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Abstract

Background: The current COVID-19 pandemic is unprecedented; under resource-constrained settings, predictive algorithms
can help to stratify disease severity, alerting physicians of high-risk patients; however, there are only few risk scores derived
from a substantially large electronic health record (EHR) data set, using simplified predictors as input.

Objective: The objectives of this study were to develop and validate simplified machine learning algorithms that predict
COVID-19 adverse outcomes; to evaluate the area under the receiver operating characteristic curve (AUC), sensitivity, specificity,
and calibration of the algorithms; and to derive clinically meaningful thresholds.

Methods: We performed machine learning model development and validation via a cohort study using multicenter, patient-level,
longitudinal EHRs from the Optum COVID-19 database that provides anonymized, longitudinal EHR from across the United
States. The models were developed based on clinical characteristics to predict 28-day in-hospital mortality, intensive care unit
(ICU) admission, respiratory failure, and mechanical ventilator usages at inpatient setting. Data from patients who were admitted
from February 1, 2020, to September 7, 2020, were randomly sampled into development, validation, and test data sets; data
collected from September 7, 2020, to November 15, 2020, were reserved as the postdevelopment prospective test data set.

Results: Of the 3.7 million patients in the analysis, 585,867 patients were diagnosed or tested positive for SARS-CoV-2, and
50,703 adult patients were hospitalized with COVID-19 between February 1 and November 15, 2020. Among the study cohort
(n=50,703), there were 6204 deaths, 9564 ICU admissions, 6478 mechanically ventilated or EMCO patients, and 25,169 patients
developed acute respiratory distress syndrome or respiratory failure within 28 days since hospital admission. The algorithms
demonstrated high accuracy (AUC 0.89, 95% CI 0.89-0.89 on the test data set [n=10,752]), consistent prediction through the
second wave of the pandemic from September to November (AUC 0.85, 95% CI 0.85-0.86) on the postdevelopment prospective
test data set [n=14,863], great clinical relevance, and utility. Besides, a comprehensive set of 386 input covariates from baseline
or at admission were included in the analysis; the end-to-end pipeline automates feature selection and model development. The
parsimonious model with only 10 input predictors produced comparably accurate predictions; these 10 predictors (age, blood
urea nitrogen, SpO2, systolic and diastolic blood pressures, respiration rate, pulse, temperature, albumin, and major cognitive
disorder excluding stroke) are commonly measured and concordant with recognized risk factors for COVID-19.

Conclusions: The systematic approach and rigorous validation demonstrate consistent model performance to predict even
beyond the period of data collection, with satisfactory discriminatory power and great clinical utility. Overall, the study offers
an accurate, validated, and reliable prediction model based on only 10 clinical features as a prognostic tool to stratifying patients
with COVID-19 into intermediate-, high-, and very high-risk groups. This simple predictive tool is shared with a wider health
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care community, to enable service as an early warning system to alert physicians of possible high-risk patients, or as a resource
triaging tool to optimize health care resources.

(J Med Internet Res 2022;24(1):e31549) doi: 10.2196/31549
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Introduction

The COVID-19 pandemic has impacted more than 200 countries,
claimed more than 3 million lives, presenting an urgent threat
to global health. Under resource-constrained settings, a validated
model using large-scale real-world data to predict COVID-19
prognosis can rapidly identify the individuals who are at risk
of COVID-19 adverse outcomes and mortality, so they could
benefit from early interventions.

Several studies have derived prognostic predictors for
COVID-19; however, currently there are only few COVID-19
risk calculation tools with simplified predictors for stratification
that leverage on a substantially large US electronic health record
(EHR) data set of statistically meaningful size [1,2]. The Acute
Physiology and Chronic Health Evaluation (APACHE) II score
[3] has been widely used to predict in-hospital mortality, and
has been found to predict mortality in patients with COVID-19,
outperforming Sequential Organ Failure Assessment (SOFA)
[4] and CURB-65 [5] scores in a retrospective study of 154
patients in China [6]. COVID-GRAM [2] is a web-based
calculator to estimate the occurrence of ICU admission,
mechanical ventilation, or death in hospitalized patients with
COVID-19; it has been validated in a study of nearly 1600
patients in China. The Coronavirus Clinical Characterization
Consortium (4C) Mortality Score [1] developed by the
International Severe Acute Respiratory and Emerging Infections
Consortium (ISARIC) World Health Organization (WHO)
Clinical Characterisation Protocol UK (CCP-UK) study is a
risk stratification tool to predict in-hospital mortality by
categorizing patients at low, intermediate, high, or very high
risk of death. Separately, an accurate, machine learning–based
COVID-19 mortality prediction model has been developed
based on data from the Mount Sinai Health System; however,
its validation data set is limited in size [7].

The objective of this paper is to develop and validate simplified
and parsimonious predictive algorithms, leveraging large size,
near real-time real-world data as a risk stratification
methodology to identify patients who are at heightened risk of
(1) mortality; (2) ICU admission; (3) composite of invasive
mechanical ventilation/extracorporeal membrane oxygenation
(ECMO); (4) composite of acute respiratory distress syndrome
(ARDS)/respiratory failure, which can be easily integrated into
the hospital electronic medical record system as a risk
stratification and triaging tool.

Methods

Data Source
This is a retrospective observational cohort analysis of
multicenter, longitudinal, anonymized patient-level data from

the Optum EHR COVID-19 database. It includes demographics,
insurance status, medication prescription, vital signs, coded
diagnoses, procedures, laboratory results, visits, encounters,
and providers. Currently, there are 3,702,050 patients in the
data release dated January 27, 2021. As deidentified data are
used for the study, it was exempt from Institutional Review
Board approval.

Study Period
The study period was from February 1, 2020, to January 27,
2021. A baseline of up to 1 year prior to and including index
date was used for assessment of demographics, lifestyle factors,
and comorbidity at baseline. Patients were followed up to 28
days from admission, unless they were censored by in-hospital
mortality or discharged.

