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Abstract

Background: Sequential information in electronic medical records is valuable and helpful for patient outcome prediction but
is rarely used for patient similarity measurement because of its unevenness, irregularity, and heterogeneity.

Objective: We aimed to develop a patient similarity framework for patient outcome prediction that makes use of sequential
and cross-sectional information in electronic medical record systems.

Methods: Sequence similarity was calculated from timestamped event sequences using edit distance, and trend similarity was
calculated from time series using dynamic time warping and Haar decomposition. We also extracted cross-sectional information,
namely, demographic, laboratory test, and radiological report data, for additional similarity calculations. We validated the
effectiveness of the framework by constructing k–nearest neighbors classifiers to predict mortality and readmission for acute
myocardial infarction patients, using data from (1) a public data set and (2) a private data set, at 3 time points—at admission, on
Day 7, and at discharge—to provide early warning patient outcomes. We also constructed state-of-the-art Euclidean-distance
k–nearest neighbor, logistic regression, random forest, long short-term memory network, and recurrent neural network models,
which were used for comparison.

Results: With all available information during a hospitalization episode, predictive models using the similarity model outperformed
baseline models based on both public and private data sets. For mortality predictions, all models except for the logistic regression
model showed improved performances over time. There were no such increasing trends in predictive performances for readmission
predictions. The random forest and logistic regression models performed best for mortality and readmission predictions, respectively,
when using information from the first week after admission.

Conclusions: For patient outcome predictions, the patient similarity framework facilitated sequential similarity calculations for
uneven electronic medical record data and helped improve predictive performance.
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Introduction

In recent years, personalized medicine and clinical
decision-making support have become popular issues and hot
research fields such as modeling with electronic medical records
to assist clinicians in diagnosing diseases [1-3], predicting length
of hospital stay [4,5], and predicting patient death and other
outcomes [4,6-8]. Because electronic medical record data
accumulate quickly, sufficient data exist for conducting
data-driven studies, big data mining, and constructing predictive
models. Using patient similarity measures calculated from
electronic medical record data to select study cohorts for
building personalized models has improved predictive
performances [9,10].

Previous studies [11-14] have demonstrated the effectiveness
of personalized predictive models. Wang et al [11,12] used
similarity-based models to predict diabetes and liver disease
risk. Li et al [13] successfully identified 3 distinct subgroups
of type 2 diabetes based on the calculated patient similarity.
Wang et al [14] derived a local spline regression-based method
for patient embedding and patient similarity measurement to
predict cardiovascular disease risk. However, these studies
[11-14] merely evaluated patient similarity based on
cross-sectional information, rather than using the complete
longitudinal information stored in the electronic medical record
system. For a hospitalized patient, the longitudinal information
represents the clinical trajectory from admission to discharge;
it may include a series of clinical events performed on a patient
and multiple laboratory tests. Longitudinal data should be better
than cross-sectional data in predicting patients’ outcomes due
to the rich information on medical behavior and disease
progression. Thus, we can assume that longitudinal information
in conjunction with patient similarity measurements will further
improve outcome prediction, which will facilitate the move
toward personalized medicine.

Unfortunately, as is typical of real-world data, electronic medical
record data are usually heterogeneous, irregular, and uneven,
which presents challenges for modeling and measuring similarity
[15]. These problems are more severe for sequential information

than they are for cross-sectional information. Thus, many
researchers transform longitudinal data into static data. Lee et
al [16] extracted various clinical and vital signs during the first
24-hour intensive care unit stay. These longitudinal variables
were transformed into static data by calculating the minimum
and maximum value for further patient similarity measurement
based on the cosine similarity metric. Ng et al [17] used a feature
vector representation method to aggregate longitudinal patient
data by calculating counts for categorical variables (diagnoses,
medications, and procedures) and arithmetic means for numeric
lab test data. Sun et al [18] represented 2-hour temporal data
for each patient by computing the means and variances or
wavelet coefficients.

Because few analyses [15-18] have taken event sequences into
consideration for similarity measurements, we aimed to develop
a new framework for patient similarity measurement that can
make use of cross-sectional information and 2 types of
sequential information (series of clinical events and multiple
laboratory tests) to predict patient outcomes.

Methods

Overview
In China, the number of patients with acute myocardial
infarction is expected to increase from 8 million in 2010 to 23
million in 2030 [19], which usually has a high risk of all-cause
in-hospital mortality or readmission, due to unexpected acute
myocardial infarction, after discharge. The accurate prediction
of these would allow better prognosis and timely intervention.
Thus, we focused on the prediction of all-cause in-hospital
mortality and unexpected acute myocardial
infarction-readmission after discharge of patients with acute
myocardial infarction at 3 time points during hospitalization (at
admission, on Day 7, and at discharge). Each patient’s clinical
trajectory comprised a series of clinical processes (timestamped
event sequence) and multiple laboratory tests (time series data)
from electronic medical record data. We calculated similarities
for both sequential and cross-sectional information and
constructed similarity-based models for each time point (Figure
1).
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Figure 1. Study workflow: (a) Sequential similarity calculation for timestamped event sequence and time series data, (b) similarity calculation for
cross-sectional information, (c) patient similarity measurement based on the weighted sum of similarities calculated in parts a and b, and (d) validation.
AMI: acute myocardial infarction; kNN: k-nearest neighbors based on the proposed patient similarity measurement; kNNEucli: k-nearest neighbors
based on the Euclidean distance; LR: logistic regression; RF: random forest; RNN: recurrent neutral network; LSTM: long short-term memory network;
DTW: dynamic time warping.

Similarity for Sequential Information
Both timestamped event sequence and laboratory test time series
data were used to calculate sequential similarity. Laboratory

tests data contributed to sequence similarity calculations, and
trend similarity calculations from multiple test values,
simultaneously. Figure 2 shows an example of a patient’s
clinical trajectory.

