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Abstract

Background: Wearables have been used widely for monitoring health in general, and recent research results show that they
can be used to predict infections based on physiological symptoms. To date, evidence has been generated in large, population-based
settings. In contrast, the Quantified Self and Personal Science communities are composed of people who are interested in learning
about themselves individually by using their own data, which are often gathered via wearable devices.

Objective: This study aims to explore how a cocreation process involving a heterogeneous community of personal science
practitioners can develop a collective self-tracking system for monitoring symptoms of infection alongside wearable sensor data.

Methods: We engaged in a cocreation and design process with an existing community of personal science practitioners to jointly
develop a working prototype of a web-based tool for symptom tracking. In addition to the iterative creation of the prototype
(started on March 16, 2020), we performed a netnographic analysis to investigate the process of how this prototype was created
in a decentralized and iterative fashion.

Results: The Quantified Flu prototype allowed users to perform daily symptom reporting and was capable of presenting symptom
reports on a timeline together with resting heart rates, body temperature data, and respiratory rates measured by wearable devices.
We observed a high level of engagement; over half of the users (52/92, 56%) who engaged in symptom tracking became regular
users and reported over 3 months of data each. Furthermore, our netnographic analysis highlighted how the current Quantified
Flu prototype was a result of an iterative and continuous cocreation process in which new prototype releases sparked further
discussions of features and vice versa.

Conclusions: As shown by the high level of user engagement and iterative development process, an open cocreation process
can be successfully used to develop a tool that is tailored to individual needs, thereby decreasing dropout rates.

(J Med Internet Res 2021;23(9):e28116) doi: 10.2196/28116
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Introduction

Background
Patient- or participant-led research has been suggested to
improve self-management capabilities [1] and provide ways to
generate otherwise undone science [2,3]. A particular subtype
of participant-led research is personal science, which involves
the use of empirical methods by individuals to pursue personal
health questions [4]. Personal science is a distinct category of
citizen science that has emerged from the Quantified Self
community and its efforts to advance participant-led research
[5,6]. In personal science, practitioners almost always take the
lead in all stages of the research process by definition [4]. Owing
to this high level of individual engagement and tailoring to
individuals’ interests, personal science has the potential to
deliver novel insights relevant to its practitioners [7], which can
lead to an improved sense of agency and quality of life [8].
Furthermore, the insights and self-expertise generated by these
types of participant-led processes have potential relevance for
professional and scientific research, both topically as a source
of ideas and methodologically as a source of tools, analytical
approaches, and workflows [9].

Wearable devices—from wristbands to smartwatches and other
personalized, miniaturized on- and around-body devices—are
frequently used by self-trackers. These devices are becoming
increasingly common and are used for a wide spectrum of
well-being, fitness, and health-related purposes [10]. This is
further facilitated by the fact that the number of sensors used
in these devices is growing rapidly. In addition to accelerometers
and gyroscopes to track physical activity, sensors to measure
physiological signals such as heart rate, body temperature,
respiratory rate, and blood oxygen saturation, which may
correspond to the health or sickness state of the human body
[11], are also frequently found in wearables [12,13].
Consequently, even outside the realms of personal science,
wearables have long been seen as promising tools for facilitating
health-related monitoring and enabling personalized medicine
[14,15] and have been proposed or used to monitor conditions
as diverse as cardiovascular disease [16,17], Alzheimer [18],
and graft-versus-host disease [19].

In response to the COVID-19 pandemic, interest in using
wearable technology for infection prediction and surveillance
has increased [20-22]. Anecdotal reports from self-trackers
suggest that wearables may provide evidence of COVID-19
infection [23]. During the first year of the COVID-19 pandemic,
a small number of studies appeared, highlighting that wearable
devices, often along with self-reported symptoms, might indeed
be used for the early detection of COVID-19 infections and to
assess physiological symptoms [24-27]. The majority of these
studies take a crowdsourcing-based approach—in which
participants are invited to contribute by providing their own
wearable data along with regular symptom reports and
COVID-19 test results—as the main way of engaging
individuals. The goal of the data collection process in these
studies is to create big data sets to interrogate.

In contrast, there have been limited efforts to engage personal
scientists in cocreating such symptom tracking efforts. Personal

science practices are largely done in isolation, and the Quantified
Self movement has consequently accumulated limited
knowledge so far [8]. To fill this gap, we present a case study
of Quantified Flu (QF), a project cocreated by a community of
personal science practitioners in response to the COVID-19
pandemic.

Objective
The goals of this work are twofold. First, we documented the
contrasting cocreation approach of QF with its focus on personal
science rather than large-scale research. To this end, we used
netnographic methods to document how the cocreation process
developed and generated a citizen science platform prototype
over a relatively short period. Second, we explored the
consequences of the projects’ contrasting cocreation approach
and focused on personal science, particularly with respect to
the ultimate design of the QF tool and its use.