Participants
Study cohort consists of patients hospitalized with COVID-19
aged 18 and older, with a confirmed diagnosis or positive test
of COVID-19 infection. A COVID-19 diagnosis was defined
as the first occurrence on or after February 1, 2020, of any of
the following: (1) positive result from SARS-CoV-2 viral RNA
or antigen tests; (2) International Classification of Diseases,
Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis
codes U07.1 (COVID-19, virus identified), J12.81 (pneumonia
due to SARS-associated coronavirus), J12.89 (other viral
pneumonia), or J80 (ARDS); and (3) ICD-10-CM code B97.29
(other coronavirus as the cause of disease) or B34.20
(coronavirus infection, unspecified) occurring on or before April
30, 2020. The expanded diagnosis code list, beyond
COVID-19–specific diagnosis code (U07.1), was used because
U07.1 was either unavailable (pre-April 2020) or was being
implemented (April 2020), resulting in the use of alternative
codes for COVID-19 in early pandemic. Other codes such as
J20.3 (acute bronchitis due to coxsackievirus) were excluded
due to very few uses (<10 patients) in the study period.

Patients were excluded for any of the following: (1) missing
age or sex; (2) under the age of 18; (3) diagnosis or procedure
codes for labor and delivery during hospitalization; (4) diagnosis
codes for trauma, injury, fracture, or poisoning during the first
2 days of hospitalization; (5) admitted to hospital more than 10
days prior to COVID-19 diagnosis or 28 days after COVID-19
diagnosis; (6) diagnosed or admitted to hospital after November
16, 2020, therefore with less than 10 weeks between their first
COVID-19 diagnosis date or hospital admission date, and the
last database refresh date (January 27, 2021; Figure 1).
Additional sensitivity analysis was conducted between the final
study cohort (n=50,703) and patients who tested positive for
SARS-CoV-2 (n=38,277), a subset of the former.
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Sampling
In the final cohort that satisfied the study criteria (n=50,703),
data from patients with an index date prior to September 7,
2020, were referred to as model development data set
(n=35,840), which was randomly sampled without replacement
using 28-day in-hospital mortality as stratification factor into
40% training data set (n=14,336), 30% validation data set
(n=10,752) for hyperparameter tuning and threshold calculation,
and 30% test data set (n=10,752). The sampling ratio is
determined such that the validation or test data set alone can
satisfy the sample size requirement; the minimum sample size
is estimated to be 8605, assuming a predetermined sensitivity
of 0.7 and the prevalence of all-cause mortality of 15% with
95% CI and maximum marginal error of estimate of 2.5% [8].
Furthermore, an independent validation consisting of patients
with index date from September 7 to November 15, 2020, was
referred to as postdevelopment prospective test data set
(n=14,863).

Index Date
The index date was defined as hospital admission date.

Sample Size
The initial anonymized data for 3,702,050 patients from 885,677
providers and 2465 delivery networks for the study period
February 1, 2020, to January 27, 2021, were transferred from
Optum, among which 585,867 patients were diagnosed or tested
positive for SARS-CoV-2 infection.

Outcome
The outcomes were 28-day in-hospital (1) all-cause mortality;
(2) ICU admission; (3) composite of invasive mechanical
ventilation or ECMO; (4) composite of ARDS and respiratory
failure. These were assessed as dichotomous outcomes and
individually modeled. Outcome-specific exclusions were applied
as appropriate to include only incident outcomes.

Covariates
A total of 386 study covariates (with a minimum 70%
[35,493/50,703 patients] coverage among study cohort)
consisting of patients’ baseline demographics (age, sex, census
division, insurance status, race, ethnicity), lifestyle factors
(smoking status, BMI), comorbidities (including atrial
fibrillation cancer history, cerebrovascular disease, chronic
kidney disease stage I-V, chronic obstructive pulmonary disease,
coronary artery disease, Type I/II diabetes mellitus, HIV, stroke,
etc.), baseline medication (including antidiabetics,
anticoagulants, antihypertensives, antiplatelets, steroids, etc.)
within 12 months prior to index date, vital signs (blood
pressures, heart rate, pulse, respiration rate, temperature),
laboratory values (including albumin, alanine transaminase,
aspartate aminotransferase, total bilirubin, B-type natriuretic
peptide, blood urea nitrogen (BUN), chloride, creatinine,
C-reactive protein, D-dimer, fibrinogen, hemoglobin,
lymphocyte, monocyte, neutrophil, oxygen saturation platelet
count, arterial blood pH, etc.), and treatment (including diuretics,
disease-modifying antirheumatic drugs, steroids, etc.)
administered on the day of hospital admission were included
in the analysis. Concretely, baseline medication, comorbidity,

and postadmission treatment were expressed as dichotomous
variables; categorical variables were converted to dummy
variables; numerical variables were used without
standardization, unless when fitting to penalized (Lasso or
Ridge) logistic regression models, while numerical covariates
were normalized using a min–max standardization to speed up
convergence.

Missing Data
One of the challenges of working with real-world data is the
missing covariates. Assuming covariates are missing at random,
multiple imputation by chained equations via random forest [9]
was used to impute covariates with missing values. Ten
complete data sets each with 10 iterations were imputed with
predictive mean matching using available covariates while
excluding the outcome variables. The prediction performances
of sparsity-aware models (XGB [10]) between imputed and
nonimputed data set were compared in the sensitivity analysis.

Given the intention to develop an algorithm of great relevance
to as many patients as possible, we have restricted the model
input to covariates with a minimum of 70% coverage in the
study cohort. Overall, the proportion of missing values among
the vital and laboratory variables ranges from 10.44%
(5295/50,703) to 99.36% (50,381/50,703) out of 50,703 patients;
45 of 431 variables were not included as input to the model due
to more than 30% (15,211/50,703) of missingness (Multimedia
Appendices 1 and 2). Sensitivity analysis was conducted to
evaluate whether inclusion of additional covariates with higher
degrees of missingness (ie, varying the cutoffs from 10% to
90%) aids in improving model performance, though it may
increase the sensitivity of the models to biases due to
nonignorable missingness in the data.