Figure 2. A case study of a patient’s clinical trajectory. All clinical events including laboratory tests, radiological examinations, and procedures are
listed sequentially according to patient timeline. The multiple values of each laboratory test comprise the time series data shown in the line chart on the
right side of the figure.

Similarity for Event Sequence
An event was a clinical process performed on a patient, such as
a serum glucose test, a radiological examination (eg, color

sonography), or a procedure (eg, percutaneous coronary
intervention). For a series of clinical events, with timestamped
information, an event sequence r for the patient comprised pairs
(ei, ti), where ei was the ith clinical event for a patient and ti was
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the time point (day) on which the event occurred. Within an
event sequence, event ei was placed before event ej if ti was
earlier than tj in the patient timeline. Two events were placed
alphabetically if they were performed on the same day.

The edit distance was used to calculate the similarity between
2 event sequences based on how much work was needed to
transform one sequence into the other [20,21].
Operations—insertion, deletion, and substitution—were used
to change sequence r1 into r2. For the event–time pair (ei, ti) in
r1 and (ej, tj) in r2, insertion or deletion were used if ei≠ej;
otherwise, substitution (ie, changing the occurrence time of an
event) was used. We set the edit cost to 1 for insertion and
deletion operations, c(Ins(e))=c(Del(e))=1, and the cost of
substitution was c(Sub(e,ti,tj))=0.5*|ti–tj|. Given that we could
change sequence r1 to r2 via different series of operations, the
operation series with the minimum total cost was taken as the
edit distance [21].

For instance, for sequence r1 ={(A, 1), (B, 2), (C, 3), (D, 4)}
and r2 ={(A, 2), (B, 5), (C, 8) }, where (A, 1) indicates that event
A occurred in the first day after admission, possible operation
series could be Os1 = {Del(A, 1), Del(B, 2), Del(C, 3), Del(D,
4), Ins(A, 2), Ins(B, 5), Ins(C, 8)}, with a total cost of 7, or Os2

= {Sub(A, 1, 2), Sub(B, 2, 5), Sub(C, 3, 5), Del(D, 4)}, with a
total cost of 5.5; therefore, the second operation series is optimal.
We used a dynamic programming algorithm [20] to solve this
minimization problem (Multimedia Appendix 1).

The sequence similarity for a pair of event sequences was

where M(m,n) was the edit distance, and m and n were the
lengths of sequences r1 and r2. Laboratory test items Slab-edit,
radiological examinations Srad-edit, and procedures Spro-edit were
represented by 3 individual event sequences.

Time Series Similarity

In the clinical field, a time series can be defined as a consistent,
unidirectional change in the value of a biosignal and is, thus,
related to the evolution of a patient’s status [22]. In this study,
a time series s was defined as multiple real values of a laboratory
test sorted temporally during a patient’s hospitalization. This
type of time series often has different lengths because patients
with different diseases have different numbers of laboratory test
items. In this situation, the traditional Euclidean or cosine
distance was not suitable for calculating the similarity between
2 time series. We used dynamic time warping, which has been
frequently implemented to assess similarity between time series
data [23,24], to calculate the distance between laboratory test
time series. The dynamic time warping algorithm applied
dynamic programming algorithm, and the cost for each map
was defined by the Euclidean distance between 2 time series
(Multimedia Appendix 1). By using the dynamic time warping
algorithm, we obtained the optimal alignment and the cumulative
distance between 2 time series when mapping one time series
onto the other [25].

The trend similarity SDTW for s1 and s2 was

where D(s1,s2) was the final cumulative distance between s1

and s2. The minimum and maximum values of all pairwise
distances were denoted as dmin and dmax, respectively.

We also used Haar wavelet decomposition method to assess
similarity. The Haar wavelet-based method is highly dependent
on time series length; therefore, linear interpolation to ensure
time series satisfied length requirements. Using discrete Haar
wavelet decomposition, each time series was represented by
several Haar wavelet bases (Figure S3 in Multimedia Appendix
1), and the coefficients of these bases, which described main
characteristics and changing trends in the time series [26], were
used to calculate Haar wavelet-based trend similarity SHaar,

where d(s1, s2) was the Euclidean distance between 2 groups of
coefficients describing s1 and s2.

The trend similarities between a laboratory test’s multiple test
values were calculated using either dynamic time warping or
Haar wavelet-based decomposition.

Similarity for Cross-sectional Information
Cross-sectional information comprised demographic
characteristics (age, sex, payment type, and marital status),
laboratory tests only performed at admission, and free-text
reports of chest x-rays and color sonography.

Demographic characteristics were represented as 0 or 1 in vector
u based on whether or not the patient was ≥60 years, male,
married, and insured (specific medical insurance). To assess
demographic feature similarity for patients i and j, we used
Jaccard similarity

We calculated Euclidean distance–based similarities for
laboratory tests performed only at admission. The feature
similarity for these cross-sectional laboratory tests (Slab) was
defined as 1 – normalized Euclidean distance, using
minimum–maximum normalization.

The free-text reports were in English in the public data set and
Chinese in the private data set. For reports written in Chinese,
we performed 3 steps to extract features: corpus-of-interest
construction, word segmentation, and feature reconstruction
(Figure S4 in Multimedia Appendix 1). For reports written in
English, we directly identified features of interest (high
frequency of occurrence and related to acute myocardial
infarction, for example “LVEF,” because patients with high
LVEF usually have better cardiac function and prognosis). A
text feature variable was set to 1 if patients’ radiological reports
contained this feature and 0 otherwise. Finally, each patient had
a set of h features from text such as “左室射血分数正常 (Left
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ventricular ejection fraction (LVEF) was normal)” in the private
data set and “Overall normal LVEF” in the public data set. We
used Jaccard similarity to calculate similarity for extracted text
features (Stext).

