms met specific SRs. First, access control (ie,
authentication and authorization methods) was partially
addressed in all studies [29-34] and was also addressed in the
HBDP. In particular, some of the studies [31,32,34] granted
access to eHealth data through direct approval from the relevant
authorities or contracts. However, this access control is
cumbersome and complex, and there is a possibility of overly
limiting the use of data. Some studies [29,34] used RBAC for
access control, but RBAC cannot easily provide fine-grained
access control. By contrast, ABE encryption generally achieves
fine-grained access control as administrators can create detailed
security policies using various attributes [55-57]. ABE has also
been able to achieve flexible access control recently [58,59].
Hence, the HBDP enables fine-grained access control through
the various sensing data of IoT devices as we use ABE
encryption, unlike existing research platforms for health care.
Furthermore, two studies that provided encryption for stored
eHealth data were those by Lunn et al [30], Jones et al [34], and
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the HBDP. This encryption is needed to prevent illegal leaks
by insiders and malicious attackers. Even anonymized eHealth
data must be encrypted when they are stored on a research
platform to make reidentification difficult and useless if the
eHealth data are leaked. Finally, accountability is an audit trail
that helps the platform administrator take appropriate action
when a security incident occurs and mitigate security threats
via monitoring. However, the logging system was implemented
in a centralized form in the studies by Lunn et al [30] and Jones

et al [34]. A centralized system has difficulty operating a logging
service when the system is unavailable, and there is a possibility
that the integrity of logs can be undermined by attackers. The
HBDP uses a logging system in a decentralized form via
blockchain and, thus, even if 1 node is unavailable, logging is
still possible and ensures the integrity of logs as all peers own
the distributed ledger. Moreover, we presented detailed methods
of illegal user detection to prove accountability in the HBDP,
unlike previous platforms.

Table 2. Comparison of the health care big data platform (HBDP) and related studies.

StudiesSRsa

OursJones et al
[34]

De Moor et
al [33]

Conde et al
[32]

Ashfaq et al
[31]

Lunn et al
[30]

Ozaydin et
al [29]

SR 1b

✓✓✓✓✓Authentication

✓✓✓✓✓✓Authorization

✓Fine-grained access control

✓ (Sensitive
data and
medical con-
dition)

✓ (Sensitive
data and
identifiable
data)

✓ (Full data
and medical
report)

SR 2c—encryption (encryption level and
content of eHealth data)

SR 3d

✓Decentralization

✓✓Centralization

✓Illegal user detection methods

aSR: security requirement.
bAccess control.
cEncryption of stored eHealth data.
dAccountability.

Private Blockchain
eHealth data subjects hope to strengthen their rights by
participating directly in eHealth data access decisions. They are
also concerned with the privacy and security of eHealth data.
However, when they directly participate in access decisions, it
has the potential to stifle or unduly limit the usability of eHealth
data in research (eg, the approval of researchers’ requests to use
eHealth data is delayed for a long time or they are
unconditionally refused). Therefore, the subjects’ rights must
be ensured in other ways. With the distributed ledger of the
blockchain, we expect that providers can supervise although
not directly participate in access decisions. For example, eHealth
data subjects can easily search the use history and users of their
eHealth data at any time via the distributed ledger on the
platform and object to the use if there are any issues. In addition,
as the recorded history of the blockchain is difficult to alter, it
is expected to elicit greater trust from eHealth subjects. Although
we did not implement this supervisory function, we expect that
further research will help address concerns about the use of
eHealth data as well as advance the rights of eHealth data
subjects.

Interoperability on IoT Devices
The eHealth data from various sensors and IoT devices are
rapidly increasing and being collected in many health facilities.
These eHealth data can improve public health and provide
high-quality customized health care services when they are used
in research, so they must be offered on a health care research
platform. In general, IoT devices are connected to and managed
by IoT platforms. However, it is currently difficult to share or
use collected eHealth data because of the various interoperability
issues on IoT platforms. In particular, secure interoperability
cannot be guaranteed as each IoT platform has different access
control methods and security policies for IoT devices. Therefore,
our future research will provide various and detailed eHealth
data to researchers by ensuring the secure interoperability of
IoT platforms on the HBDP.

Conclusions
The use of eHealth data in health care research offers promising
potential and advantages. However, eHealth data are more
sensitive than other big data as they contain more personal
information, so the privacy and security of eHealth data must
be ensured for them to be used in studies. In addition, eHealth
data subjects are still concerned about unauthorized data reuse
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and sharing within existing health care research platforms. Thus,
we designed a more secure collaborative platform for health
care research called the HBDP. This platform ensures the
privacy and security of eHealth data using a private blockchain
and ABE cryptography. The private blockchain operates as a
decentralized persistent log DB in which all activities occurring
on the HBDP are recorded with time stamps. As a result, the
records in the blockchain (ie, distributed ledger) help platform
administrators and users detect and respond to unauthenticated
and unauthorized users on the HBDP. ABE cryptography
ensures privacy even if eHealth data are leaked from the

platform and enables detailed and fine-grained access control
using situational information. Furthermore, we developed and
tested the HBDP, blockchain network, and an Android app using
Hyperledger Fabric, OpenStack, and OpenABE library to show
the feasibility of the platform. We also described the detection
of illegal users (ie, unauthenticated and unauthorized users) via
case studies. As this study focused only on a secure environment
for health care research, some future work is needed to provide
an efficient and complete research platform. Nevertheless, we
believe that the HBDP will provide a sufficiently secure
environment for the use of eHealth data in health care research.
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