Model Development
We have applied a systematic approach to model development
and validation. A framework of 6 machine learning algorithms
(XGB [10,11], penalized logistic regression [12,13] with Lasso
[14] or Ridge loss [11], random forest [11,15,16], decision tree
[17], and LightGBM [18]) has been adopted to develop
interpretable models to predict the prognosis of COVID-19.

In the preliminary analysis, the most performant algorithm was
selected from the candidate algorithms; prior to model training,
hyperparameter optimization via grid search, ranging from 96
to 243 folds, was performed on 6 candidate algorithms
individually for full and simplified models. The full model uses
all the available 386 input features after extraction and
transformation in preliminary analysis, while the simplified
model recursively eliminates the aforementioned input to yield
a maximum of 20 variables [19]. The algorithm with best
performance (area under the receiver operating characteristic
curve [AUC], Brier score [20], and calibration [21]) on the test
data set was selected for the final analysis.

In the final analysis, model input is further iteratively reduced
to a maximum of 5 variables with a step size of 1; 100 individual
runs were performed at each step, with retuned model
parameters every 5 steps. The selected features were pooled
and plotted in frequency heatmap with the corresponding AUC.
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The model performance is evaluated against outcome variables
in the test and postdevelopment prospective test data sets via
AUC, Brier score, and calibration curve. The 95% CIs for AUC
and Brier score were calculated based on percentiles from
bootstrapped resampling with replacement (bootstrap sample
size = 2000) without bias correction or acceleration [22]. The
calibration curves (number of discretized bins = 10) were plotted
for all the runs.

Model Validation
Rigorous validation analysis was performed to ensure robustness
and reliability of the predictions. Both full and simplified models
of 6 candidate algorithms were trained and validated during the
model development phase with data from February 1 to
September 6, where the test data set was held out from model
training and used solely for reporting the performance.
Furthermore, the model has been additionally validated
externally, using the postdevelopment prospective test data set
collected from September 7 to November 15, 2020, to
demonstrate consistent model performance through the
subsequent wave of the pandemic. Model discrimination was
performed on the imputed test data set by assessing AUC on
the stratified analysis by sex, age, and racial groups.

Model Benchmark
The performance of the risk prediction models has been
benchmarked to (1) the baseline model and (2) published
COVID-19 prognostic scores. The baseline model was
developed using XGB with optimized hyperparameters on age
and sex only. Evaluation metrics including AUC, sensitivity,
specificity, and decision curve analysis were assessed to
compare the performance and utility of prognostic scores
(APACHE II [3,23], CURB-65 [5,24,25], E-CURB [26], The
National Early Warning [NEWS] 2 score [25,27-29], Respiratory
Rate-Oxygenation [ROX] index [29,30], ISARIC 4C mortality
score [1,25]). AUC is reported based on complete case data
from test and postdevelopment prospective test data sets, and
no imputation was performed.

Predictors
Feature importance is ranked by Shapley values [31] from test
and postdevelopment prospective test data sets in the SHapley
Additive exPlanations (SHAP) summary plot. Shapley value
calculates fair contribution and the extent of predictors toward
the model output [32]. It measures feature importance by the
magnitude and the direction of contributions. The dependence
between model prediction and age is plotted with age on the
x-axis and its impact on prediction represented by Shapley value
on the y-axis for every patient, colored by the magnitude of a
second feature (BUN, respiration rate, pulse, lymphocyte count)
individually.

Receiver Operating Characteristic Curve Analysis
We adopted two approaches in determining the optimal
threshold on the receiver operating characteristic curve.

Assuming the sensitivity and specificity were weighted equally
without ethical, cost, and prevalence constraints, the optimal
cutoff is at the location where the Youden index (sum of
specificity and sensitivity – 1) is maximized at the test data set
[33-36]. This approach relies solely on the predictive accuracy
of a model, and consequences of the predictions (ie, cost of false
positives and false negatives) are not considered. In the second
approach, clinical utility–based decision theory was used in
developing a cost-sensitive threshold, where it builds in disease
prevalence and costs of false positive and false negatives of
specific diagnostic scenario [33,37].

Decision curve analysis assists in clinical judgment and
comparison about the relative value of benefits associated with
the use of a clinical prediction tool [38,39]. The standardized
net benefit of full model, simplified model (with 10 input
variables), and selected benchmark prognostic scores was
calculated and plotted across probabilities. The benchmark
models that use point scores were calibrated to test data prior
to decision curve analysis.

Results

Patient Characteristics
Figure 1 shows patient attrition flowchart, and the workflow of
model development and validation is in Figure 2. Patients’
baseline and clinical characteristics at admission are summarized
in Table 1. Validation and test data sets are largely homogeneous
to the training data set; however, the postdevelopment
prospective test data set that was collected later in the pandemic
from September to November presents more differences in
geographic locations (a decline in the proportion of patients in
Middle Atlantic from 22.69% [8132/35,840] to 8.68%
[1290/14,863] after September 7, and an increase in West North
Central from 9.83% [3523/35,840] to 24.18% [3594/14,863])
and racial distribution (the proportion of White increased from
53.87% [19,308/35,840] to 72.88% [10,832/14,863]). However,
the overall mortality remains consistent. Hypertension (57.55%
[29,179/50,703]), obesity (47.51% [24,089/50,703]), diabetes
mellitus (34.44% [17,461/50,703]), chronic kidney disease
(19.79% [10,033/50,703]), and coronary artery disease (17.74%
[8996/50,703]) were the common comorbidities among the
cohort.