Patient Similarity Calculation
The patient similarity score was the weighted sum of feature
similarities. We identified dominant features, to which greater
weights were assigned, and set weights for the rest of the
features to 0. Weights were assigned separately for mortality
or readmission risk prediction tasks. The importance of a feature
was determined by the predictive performance when using the
similarity calculated on this feature to identify nearest neighbors
for death or readmission prediction. The greater the
performance, the greater the feature importance. Based on the
sample set for weight determination, death risk, for example,
of an index patient was predicted as the occurring probability
of outcomes status among his top k nearest neighbors. We
selected near neighbors using the similarity of one of the
following features in turn: event sequences of laboratory test
items, radiological examinations, and procedures; time series
of lab tests having multiple testing values; and cross-sectional
features.

We identified 3 dominant features, with a majority voting
scheme, that had the highest area under receiver operating
characteristic curve (AUROC) values. We optimized feature
weights w1, w2, and w3, by 0.05 steps, under the constraints w1

+ w2 +w3 = 1 and w1≥w2≥w3> 0 (Multimedia Appendix 1).

Predictive Models

Similarity–Based Model Configuration
We built several k–nearest neighbor classifiers to predict
patients’ outcomes based on patient similarity.

We compared predictive performances of k–nearest neighbor
models built using the sequence similarity alone, the trend
similarity alone, and both (Table 1). The subscripts E, D, and
H represented the k-nearest neighbor model was built by using
sequence similarity alone, the dynamic time warping-based
trend similarity alone, and Haar decomposition-based trend
similarity alone, separately. The subscript ED indicated the
k-nearest neighbor model was built on both sequence similarity
and trend similarity using dynamic time warping, while EH
indicated the trend similarity was measured using Haar
decomposition.

Table 1. The construction of similarity-based predictive models based on different patient similarities.

k–nearest neigh-
borH

k–nearest neigh-
borD

k–nearest neigh-
borE

k–nearest neigh-
borEH

k–nearest neigh-
borED

Similarity used

Sequence similarity

NoNoYesYesYesS lab-edit

NoNoYesYesYesS rad-edit

NoNoYesYesYesS pro-edit

Trend similarity

NoYesNoNoYesS DTW

YesNoNoYesNoS Haar

YesYesYesYesYesCross-sectional information–based similar-
ity (Sdem, Slab, Stext)

Comparison Model Configuration
We compared the predictive performance of each k–nearest
neighbor model with those of other state-of-the-art predictive
models: Euclidean-distance k–nearest neighbor, logistic
regression, random forest, long short-term memory network,
and recurrent neural network models, using either the full set
of predictor variables or a set of statistical features, because
time series data could not be directly input to Euclidean-distance
k–nearest neighbor, logistic regression, or random forest models.
Cross-sectional information and all flattened time series (padded
and concatenated) were input to Euclidean-distance k–nearest
neighbor, logistic regression, and random forest models, and a
set of 6 statistical features for each time series—minimum,
maximum, mean, standard deviation, skewness, and time series
length—were input to each model with the cross-sectional
information. The model with the higher performance for the 2
abovementioned strategies was reported and compared with our
similarity-based models (Table S1 in Multimedia Appendix 1).

Model Hyperparameters
We searched for the optimal parameters of models by trial and
error. Finally, we set k=50 for k–nearest neighbor and the
number of trees to 200 for the random forest model. For the
training of logistic regression, long short-term memory network,
and recurrent neural network models, we defined loss functions
as cross-entropy with an L2-regulation term. The long short-term
memory network and recurrent neural network were trained
with an adaptive moment estimation optimizer with a sigmoid
activation function. For long short-term memory network and
recurrent neural network models, the number of units was set
to 100, batch size was chosen as 128, and the maximum number
of epochs was set to 30. The leave-one-out method was used to
evaluate performances of predictive models, with one patient
used as a test sample and the rest used for training in each
validation round. This method made full use of the validation
set and can be used with an imbalanced data set.
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Because we aimed to provide an early warning to allow for
timely intervention and treatment adjustment, 3 time points, at
admission, Day 7, and at discharge were denoted as the index
time points. All available information at each index time point
was used for determining patient similarity and building
predictive models. To ensure robustness, we ran the predictive
process 100 times independently and averaged the performances.
The differences between models’performances were considered
statistically significant if model A outperformed model B at
least 95 times. AUROC and F1-score were used as the main
metrics and we also calculated precision, sensitivity, and
specificity.

Data Set and Features

Public Data Set
We used the freely accessible critical care database Medical
Information Mart for Intensive Care III (MIMIC-III) [27,28].
The MIMIC-III data set was collected between June 2001 and
October 2012 from patients admitted to intensive care units at
the Beth Israel Deaconess Medical Center in Boston,
Massachusetts. It includes patient health information such as
demographic data, vital signs, laboratory test results,
medications, procedures, diagnosis codes, as well as clinical
notes. In this study, we included all records for patients with
acute myocardial infarction.

A total of 3010 patients whose primary diagnosis, confirmed
with International Classification of Diseases ninth revision codes
410.01 to 410.91, were enrolled in this study. We extracted data
on age at admission, sex, payment type, marital status, 42
laboratory tests (23 discrete time series and 19 cross-sectional
items), procedures, and radiology reports (34 text features; Table
S2 in Multimedia Appendix 1) during hospitalization.

Private Data Set
Electronic medical record data used in this study were derived
from records of inpatients discharged from a tertiary hospital

in Beijing, China between 2014 and 2016. Individual
hospitalizations were deidentified and maintained as unique
records. Overall, 1846 patients whose primary diagnosis
confirmed with the International Classification of Disease, tenth
revision, codes I21 and I22 were enrolled. Of the laboratory
tests, 103 laboratory tests were used as cross-sectional
information (at admission). By Day 7, 27 laboratory tests had
2 or more testing values, and the rest were used as
cross-sectional information. At discharge, 63 and 40 laboratory
test items were treated as time series and cross-sectional
information, respectively. For radiological reports, a set of 36
text features (Table S2 in Multimedia Appendix 1) was obtained.

Inclusions and Exclusions
For both data sets, few patients underwent a chest x-ray or a
color sonography examination during the first week after
admission; therefore, text features were not extracted from
radiological reports for further similarity calculation when using
information before the first week after admission. The event
sequence that comprised radiological examinations was also
excluded from sequence similarity calculation because few
events occurred at admission. Additionally, a total of 164
patients with a length of stay less than 7 days were excluded
from the training sample set when the prediction was made for
Day 7. Patients with any length of stay were included in the
prediction using patient information during a hospitalization
episode. Only 33 and 52 patients in the private data set were
readmitted within 30 and 90 days, respectively. Thus, no time
requirement was used to identify readmission.

Results

General
Table 2 presents characteristics and main outcomes of the study
population.
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Table 2. Basic characteristics of acute myocardial infarction patients in MIMIC-III data set and the private data set.

Private data set (n=1846), n (%)MIMIC-III data set (n=3010), n (%)Characteristic

Demographic

1131 (61.3)2408 (80.0)Age ≥60 years

1343 (72.8)1855 (61.6)Male gender

1815 (98.3)1583 (52.6)Married

Medical Insurance

1422 (77.0)N/AaUrban Employee Basic

N/A2030 (67.4)Medicare

Events during a hospital stay, n (numbers of events per patient)

349,563 (189)1,044,886 (347)Laboratory test

5827 (3)19,171 (6)Radiological examination

13,049 (7)19,630 (7)Procedure

Outcomes

100 (5.4)554 (18.4)Acute myocardial infarction-cause readmission, n (%)

132 (7.2)245 (8.2)All-cause in-hospital mortality, n (%)

11.4 (5.85)10.0 (6.24)Length of hospital stay, day, mean (standard deviation)

aN/A: not applicable.

Public Data Set
When predicting mortality, all k–nearest neighbor models built
on patient similarities involving events performed best
(k–nearest neighborE: AUROC 0.878; k–nearest neighborEH:
AUROC 0.882; and k–nearest neighborED: AUROC 0.883) and
significantly outperformed all other models (random forest:
P=.02; all other models: P<.001) (Table 3 and Figure 3A). For
predicting acute myocardial infarction-cause readmission,
k–nearest neighborE, k–nearest neighborEH and k–nearest
neighborED also had the highest AUROC values (Table 3), and

the 3 k–nearest neighbor models also performed best in mortality
and readmission prediction when evaluated with F1-scores.
There were no significant differences among k–nearest neighbor
models involving events for mortality (k–nearest neighborE and
k–nearest neighborEH: P=.44; k–nearest neighborED and
k–nearest neighborE: P=.24; k–nearest neighborEH and k–nearest
neighborED: P=.41) and readmission predictions (k–nearest
neighborE and k–nearest neighborEH: P=.84; k–nearest
neighborED and k–nearest neighborE: P=.73; k–nearest
neighborEH and k–nearest neighborED: P=.59) (Figure 3).

Table 3. The predictive performance of 100 independent rounds of the outcome prediction on the MIMIC-III data seta.

ReadmissionMortalityModel

F1-scoreAUROCF1-scoreAUROCb

0.332 (0.019)0.592 (0.019)0.280 (0.030)0.756 (0.022)Euclidean distance k–nearest neighbor

0.347 (0.019)0.608 (0.022)0.336 (0.037)0.796 (0.024)Logistic regression

0.327 (0.020)0.579 (0.015)0.362 (0.033)0.834 (0.015)Random forest

0.339 (0.017)0.595 (0.020)0.356 (0.043)0.809 (0.022)Long short-term memory network

0.337 (0.018)0.590 (0.018)0.338 (0.039)0.814 (0.018)Recurrent neural network

0.315 (0.027)0.566 (0.022)0.373 (0.047)0.816 (0.023)k–nearest neighborD

0.295 (0.048)0.536 (0.026)0.295 (0.035)0.746 (0.026)k–nearest neighborH

0.350 (0.018)0.623 (0.019)0.386 (0.041)0.878 (0.017)k–nearest neighborE

0.350 (0.018)0.620 (0.018)0.401 (0.044)0.882 (0.016)k–nearest neighborEH

0.351 (0.019)0.620 (0.019)0.406 (0.050)0.883 (0.015)k–nearest neighborED

aMean: standard deviation.
bAUROC: area under the receiver operating characteristic curve.
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Figure 3. Heatmaps showing the pairwise comparisons among models for predicting mortality (A and C) and readmission (B and D) based on the
public (A and B) and private (C and D) dataset. Number in each cell is the percent of times that the model in row had a higher performance than the
model in column after 100 experiments. The performance is considered significantly higher if the number is greater than or equal to 0.95, and the
corresponding cell is highlighted in color. KNNEucli: Euclidean distance k–nearest neighbor; KNND: kNN built on the dynamic time warping (DTW)
-based trend similarity (ie, k–nearest neighborD); KNNH: kNN built on the Haar-based trend similarity (ie, k–nearest neighborH); KNNE: kNN built on
the sequence similarity (ie, k–nearest neighborE); KNNEH: kNN built on the sequence similarity and Haar-based trend similarity (ie, k–nearest neighborEH);
KNNED: kNN built on the sequence similarity and DTW-based trend similarity (ie, k–nearest neighborED); LR: logistic regression; RF: random forest;
RNN: recurrent neutral network; LSTM: long short-term memory.

Private Data Set
When predicting mortality, k–nearest neighborED, which uses
both edit distance–based sequence similarity and dynamic time
warping–based trend similarity had the best performance
(AUROC 0.954; F1-score 0.603) when using all available
information from admission to discharge. It significantly
outperformed all other state-of-the-art models (Euclidean
distance k–nearest neighbor: P<.001; recurrent neural network:
P<.001; logistic regression: P=.03; long short-term memory
network: P=.02) except for random forest (at admission:
AUROC 0.795; before Day 7: AUROC 0.849; P=.07). (Figure

3C and Figure 4A). Predictive performances of all models
improved with time points (at admission, Day 7, and at
discharge) except for the logistic regression model (Figure 4A).