The study cohort is defined as hospitalized adult patients with
COVID-19 who were either diagnosed with relevant diagnosis
codes or tested positive for SARS-CoV-2 viral RNA or antigen
tests. In the subgroup analysis of patients who tested positive
for SARS-CoV-2, model performances of these 2 groups (ie,
overall cohort and tested positive subgroup) were largely similar
with less than 1% difference in AUC across all outcomes for
full and simplified models (Multimedia Appendix 3).
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Figure 1. Patient attrition diagram. ∧With relevant COVID-19 diagnosis codes or tested positive for SARS-CoV-2. *Non-exclusive critera: overlapping
was allowed.
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Figure 2. Model development and validation framework including data sampling and corresponding sensitivity analyses.
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Table 1. Demographic and clinical characteristics of hospitalized patients with COVID-19 at baseline and admission.

Prospective test data
set (n=14,863)

Test data set
(n=10,752)

Validation data set
(n=10,752)

Training data set
(n=14,336)

Characteristic

63.8 (16.8)60.8 (17.1)60.9 (17.2)60.9 (17.2)Mean (SD) age at baseline, years

Distribution, n (%)

1015 (6.83)911 (8.47)920 (8.56)1231 (8.59)18-34

1893 (12.74)1840 (17.11)1780 (16.56)2383 (16.62)35-49

4110 (27.65)3293 (30.63)3193 (29.70)4337 (30.25)50-64

3325 (22.37)2141 (19.91)2296 (21.35)2922 (20.38)65-74

2943 (19.80)1606 (14.94)1589 (14.78)2165 (15.10)75-84

1577 (10.61)961 (8.94)974 (9.06)1298 (9.05)85+

Sex at baseline, n (%)

7645 (51.44)5629 (52.35)5619 (52.26)7473 (52.13)Male

7218 (48.56)5123 (47.65)5133 (47.74)6863 (47.87)Female

Race at baseline, n (%)

1867 (12.56)2668 (24.81)2669 (24.82)3466 (24.18)African American

216 (1.45)276 (2.57)268 (2.49)368 (2.57)Asian

10,832 (72.88)5795 (53.90)5734 (53.33)7779 (54.26)White

1948 (13.11)2013 (18.72)2081 (19.35)2723 (18.99)Other/Unknown

Census division at baseline, n (%)

4174 (28.08)2908 (27.05)2942 (27.36)3778 (26.35)East North Central

1205 (8.11)754 (7.01)708 (6.58)1010 (7.05)East South Central

1290 (8.68)2423 (22.54)2488 (23.14)3221 (22.47)Middle Atlantic

923 (6.21)363 (3.38)355 (3.30)496 (3.46)Mountain

769 (5.17)763 (7.10)705 (6.56)1042 (7.27)New England

345 (2.32)317 (2.95)331 (3.08)475 (3.31)Pacific

2120 (14.26)1810 (16.83)1802 (16.76)2454 (17.12)South Atlantic/West South Central

3594 (24.18)1060 (9.86)1067 (9.92)1396 (9.74)West North Central

443 (2.98)354 (3.29)354 (3.29)464 (3.24)Other/Unknown

31.6 (8.7)31.2 (8.6)30.9 (8.3)31.0 (8.5)BMI at baseline (kg/m2), mean (SD)

Distribution, n (%)

304 (2.05)221 (2.06)235 (2.19)352 (2.46)Underweight

2283 (15.36)1833 (17.05)1873 (17.42)2526 (17.62)Healthy weight

3679 (24.75)2838 (26.40)2878 (26.77)3697 (25.79)Overweight

3228 (21.72)2344 (21.80)2247 (20.90)3041 (21.21)Obese

4069 (27.38)2742 (25.50)2739 (25.47)3679 (25.66)Morbidly obese

1300 (8.75)774 (7.20)780 (7.25)1041 (7.26)Unknown

Comorbidity at baselinea, n (%)

894 (6.01)501 (4.66)502 (4.67)676 (4.72)Cerebrovascular disease

3127 (21.04)2040 (18.97)2058 (19.14)2808 (19.59)Chronic kidney disease

2369 (15.94)1553 (14.44)1534 (14.27)2137 (14.91)Congestive heart failure

2969 (19.98)1800 (16.74)1797 (16.71)2430 (16.95)Coronary artery disease

5408 (36.39)3586 (33.35)3636 (33.82)4831 (33.70)Diabetes mellitus

8852 (59.56)6063 (56.39)6091 (56.65)8173 (57.01)Hypertension

J Med Internet Res 2022 | vol. 24 | iss. 1 | e31549 | p. 7https://www.jmir.org/2022/1/e31549
(page number not for citation purposes)

He et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Prospective test data
set (n=14,863)

Test data set
(n=10,752)

Validation data set
(n=10,752)

Training data set
(n=14,336)

Characteristic

1052 (7.08)619 (5.76)606 (5.64)830 (5.79)Solid tumor

12 (0.08)20 (0.19)16 (0.15)28 (0.20)Transplant history

28-day outcomes, n (%)

1782 (11.99)1327 (12.34)1326 (12.33)1769 (12.34)All-cause mortality

2422 (16.30)2148 (19.98)2181 (20.28)2813 (19.62)Intensive care unit admission

7009 (47.16)5384 (50.07)5500 (51.15)7276 (50.75)Acute respiratory distress syndrome (respiratory
failure)

1483 (9.98)1498 (13.93)1535 (14.28)1962 (13.69)Extracorporeal membrane oxygenation (mechan-
ical ventilation)

Vitals at admission, median (10th-90th percentile)

73.0 (56.0-90.0)73.0 (56.0-90.0)73.0 (56.0-90.0)73.0 (56.0-90.0)Diastolic blood pressure (mmHg)b

128.0 (103.0-159.0)125.0 (101.0-154.0)125.0 (101.0-155.0)125.0 (100.0-154.0)Systolic blood pressure (mmHg)b

81.0 (61.0-107.6)85.0 (64.0-110.0)85.0 (64.0-110.0)85.0 (64.0-110.0)Pulse (bpm)b

18.0 (16.0-25.0)19.0 (16.0-28.0)19.0 (16.0-28.0)19.0 (16.0-28.0)Respiratory rate (breaths/minute)b