For readmission prediction, k–nearest neighborE (AUROC
0.651), k–nearest neighborEH (AUROC 0.645), and k–nearest
neighborED (AUROC 0.648) performed best when using all
available information from admission to discharge; however,
logistic regression performed best at admission (AUROC 0.589)
and before Day 7 (AUROC 0.577) (Figure 4B). The precision,
sensitivity, and specificity results of all models are presented
in Table S3 (Multimedia Appendix 1).
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Figure 4. The predictive performance of all models for predicting inpatient mortality (A and C) and readmission (B and D) in terms of area under the
receiver operating characteristic curve (A and B) and F1-score (C and D). Stars (☆) indicate the highest predictive performances. No prediction was
made at admission for LSTM, RNN, KNNH, KNND, KNNEH, and KNNED because of no available temporal information at that time. KNNEucli:
Euclidean distance k–nearest neighbor; KNND: kNN built on the dynamic time warping (DTW) -based trend similarity (ie, k–nearest neighborD);
KNNH: kNN built on the Haar-based trend similarity (ie, k–nearest neighborH); KNNE: kNN built on the sequence similarity (ie, k–nearest neighborE);
KNNEH: kNN built on the sequence similarity and Haar-based trend similarity (ie, k–nearest neighborEH); KNNED: kNN built on the sequence similarity
and DTW-based trend similarity (ie, k–nearest neighborED); LR: logistic regression; RF: random forest; RNN: recurrent neutral network; LSTM: long
short-term memory.

Discussion

It is anticipated that predictive modeling based on electronic
medical record data will drive personalized medicine and
improve health care quality, with many researchers attempting
to predict patients’ clinical outcomes, such as death
[4,6,7,16,22]; quality of care, such as readmissions [4,7,29,30];
resource utilization, such as length of stay [4,6,31], and
diagnoses [6,32]. Patient similarity, calculated based on the
electronic medical record data, has improved predictive models’
performances [9,10].

The longitudinal information in electronic medical record data
includes timestamped event sequence and laboratory test time
series, which are informative and valuable for outcome
predictions due to the rich information on medical behavior and
disease progression. However, both types of sequential
information are usually heterogeneous, irregular, and uneven,
presenting large challenges in data preprocessing, feature
extraction, and similarity measurement. Therefore, we used 2
strategies to calculate similarity for timestamped event sequence
and laboratory test time series separately. The edit distance,
which has been widely used to measure distance in analyzing
textual strings [33], biological sequences [34], and patient traces
[31], was used to calculate similarity for timestamped event
sequences.

For time series, 2 main groups of algorithms for similarity
calculation can be identified: the time domain algorithm and
the transform-based methods [22]. The former worked directly

with the raw time series, while the latter reduced original data
dimension for further similarity calculation [22]. We used both
a time domain (dynamic time warping) and transform-based
(Haar wavelet decomposition) to calculate the trend similarity
for time series. Dynamic time warping worked better in trend
similarity calculations than Haar wavelet decomposition, based
on the results for both data sets. Haar wavelet-based trend
similarity methods might not be suitable for time series in
electronic medical record system. because more information is
lost during dimension reduction than that in dynamic time
warping. Our findings that dynamic time warping for
time-varying features increased predictive performances were
similar to those from a previous study [35]. The most frequently
selected features were the procedure-based sequence, the serum
creatinine level, and the radiological examination-based
sequence. This finding inspired us to shed more light on event
sequence and specific clinical variables, which helped in
identifying similar patients and improving downstream
personalized prediction. Generally, dynamic time warping and
the edit distance could be used with sequential information
having different lengths and helped overcome the challenge of
evaluating sequential similarity for uneven electronic medical
record data.

Classical time series processing models, such as recurrent neural
network and long short-term memory network, could not use
event sequence information, and truncation or 0-padding was
inevitable in order to process time series with different lengths.
Whereas, k–nearest neighbor models based on the proposed
patient similarity measurement can make use of 2 types of
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sequential information and performed best in outcome prediction
in this study. To the best of our knowledge, this is the first study
in which 2 types of sequential information have been integrated
and applied to patient similarity measurement. Furthermore,
the predictive mechanisms of k–nearest neighbor models are
more interpretable and transparent for clinicians than some black
box models such as random forest, recurrent neural network,
and long short-term memory network [16]. In general, our
models helped improve predictive performance.

Several prior studies evaluated model performances and
compared them with other experiments conducted on the
MIMIC-III data set. Zhang et al [4] proposed a fusion model
leveraging sequential clinical notes, time series, and static
information (AUROC 0.871) that outperformed baseline models
for mortality prediction. Guo et al [36] constructed a nomogram
to predict in-hospital mortality for myocardial infarction patients
(AUROC 0.803). Jiang et al [37] used machine learning to
predict in-hospital mortality in sepsis survivors (sepsis: AUROC
0.732; nonsepsis: AUROC 0.830). Suresh et al [38] developed
a multitask model (AUROC 0.869) for mortality prediction that
outperformed global and separate models. Fan et al [39]
predicted in-hospital mortality for acute myocardial infarction
patients by building several models such as logistic regression,
decision tree, extreme gradient boosting, and random forest;
among which, the logistic regression model performed best
(AUROC 0.870). In this study, the sequential similarity–based
model (AUROC 0.883 for the MIMIC-III data set) had better
predictive performance for mortality prediction that those
mentioned. The model successfully measured the closeness
among patients, helped selecting similar study cohort, and
assisted building personalized predictive models. Furthermore,
we found that sequence similarity was better at identifying
nearest neighbors than trend similarity. This finding coincided
with the conclusion that patients’ clinical traces were
informative, and similar patient traces might have similar
endpoints [31].