36.7 (36.2-37.7)36.8 (36.3-37.8)36.8 (36.3-37.9)36.8 (36.3-37.9)Temperature (oC)b

Laboratory valuesa at admission, median (10th percentile-90th percentile)

78.0 (50.0-134.0)76.0 (48.0-135.0)76.0 (49.0-136.0)77.0 (49.0-137.0)Alkaline phosphatase (IU/L)

27.0 (12.0-68.0)28.0 (12.0-79.0)29.0 (12.0-80.0)28.0 (12.0-79.0)Alanine aminotransferase (IU/L)

34.0 (18.0-80.0)36.0 (18.0-95.0)36.0 (18.0-97.0)37.0 (18.0-95.0)Aspartate aminotransferase (IU/L)

3.6 (2.8-4.2)3.6 (2.7-4.2)3.6 (2.7-4.2)3.5 (2.7-4.2)Albumin (g/dL)

12.0 (7.0-16.0)12.0 (7.0-17.0)12.0 (7.0-17.0)12.0 (7.0-17.0)Anion gap (mEq/L)

18.0 (9.0-44.0)16.0 (8.0-47.0)17.0 (8.0-46.0)16.0 (8.0-47.0)Blood urea nitrogen (mg/dL)

24.0 (19.0-29.0)24.0 (19.0-29.0)24.0 (19.0-29.0)24.0 (19.0-29.0)Bicarbonate (mmol/L)

0.6 (0.3-1.1)0.6 (0.3-1.2)0.6 (0.3-1.2)0.6 (0.3-1.2)Bilirubin total (mg/dL)

73.0 (10.0-206.6)82.0 (10.2-220.0)82.2 (11.0-218.0)85.0 (10.3-229.0)C-reactive protein (mg/dL)

101.0 (94.0-107.0)101.0 (94.0-108.0)101.0 (94.0-108.0)101.0 (94.0-108.0)Chloride (mmol/L)

122.0 (91.2-244.0)121.0 (92.0-240.6)121.0 (92.0-236.0)120.0 (91.0-242.0)Glucose (mg/dL)

13.2 (10.1-15.6)13.2 (10.2-15.7)13.2 (10.1-15.6)13.2 (10.0-15.5)Hemoglobin (g/dL)

14.1 (5.3-30.0)14.6 (5.8-30.2)14.8 (5.6-30.7)14.1 (5.4-30.0)Lymphocyte (%)

7.8 (3.6-13.1)7.1 (3.2-12.7)7.0 (3.2-12.6)7.1 (3.1-12.9)Monocyte (%)

75.0 (57.0-88.0)75.2 (57.0-88.0)75.0 (57.0-88.0)75.8 (57.0-88.0)Neutrophil (%)

205.0 (124.0-335.0)211.0 (126.0-351.0)210.0 (127.0-348.0)210.0 (125.0-351.0)Platelet count (x109/L)

3.9 (3.3-4.7)3.9 (3.3-4.8)3.9 (3.3-4.8)3.9 (3.3-4.8)Potassium (mmol/L)

7.1 (6.2-8.0)7.3 (6.2-8.2)7.2 (6.2-8.2)7.2 (6.2-8.2)Protein total (g/dL)

13.8 (12.4-16.7)13.8 (12.4-17.0)13.8 (12.4-16.9)13.9 (12.4-17.0)Red cell distribution width coefficient of varia-
tion (%)

136.0 (131.0-141.0)136.0 (131.0-141.0)136.0 (131.0-142.0)136.0 (130.0-141.0)Sodium (mmol/L)

95.0 (90.0-99.0)96.0 (91.0-99.0)96.0 (90.0-99.0)96.0 (91.0-99.0)Oxygen saturation pulse oximeter (%)

95.0 (87.0-99.0)95.0 (87.0-99.0)95.0 (87.0-99.0)95.0 (87.0-99.0)Oxygen saturation pulse oximeterb (%)

92.0 (83.0-97.0)93.0 (84.0-97.0)93.0 (84.0-97.0)93.0 (84.0-97.0)Oxygen saturation pulse oximeterc (%)
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Prospective test data
set (n=14,863)

Test data set
(n=10,752)

Validation data set
(n=10,752)

Training data set
(n=14,336)

Characteristic

6.9 (3.9-13.5)7.0 (4.0-13.8)7.1 (4.0-13.9)7.1 (4.0-14.1)White blood cell count (x109/L)

aNon-exhaustive list.
bFirst measurement on the day of hospital admission.
cMinimum measurement on the day of hospital admission.

Model Performance
We have adopted a systematic framework of model
development, including a variety of tree-, boosting-, and
ensemble-based machine learning models, combined with
rigorous validation on statistically meaningful sample size. The
model performances (AUC and Brier score) on test and
prospective test data sets are summarized in Table 2 and Figure

3. AUC is a widely used metric for performance measurement
of classification; Brier score is a proper scoring rule, measuring
mean squared error between prediction and outcome, impacted
by both discrimination and calibration. Calibration of the
algorithm is further assessed by plotting the predicted proportion
against the observed proportion of outcome in each decile of
risk (Figure 4).
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Figure 3. Receiver operating characteristics (AUROC) curves on four prediction outcomes in final analysis: (a) all-cause mortality; (b) respiratory
failure including ARDS; (c) ICU admission; (d) invasive mechanical ventilation including ECMO. Full model is colored in black, parsimonious model
with ten input variables is colored in orange. Solid line represents model performance on test dataset (n=10,752); dashed line represents post-development
prospective test dataset (n=14,863). ARDS: acute respiratory distress syndrome. ECMO: extracorporeal membrane oxygenation.
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Figure 4. Calibration curve (number of bins = 10) on four prediction outcomes in final analysis: (a) all-cause mortality; (b) respiratory failure including
ARDS; (c) ICU admission; (d) invasive mechanical ventilation including ECMO. Full model is colored in black, parsimonious model with ten input
variables is colored in orange. Solid line represents calibration on test dataset (n=10,752); dashed line represents calibration on post-development
prospective test dataset (n=14,863). ARDS: acute respiratory distress syndrome. ECMO: extracorporeal membrane oxygenation.
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Table 2. Summary of model performances (AUCa and Brier Score) on test data set and postdevelopment prospective test data set in the final analysis.
The full model uses all the available 210 covariates with less than 30% (15,211/50,703) missingness (excluding postadmission treatment) among the
study cohort (n=50,703); the parsimonious N10 model only uses 10 predictors prefiltered from the automatic predictor selection.

Brier score (95% CI)AUCa (95% CI)Outcome and model

Prospective test data setTest data setProspective test data set, %Test data set, %

All-cause mortality

0.079 (0.078-0.080)0.071 (0.070-0.072)85.4 (85.1-85.7)88.7 (88.4-89.0)Full model

0.081 (0.080-0.081)0.074 (0.073-0.075)84.3 (84.0-84.6)87.6 (87.2-87.9)N10 model

Intensive care unit admission

0.115 (0.114-0.115)0.123 (0.122-0.124)77.7 (77.3-78.0)79.7 (79.4-80.1)Full model

0.123 (0.122-0.124)0.138 (0.137-0.139)73.5 (73.2-73.9)73.6 (73.2-74.0)N10 model

Respiratory failureb

0.180 (0.179-0.181)0.172 (0.171-0.173)80.7 (80.5-80.9)82.3 (82.0-82.5)Full model

0.192 (0.191-0.193)0.185 (0.184-0.186)78.1 (77.9-78.3)79.5 (79.2-79.7)N10 model

Mechanical ventilationc

0.074 (0.074-0.075)0.090 (0.089-0.091)81.1 (80.8-81.5)83.6 (83.3-84.0)Full model

0.081 (0.081-0.082)0.101 (0.100-0.101)76.6 (76.2-77.1)78.1 (77.7-78.5)N10 model

aAUC: area under the receiver operating characteristic curve.
bRefers to composite of respiratory failure and acute respiratory distress syndrome.
cRefers to composite of invasive mechanical ventilation and extracorporeal membrane oxygenation.

The model predicts 28-day in-hospital mortality accurately
(AUC 0.88, 95% CI 0.87-0.88 on the test data set) and reliably
through the second wave of pandemic (AUC 0.84, 95% CI
0.84-0.85 on the prospective test data set). Given this data set
was acquired later in time from September to November and
more likely to suffer from data lag, the completeness and
accuracy of outcome data are hypothesized to contribute to the
decrease in model performance; a subgroup analysis on patients
with the complete clinical features shows an improved
performance (AUC 0.89, 95% CI 0.88-0.90; Table 3).

We also examined discriminatory capacity in subgroups
stratified by sex, race, and age group separately. It predicts
all-cause mortality similarly among men (AUC 0.84, 95% CI
0.84-0.84) and women (AUC 0.84, 95% CI 0.84-0.85) and is
marginally more predictive among Asians (AUC 0.86, 95% CI
0.85-0.87) compared with African Americans (AUC 0.83, 95%
CI 0.83-0.84) and Whites (AUC 0.84, 95% CI 0.84-0.84). Given
age is an important predictor, the model is more sensitive toward
elderly cohort (more accurately ruling out negative cases) and
conversely more specific toward younger cohort (more
accurately ruling in the positive cases).

Algorithm Selection
In the preliminary analysis, all the candidate algorithms perform
comparably on test and prospective test data sets, with less than
3% difference in AUC for all outcomes between full and
simplified models (Multimedia Appendix 4). Of the 6 candidate
machine learning algorithms, boosting-based algorithms (XGB
[10] and LightGBM [18]) performed consistently better [40]
for both full and preliminary simplified models (n=20) with less
computation time and produced well-calibrated probabilities
(Multimedia Appendices 5 and 6); XGB was selected given it

has been validated in a similar approach [7,41,42]. With
adequate model calibration and low Brier score, no adjustment
or calibration was subsequently performed.

Predictor Selection
Predictors were selected in the development pipeline;
specifically, 100 individual runs of recursive predictor
elimination are pooled at each step between 5- and 20-input
model with an increment of 1. The selection of predictors was
analyzed in the frequency heatmap (Multimedia Appendix 7)
and automated from the pipeline while nonmodifiable factors
such as diagnosis month or census division were precluded.

With only 10 predictors, the final parsimonious model (N10)
still predicts COVID-19 adverse outcomes accurately and
similarly to the full model (Table 2); for instance, the final
parsimonious model consisting of age, systolic and diastolic
blood pressures, respiration rate, pulse, temperature, BUN,
SpO2, albumin, and presence of any major cognitive disorder
(including dementia, Parkinson disease, and Alzheimer disease)
as input predicts all-cause mortality accurately with AUC of
0.88 (95% CI 0.87-0.88).

The magnitude and direction of individual feature contribution
to prediction are inferred from the summary plot of Shapley
values sorted by the descending order of feature impact
(Multimedia Appendix 8); an increase in age [43-45], respiration
rate [46], BUN [45,47,48], and aspartate transaminase [45,49],
and a decrease in oxygen saturation [7,50], platelet count
[26,51,52], and albumin [45,53] are associated with the increase
in mortality risk.
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Comparison With Existing Benchmark
The model shares commonalities (eg, age, respiration rate, blood
pressures, pulse, BUN, SpO2, albumin) with existing prognostic
scores for community-acquired pneumonia or COVID-19
[5,26,27]; however, with automated feature selection from

comprehensive input covariates, and machine learning
algorithm, it compares favorably with existing scores across
diagnostic statistics (Table 3) and shows greater clinical utility
across a wide range of probability thresholds (Figure 5) in
decision curve analysis.