Early detection of endpoints for at-risk patients is key for
understanding and improving outcomes [5]. In our study, we
selected 3 timepoints during hospitalization: at admission, Day
7, and at discharge. At each timepoint, all available data
including sequential information were used to predict the

outcomes of patients with acute myocardial infarction. For
predicting mortality, the performances of all predictive models,
except logistic regression, improved with the 3 timepoints. This
finding indicated that sequential data helped improve
performances of models. The more sequential information
involved, the better the predictive performance. This finding
verified our initial assumption that longitudinal information in
conjunction with patient similarity measurement would facilitate
more accurate outcome prediction.

For predicting unplanned readmission, our model performed
best on both data sets when all data, from during the whole
hospitalization period, were used. This finding sufficiently
indicated that patient similarity could significantly boost the
performance of readmission prediction. However, unsatisfactory
predictive results for readmission prediction were found in our
study and have also been found in other studies [4,6]. The reason
might be that the readmission condition was multifactorial and
complex, such as related to patient medical insurance, economic
conditions, and individual factors, thus, it is challenging to make
a prediction [4]. In addition, we noted that the performances of
all models for mortality and readmission prediction at admission
and at Day 7 were significantly lower than those at discharge,
possibly because information that is a long temporal interval
from discharge was not useful in outcome prediction.

This study had some limitations. First, trend similarity can also
be calculated based on time series in the form of abnormality
status. This method would require validation in the future.
Second, the patient information used in this study was
insufficient. The electrocardiogram captures vital signs for
patients with acute myocardial infarction and a type of
longitudinal information enabling temporal similarity
calculation. However, this information was unavailable for the
private data set. Therefore, electrocardiograms should be
collected and used for similarity measurement in further study.

In this study, we proposed a complete framework for measuring
patient similarity that used both sequential and cross-sectional
information. The method successfully evaluated sequential
similarity, helped deal with the challenge of similarity
calculation for uneven electronic medical record data, and
improved the performance of predicting patients’ outcomes.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (grants 81971707 and 81671786) and Beijing
Advanced Innovation Center for Big Data-based Precision Medicine (grant number PXM2021_014226_000026).We are grateful
to Dr. Yinjing Hou (Beijing Tongren Hospital, Capital Medical University, Beijing, China) for her clinical advice.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary material.
[DOCX File , 700 KB-Multimedia Appendix 1]

References

J Med Internet Res 2022 | vol. 24 | iss. 1 | e30720 | p. 10https://www.jmir.org/2022/1/e30720
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v24i1e30720_app1.docx&filename=2049cf778b2c3f71619d5ec47efb38ee.docx
https://jmir.org/api/download?alt_name=jmir_v24i1e30720_app1.docx&filename=2049cf778b2c3f71619d5ec47efb38ee.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Qiu H, Yu H, Wang L, Yao Q, Wu S, Yin C, et al. Electronic health record driven prediction for gestational diabetes mellitus
in early pregnancy. Sci Rep 2017 Nov 27;7(1):16417-16413 [FREE Full text] [doi: 10.1038/s41598-017-16665-y] [Medline:
29180800]

2. Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD. High-risk breast lesions: a machine learning model to
predict pathologic upgrade and reduce unnecessary surgical excision. Radiology 2018 Mar 17;286(3):810-818. [doi:
10.1148/radiol.2017170549] [Medline: 29039725]

3. Suo Q, Ma F, Yuan Y, Huai M, Zhong W, Gao J, et al. Deep patient similarity learning for personalized healthcare. IEEE
Trans Nanobioscience 2018 Jul;17(3):219-227. [doi: 10.1109/tnb.2018.2837622]

4. Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining structured and unstructured data for predictive models: a deep
learning approach. BMC Med Inform Decis Mak 2020 Oct 29;20(1):280-211 [FREE Full text] [doi:
10.1186/s12911-020-01297-6] [Medline: 33121479]

5. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A. Multitask learning and benchmarking with clinical
time series data. Sci Data 2019 Jun 17;6(1):96-18 [FREE Full text] [doi: 10.1038/s41597-019-0103-9] [Medline: 31209213]

6. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health
records. NPJ Digit Med 2018 May 8;1(1):18-10 [FREE Full text] [doi: 10.1038/s41746-018-0029-1] [Medline: 31304302]

7. Chu J, Dong W, Huang Z. Endpoint prediction of heart failure using electronic health records. J Biomed Inform 2020
Sep;109:103518 [FREE Full text] [doi: 10.1016/j.jbi.2020.103518] [Medline: 32721582]

8. Esteban C, Staeck O, Baier S, Yang Y, Tresp V. Predicting clinical events by combining static and dynamic information
using recurrent neural networks. 2016 Nov 8 Presented at: IEEE International Conference on Health care Informatics;
October 4-7; Chicago, Illinois, USA p. 93-101. [doi: 10.1109/ichi.2016.16]

9. Parimbelli E, Marini S, Sacchi L, Bellazzi R. Patient similarity for precision medicine: a systematic review. J Biomed
Inform 2018 Jul 1;83:87-96 [FREE Full text] [doi: 10.1016/j.jbi.2018.06.001] [Medline: 29864490]

10. Sharafoddini A, Dubin JA, Lee J. Patient similarity in prediction models based on health data: a scoping review. JMIR Med
Inform 2017 Mar 03;5(1):e7 [FREE Full text] [doi: 10.2196/medinform.6730] [Medline: 28258046]

11. Wang N, Huang Y, Liu H, Zhang Z, Wei L, Fei X, et al. Study on the semi-supervised learning-based patient similarity
from heterogeneous electronic medical records. BMC Med Inform Decis Mak 2021 Jul 30;21(Suppl 2):58-13 [FREE Full
text] [doi: 10.1186/s12911-021-01432-x] [Medline: 34330261]

12. Wang N, Huang Y, Liu H, Fei X, Wei L, Zhao X, et al. Measurement and application of patient similarity in personalized
predictive modeling based on electronic medical records. Biomed Eng Online 2019 Oct 11;18(1):98-15 [FREE Full text]
[doi: 10.1186/s12938-019-0718-2] [Medline: 31601207]

13. Li L, Cheng W, Glicksberg BS, Gottesman O, Tamler R, Chen R, et al. Identification of type 2 diabetes subgroups through
topological analysis of patient similarity. Sci Transl Med 2015 Oct 28;7(311):311ra174-311ra115 [FREE Full text] [doi:
10.1126/scitranslmed.aaa9364] [Medline: 26511511]

14. Wang F, Hu J, Sun J. Medical prognosis based on patient similarity and expert feedback. In: Proceedings of the 21st
International Conference on Pattern Recognition. 2013 Feb 14 Presented at: 21st International Conference on Pattern
Recognition; November 11-15; Tsukuba, Japan p. 1799-1802.

15. Wu J, Roy J, Stewart W. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning
approaches. Med Care 2010 Jun;48(6 Suppl):S106-S113. [doi: 10.1097/MLR.0b013e3181de9e17] [Medline: 20473190]

16. Lee J, Maslove DM, Dubin JA. Personalized mortality prediction driven by electronic medical data and a patient similarity
metric. PLoS One 2015 May 15;10(5):e0127428 [FREE Full text] [doi: 10.1371/journal.pone.0127428] [Medline: 25978419]

17. Ng K, Sun J, Hu J, Wang F. Personalized predictive modeling and risk factor identification using patient similarity. AMIA
Jt Summits Transl Sci Proc 2015;2015:132-136 [FREE Full text] [Medline: 26306255]

18. Sun J, Sow D, Hu J, Ebadollahi S. Localized supervised metric learning on temporal physiological data. In: Proceedings
of the 20th International Conference on Pattern Recognition. 2010 Oct 7 Presented at: 20th International Conference on
Pattern Recognition; August 23-26; Istanbul, Turkey p. 4149-4152. [doi: 10.1109/icpr.2010.1009]

19. Chang J, Liu X, Sun Y. Mortality due to acute myocardial infarction in China from 1987 to 2014: secular trends and
age-period-cohort effects. Int J Cardiol 2017 Jan 15;227:229-238. [doi: 10.1016/j.ijcard.2016.11.130] [Medline: 27839815]

20. Mannila H, Moen P. Similarity between event types in sequences. 1999 Presented at: The First International Conference
on Data Warehousing and Knowledge Discovery; September 1; Florence, Italy p. 271-280. [doi: 10.1007/3-540-48298-9_29]

21. Moen P. Attribute, event sequence, and event type similarity notions for data mining. University of Helsinki. URL: https:/
/www.cs.helsinki.fi/u/ronkaine/phdthesis.pdf [accessed 2021-12-14]

22. Henriques J, Carvalho P, Paredes S, Rocha T, Habetha J, Antunes M, et al. Prediction of heart failure decompensation
events by trend analysis of telemonitoring data. IEEE J Biomed Health Inform 2015 Sep;19(5):1757-1769. [doi:
10.1109/jbhi.2014.2358715]

23. Gold O, Sharir M. Dynamic time warping and geometric edit distance. ACM Trans Algorithms 2018 Oct 13;14(4):1-17.
[doi: 10.1145/3230734]

24. Allam A, Dittberner M, Sintsova A, Brodbeck D, Krauthammer M. Patient similarity analysis with longitudinal health data.
ArXiv Preprint posted online on May 14, 2020. [FREE Full text]

J Med Internet Res 2022 | vol. 24 | iss. 1 | e30720 | p. 11https://www.jmir.org/2022/1/e30720
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://doi.org/10.1038/s41598-017-16665-y
http://dx.doi.org/10.1038/s41598-017-16665-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29180800&dopt=Abstract
http://dx.doi.org/10.1148/radiol.2017170549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29039725&dopt=Abstract
http://dx.doi.org/10.1109/tnb.2018.2837622
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01297-6
http://dx.doi.org/10.1186/s12911-020-01297-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33121479&dopt=Abstract
https://doi.org/10.1038/s41597-019-0103-9
http://dx.doi.org/10.1038/s41597-019-0103-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31209213&dopt=Abstract
https://doi.org/10.1038/s41746-018-0029-1
http://dx.doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304302&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(20)30146-5
http://dx.doi.org/10.1016/j.jbi.2020.103518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32721582&dopt=Abstract
http://dx.doi.org/10.1109/ichi.2016.16
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30107-2
http://dx.doi.org/10.1016/j.jbi.2018.06.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29864490&dopt=Abstract
https://medinform.jmir.org/2017/1/e7/
http://dx.doi.org/10.2196/medinform.6730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28258046&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01432-x
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01432-x
http://dx.doi.org/10.1186/s12911-021-01432-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34330261&dopt=Abstract
https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0718-2
http://dx.doi.org/10.1186/s12938-019-0718-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31601207&dopt=Abstract
http://europepmc.org/abstract/MED/26511511
http://dx.doi.org/10.1126/scitranslmed.aaa9364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26511511&dopt=Abstract
http://dx.doi.org/10.1097/MLR.0b013e3181de9e17
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20473190&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0127428
http://dx.doi.org/10.1371/journal.pone.0127428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25978419&dopt=Abstract
http://europepmc.org/abstract/MED/26306255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26306255&dopt=Abstract
http://dx.doi.org/10.1109/icpr.2010.1009
http://dx.doi.org/10.1016/j.ijcard.2016.11.130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27839815&dopt=Abstract
http://dx.doi.org/10.1007/3-540-48298-9_29
https://www.cs.helsinki.fi/u/ronkaine/phdthesis.pdf
https://www.cs.helsinki.fi/u/ronkaine/phdthesis.pdf
http://dx.doi.org/10.1109/jbhi.2014.2358715
http://dx.doi.org/10.1145/3230734
https://arxiv.org/pdf/2005.06630.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


25. Giorgino T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J Stat Soft 2009;31(7):1-25.
[doi: 10.18637/jss.v031.i07]

26. Panahiazar M, Taslimitehrani V, Pereira N, Pathak J. Using EHRs for heart failure therapy recommendation using
multidimensional patient similarity analytics. Stud Health Technol Inform 2015;210:369-373 [FREE Full text] [Medline:
25991168]