Figure 5. Decision curve analysis of standardized net benefit across different risk thresholds. Dotted line represents the scenario if everyone is treated;
dashed line represents the scenario if none is treated.

Discussion

Summary of Principal Findings
In this paper, we have adopted a systematic framework of
developing and evaluating various machine learning techniques
in predicting COVID-19 prognosis on near real-time, large-size
EHR data in the United States. Boosting-based algorithms
(XGBoost and LightGBM) have consistently outperformed
other machine learning algorithms and COVID-19 benchmark
risk scores with higher accuracy on the test data set (AUC 0.89,
95% CI 0.88-0.89) and on the prospective test data set (AUC
0.85, 95% CI 0.85-0.86), and better clinical utility on decision
curve analysis. After further simplification of the model to only
10 clinical features, relative to full model it provides comparable
discriminatory performance (AUC 0.88 95% CI 0.87-0.88) and
clinical utility.

Predictors
A major strength of this study is the use of near real-time,
large-size EHR data, resulting in predictors that are highly
representative and relevant to clinical practice. We have
restricted the analysis to commonly measured covariates with
less than 30% (15,211/50,703) of missing values among the
cohort. A higher coverage cutoff precludes key predictors such
as oxygen saturation [7,50], respiration rate [46], and BUN
[47,48] leading to degradation of model performance
(Multimedia Appendices 9 and 10).

Postadmission treatment is not a major predictor of model
performance; they are not included in the final analysis, which
results in minimal impact of the model performance on all-cause
mortality. Patients are presented at different disease trajectories
when admitted to hospital, with some being in critical condition;
for instance, among 9564 ICU patients, 4745 (49.61%) were
admitted to ICU on day 1 of hospital admission. The relationship
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between treatment type and outcome is therefore confounded
by the stages of the disease course.

Age is identified as a crucial predictor for adverse outcomes
[44]. It increases almost monotonically with health outcomes
such as mortality and ARDS, but nonmonotonically with
resource-dependent outcomes, such as ICU admission and
invasive mechanical ventilation/ECMO, as these outcomes are
closely associated with the availability of health care resources
such as ventilator and ICU rooms. This is more noticeable for
elderly patients over 75 years, who are disadvantaged for
mechanical ventilation and ICU, presumably due to the scarcity
of health care resources during the pandemic, though they are
at highest mortality risk (Multimedia Appendix 11).

Clinical Application
When applying the model to clinical setting, threshold selection
is of great practical importance in producing dichotomous
predictions. In the data-driven, cost-agnostic approach, threshold
is derived numerically from the AUC curve (Figure 3), which
maximizes the Youden index [34] (P=.13). When the model is
applied to inform clinical decision making, such as identifying

patients for dexamethasone treatment, insights from relevant
clinical trials could guide threshold calculation. For instance,
the findings from the Randomised Evaluation of COVID-19
Therapy (RECOVERY) trial [54], a large-enrollment,
randomized controlled trial of dexamethasone, indicate a
mortality risk reduction of 4.84% among patients who received
oxygen therapy or were mechanically ventilated (393/1603,
24.52%) compared with the control group (965/3287, 29.36%);
conversely, there was an increase in mortality risk of 3.74%
among patients who require no oxygen (dexamethasone group
[89/501, 17.76%] vs usual care group [145/1034, 14.02%]).
When the model is applied clinically as a prognostic tool to
identify patients who will receive dexamethasone, cost of false
negatives (ie, misclassifying patients as low risk, and therefore
they missed dexamethasone treatment) is 4.84%, and cost of
false positive (ie, misclassifying patients as high risk) is 3.74%
when cost of misclassification is expressed as an increase in
mortality risk. Given the mortality rate of 1592/6425 (24.78%)
from the RECOVERY trial [54], the threshold is found from
the AUC curve at P=.33, where the slope of curve [33,37] is
(0.0374/0.0484) x (1 – 0.248)/(0.248) = 2.35. Model
performances are evaluated at these 2 thresholds in Table 3.

Table 3. Comparison with existing risk scores evaluated on test data sets to predict 28-day all-cause mortality. Sensitivity and specificity were evaluated
at 2 different thresholds.

ndThreshold 2cThreshold 1bAUCa (95% CI), %Risk score

Specificity, %Sensitivity, %Specificity, %Sensitivity, %

176926.092.468.566.272.3 (69.5-74.9)Acute Physiology and Chronic
Health Evaluation II

16,64078.354.292.728.268.5 (67.0-70.0)Respiratory Rate-Oxygenation In-
dex

15,00169.177.292.436.278.7 (77.6-79.7)CURB-65

577261.387.383.463.481.9 (80.3-83.3)E-CURB

14,11277.075.091.251.682.9 (81.7-84.2)National Early Warning Score 2
score

697975.771.883.862.382.2 (80.7-83.5)Coronavirus Clinical Characteriza-
tion Consortium Mortality score

25,61554.980.283.444.873.8 (73.2-74.5)Baseline model

849376.485.292.263.189.2 (88.1-90.3)Full model

10,68879.381.490.965.988.9 (88.0-90.0)N10 model

aAUC: area under the receiver operating characteristic curve.
bThreshold 1 is a clinically relevant threshold that identifies patients for dexamethasone treatment; costs of FP and FN are expressed in terms of mortality
risk.
cThreshold 2 is derived from a cost-agnostic approach and is located at the point on the area under the receiver operating characteristic curve that
maximizes the Youden index.
dNumber of hospitalized patients in the test data set and the postdevelopment test data set with complete case.

These 2 thresholds (P=.13 and .24) are similar to the
intermediate- and high-risk cutoffs used to define the severity
of pneumonia [1,55,56]. Based on these approaches, we derived
2 clinically meaningful thresholds (Table 4), stratifying patients
into (1) low-to-intermediate risk (P≤.13, observed mortality

rate = 315/8065, 3.91%); (2) high risk (0.13<P≤.24, observed
mortality rate = 225/1170, 19.23%); and (3) very high risk
(P>.24, observed mortality rate = 787/1517, 51.88%).
Scenario-based threshold can be substituted with appropriate
clinical trial insights according to different treatment options.
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Table 4. Mortality rate comparison across different risk groups on the test and postdevelopment prospective test data sets. Three risk groups were
defined as (1) low-to-intermediate–risk group (P≤.13), (2) high risk (.13<P≤.24), and (3) very high risk (P>.24). The threshold probabilities are obtained
from receiver operating characteristic analysis, which (1) maximizes the Youden index (P=.13), or (2) defined by clinical utility of dexamethasone

(P=.24) from the RECOVERYa trial.

Prospective test data setTest data setRisk group

Deaths, n (%)

(n=1782)

Patients, n (%)

(n=14,863)

Deaths, n (%)

(n=1327)

Patients, n (%)

(n=10,752)

512 (4.63)11,049 (74.34)315 (3.91)8065 (75.01)Low–intermediate

327 (18.76)1743 (11.73)225 (19.23)1170 (10.88)High

943 (45.53)2071 (13.93)787 (51.88)1517 (14.11)Very high

aRECOVERY: Randomised Evaluation of COVID-19 Therapy.

Strengths
The strengths of this research include the large size of data set,
longitudinal nature, and near real-time update of the data release.
The Optum database provides patient-level information with a
diverse mix of geographic regions, insurance types,
socioeconomic status, and ethnicity. A comprehensive list of
386 input covariates from baseline and at admission was
included in the analysis based on epidemiological and clinical
characteristics of COVID-19 cases; the end-to-end pipeline
automates feature selection and model development process,
producing risk factors that are both commonly measured at
admission with wide coverage among study cohort and
concordant with similar risk scores. This helps to improve the
usability of the model without extensive electronic medical
record integration or feeding the model with continuous data
streams. The systematic approach and rigorous validations
demonstrate consistent model performance to predict even
beyond the period of data collection, with satisfactory
discriminatory power and great clinical utility. Overall, the
study offers an accurate, validated, and reliable prediction model
based on only 10 clinical features as a prognostic tool for
stratifying patients with COVID-19 into intermediate-, high-,
and very high-risk groups. We envision this model to be used
on the day of hospital admission at an inpatient setting where
resource triaging is most relevant and early identification of
high-risk patient is the key.

Limitations
There are several limitations in our study. First, the Optum
COVID-19 database, being an EHR database, may not capture
patients’ entire interaction with health care systems because
patients can switch between different hospitals or health care
systems. This impacts several aspects of the study, from
assessment of baseline comorbidity and comedication, to capture
of outcomes during follow-up. Although we have identified a
minimum of 10-week period from database refresh date to
COVID-19 diagnosis date to allow for capture of follow-up

data and outcomes, it is possible additional data lag is still
present, challenging the completeness and accuracy of outcome
assessment.

Because of Health Insurance Portability and Accountability Act
(HIPAA)–compliance protection, patients over 89 years were
included as a single category of age in the data set, with age
being an important risk predictor of mortality. This can
potentially lead to some performance degradation for patients
aged over 89 years. Additional data, such as symptoms since
onset, could aid in early prediction of aggressive COVID-19
progression, but these were available for less than 70%
(35,493/50,703) of patients in the data set; if we had adequate
data on patient symptoms and the use of oxygen therapies, model
performance would likely improve. Similarly, this negatively
impacts the evaluation of existing prognostic scores that require
FiO2. We have referred to the best currently available
information on clinical trial for threshold calculation, and there
could still exist differences in patient population between the
RECOVERY trial and this work. Additional work is required
for validating the results on vaccinated population.

Conclusions
In this study, we presented a systematic framework of model
development based on a variety of machine learning techniques,
combined with rigorous validation on statistically meaningful
sample size. The model demonstrates consistent performance
to predict even beyond the period of data collection. The
parsimonious model with only 10 clinical features (age, systolic
and diastolic blood pressures, respiration rate, pulse,
temperature, BUN, SpO2, albumin, and presence of major
cognitive disorder) offers an accurate, validated, and calibrated
prediction to stratifying COVID-19 patients into intermediate-,
high-, and very high-risk groups. This simple predictive tool is
shared with a wider health care community (Multimedia
Appendix 12), to enable service as an early warning system to
alert physicians of possible high-risk patients.
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Multimedia Appendix 9
Sensitivity analysis on model performances (AUC) between non-imputed (in orange) and imputed data (in blue); (a) 28-day
mortality; (b) 28-day ICU admission; (c) composite of 28-day ARDS and respiratory failure; (d) composite of 28-day ECMO
and invasive ventilation usage. Left – test dataset; right – post-development prospective test dataset.
[PDF File (Adobe PDF File), 175 KB-Multimedia Appendix 9]

Multimedia Appendix 10
Sensitivity analysis on model performances (AUC) on non-imputed dataset with different thresholds of covariate coverage (10%,
30%, 50%, 70%, 80%, 90%) among the study cohort; (a) all-cause mortality; (b) ICU admission; (c) respiratory failure including
ARDS; (d) invasive mechanical ventilation including ECMO. Left panel – test dataset; right panel – post-development prospective
test dataset.
[PDF File (Adobe PDF File), 279 KB-Multimedia Appendix 10]

Multimedia Appendix 11
SHAP dependence plot between age and four outcomes (top left: 28-day mortality; top right: composite of 28-day ARDS and
respiratory failure; bottom left: 28-day ICU admission; bottom right: 28-day ECMO or ventilator. The features are colored by
(a) minimum SpO2 on admission; (b) respiration rate; (c) lymphocyte count; (d) BUN.
[PDF File (Adobe PDF File), 1546 KB-Multimedia Appendix 11]

Multimedia Appendix 12
Gitlab repository.
[PDF File (Adobe PDF File), 49 KB-Multimedia Appendix 12]
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