27. MIMIC-III. Medical Information Mart for Intensive Care. URL: https://mimic.physionet.org/ [accessed 2020-06-20]
28. Johnson AE, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care

database. Sci Data 2016 May 24;3:160035 [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]
29. Shadmi E, Flaks-Manov N, Hoshen M, Goldman O, Bitterman H, Balicer RD. Predicting 30-day readmissions with

preadmission electronic health record data. Med Care 2015 Mar;53(3):283-289. [doi: 10.1097/MLR.0000000000000315]
[Medline: 25634089]

30. Nguyen P, Tran T, Wickramasinghe N, Venkatesh S. Deepr: a convolutional net for medical records. IEEE J Biomed Health
Inform 2017 Jan;21(1):22-30. [doi: 10.1109/jbhi.2016.2633963]

31. Huang Z, Juarez JM, Duan H, Li H. Length of stay prediction for clinical treatment process using temporal similarity.
Expert Syst Appl 2013 Nov;40(16):6330-6339. [doi: 10.1016/j.eswa.2013.05.066]

32. Gottlieb A, Stein GY, Ruppin E, Altman RB, Sharan R. A method for inferring medical diagnoses from patient similarities.
BMC Med 2013 Sep 02;11(1):194-199 [FREE Full text] [doi: 10.1186/1741-7015-11-194] [Medline: 24004670]

33. Lu W, Du X, Hadjieleftheriou M, Ooi BC. Efficiently supporting edit distance based string similarity search using B-Trees.
IEEE Trans. Knowl. Data Eng 2014 Dec 1;26(12):2983-2996. [doi: 10.1109/tkde.2014.2309131]

34. Jiang T, Lin G, Ma B, Zhang K. A general edit distance between RNA structures. J Comput Biol 2002 Apr;9(2):371-388.
[doi: 10.1089/10665270252935511] [Medline: 12015887]

35. Hoogendoorn M, Hassouni A, Mok K, Ghassemi M, Szolovits P. Prediction using patient comparison vs. modeling: a case
study for mortality prediction. 2016 Presented at: 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC); August 16-20; Orlando, Florida p. 2464-2467. [doi: 10.1109/embc.2016.7591229]

36. Guo Q, Wu M, Li H, Ouyang H, Sun R, Wang J, et al. Development and validation of a prognostic nomogram for myocardial
infarction patients in intensive care units: a retrospective cohort study. BMJ Open 2020 Dec 17;10(12):e040291 [FREE
Full text] [doi: 10.1136/bmjopen-2020-040291] [Medline: 33334835]

37. Jiang Z, Bo L, Xu Z, Song Y, Wang J, Wen P, et al. An explainable machine learning algorithm for risk factor analysis of
in-hospital mortality in sepsis survivors with ICU readmission. Comput Methods Programs Biomed 2021 Jun;204:106040.
[doi: 10.1016/j.cmpb.2021.106040] [Medline: 33780889]

38. Suresh H, Gong J, Guttag J. Learning tasks for multitask learning. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2018 Presented at: 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining; August 19-23; London, United Kingdom p. 802-810. [doi:
10.1145/3219819.3219930]

39. Fan Y, Zhao Y, Li P, Liu X, Jia L, Li K, et al. [Analysis of diseases distribution in Medical Information Mart for Intensive
Care III database]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2018 Jun;30(6):531-537. [doi:
10.3760/cma.j.issn.2095-4352.2018.06.006] [Medline: 30009726]

Abbreviations
AUROC: area under the receiver operating characteristic curve
MIMIC-III: Medical Information Mart for Intensive Care III

Edited by R Kukafka; submitted 26.05.21; peer-reviewed by J Lei, J Chen, Y Li; comments to author 31.08.21; revised version received
08.10.21; accepted 08.11.21; published 06.01.22

Please cite as:
Wang N, Wang M, Zhou Y, Liu H, Wei L, Fei X, Chen H
Sequential Data–Based Patient Similarity Framework for Patient Outcome Prediction: Algorithm Development
J Med Internet Res 2022;24(1):e30720
URL: https://www.jmir.org/2022/1/e30720
doi: 10.2196/30720
PMID:

©Ni Wang, Muyu Wang, Yang Zhou, Honglei Liu, Lan Wei, Xiaolu Fei, Hui Chen. Originally published in the Journal of Medical
Internet Research (https://www.jmir.org), 06.01.2022. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

J Med Internet Res 2022 | vol. 24 | iss. 1 | e30720 | p. 12https://www.jmir.org/2022/1/e30720
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.18637/jss.v031.i07
http://europepmc.org/abstract/MED/25991168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25991168&dopt=Abstract
https://mimic.physionet.org/
https://doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
http://dx.doi.org/10.1097/MLR.0000000000000315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25634089&dopt=Abstract
http://dx.doi.org/10.1109/jbhi.2016.2633963
http://dx.doi.org/10.1016/j.eswa.2013.05.066
https://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-11-194
http://dx.doi.org/10.1186/1741-7015-11-194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24004670&dopt=Abstract
http://dx.doi.org/10.1109/tkde.2014.2309131
http://dx.doi.org/10.1089/10665270252935511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12015887&dopt=Abstract
http://dx.doi.org/10.1109/embc.2016.7591229
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=33334835
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=33334835
http://dx.doi.org/10.1136/bmjopen-2020-040291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33334835&dopt=Abstract
http://dx.doi.org/10.1016/j.cmpb.2021.106040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33780889&dopt=Abstract
http://dx.doi.org/10.1145/3219819.3219930
http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2018.06.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30009726&dopt=Abstract
https://www.jmir.org/2022/1/e30720
http://dx.doi.org/10.2196/30720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly
cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright
and license information must be included.

J Med Internet Res 2022 | vol. 24 | iss. 1 | e30720 | p. 13https://www.jmir.org/2022/1/e30720
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