Methods

Overview
The cocreation process of this study is based on an action
research approach [28], simultaneously for developing a useful
community resource while also generating shared knowledge
about the process. In our case, action research was implemented
through practical work to support the participatory design of a
digital platform [29,30] under open-source principles [31],
followed by netnographic data collection and analysis to
understand its development and usefulness as a cocreation
process [32]. For this, all authors except ESH were involved as
participants in the cocreation process, in collaboration with the
rest of the participants, during the iterative prototyping of the
QF platform.

Community Cocreation Process
QF began with a discussion on the monthly Open Humans (OH)
community call at the beginning of the COVID-19 pandemic
on March 10, 2020. OH is a platform for empowering
individuals around their personal data, to explore and share
research processes for the purposes of education, health, and
science in general [33]. The community calls involved 83
individuals so far (until September 3, 2020), and the monthly
calls are frequented by a mix of citizen science and personal
science practitioners; usually, around 10 individuals take part
in each call. Following an initial brainstorming, the discussions
and planning stages were continued through the following
community calls and a dedicated communication channel of the
OH community Slack [34]. Furthermore, over the evolution of
the project, other communities such as Quantified Self [35] and
OpenCovid19 Initiative [36] were engaged and involved in
different aspects of the development of the project.

In parallel to 10 additional community calls between March 10
and September 3, 2020, the main coordination tool for the QF
project was a specific Slack channel, with a total of 146
subscribers and 34.2% (50/146) active users over time with
different levels of involvement and activity. During this
timeframe, this openly accessible channel gathered a total of
844 messages from these users, with a total count of 26,691
words (and 3917 unique words).
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Although the planning, coordination, and social aspects of the
cocreation process mainly took place on the mentioned project’s
Slack channel, technical collaboration and software development
occurred through GitHub and the git repository of the QF. Due
to the iterative nature of open-source collaboration, no up-front
requirement analysis was performed. Instead, prototypes were
developed over time according to community discussions by
iteratively adding and testing implementations. On GitHub, 7
contributors created a total of 316 commits since March 12,
2020, leading to the technical prototype outlined later. The
source code for the project is available under an open license
on GitHub [37].

Netnographic Content Analysis
To investigate and analyze the cocreation stages that led to the
QF prototype, we performed a netnographic analysis of its
iterative communication process, similar to previous studies on
cocreation in health-related community settings [38].

Netnography is an interpretive research method derived from
ethnography, usually applied to social interaction processes in
digital channels and platforms, and focused on digital traces of
public conversations as analyzable data. As a qualitative
technique broadly applied to the study of web-based
communities [32], Netnography allows capturing and reflecting
interactions as an observational, inductive, and unobtrusive
approach while combining it with participatory methods [39].
In particular, we examine how individuals engaged in the QF
Slack channel for the collaborative development of the QF
platform as a case study setting [40].

For this part of data collection, one of the researchers (ESH)
developed a codebook combining key concepts of cocreation
and collaboration in communities of practice (Textbox 1). The
codebook was cross-checked for validity by 2 other authors
(BGT and MB). Following this, it was applied to the QF Slack
channel posthoc without this specific researcher (ESH) having
participated in the previous community discussions.

Textbox 1. Codebook for Quantified Flu Slack communication message content analysis.

Communities of practice-related messages

• Socialization

• Support or coordination: parallel messages regarding overall coordination and personal and empathic support interventions

• Possible collaborations: ideas regarding potential collaborators and connections to other organizations or experts who can support or contribute
to the project

• Outreach: messages related to the visibility of the project, possible dissemination, or alliances for spreading the process

• Off topic: nonrelated messages to any of the previous (eg, about personal issues or intention-to-buy wearables)

Cocreation-related messages

• Ideas

• Inspiring or similar initiatives: mentions to other COVID-19-related projects being developed or known externally

• COVID-19 related: links to news or updates regarding the COVID-19 pandemic and its evolution

• Mention to tool or wearable: references to a specific wearable for its potential connection to the Quantified Flu project

• Scientific knowledge or papers: mentions or links to studies or publications and elaborated scientific knowledge

• The Quantified Flu concept

• Goal setting or discussion: concept-related interventions about the objectives of the project

• Protocol or tool design: mentions to how the protocol and tool should work or specific aspects of its possible design

• Feature suggestion: interventions suggesting specific characteristics or new possible features of the tool

• Pattern or data observation: statements regarding the observation of data in relation to the goals or possible functioning of the project

• The Quantified Flu prototype

• Incremental development or updates: messages informing about new implementations and code development of features applied to the
prototype

• Technical issues: specific technical issues to solve or observations about needed improvements for correct use

• Help testing: interventions asking or offering support in testing the tool by community members

• Help developing: interventions asking or offering technical support for the development of the tool

This part of data analysis was used to determine the typology
of messages regarding the cocreation of the QF platform, from
idea to concept to prototype [29], and other types of messages

relevant from a communicational and empathy-needed dialogic
process in communities of practice [41]. Each Slack message
was assigned up to three top tags based on the aforementioned
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codebook categories, depending on its text density and
characteristics. The researcher (ESH) assessments of types and
categories of messages were subsequently reviewed and
discussed by another coauthor (BGT), who was actively
involved in the analyzed cocreation process.

Results

We present the current prototype of the QF platform [42], as a
result of the described technical development, before analyzing
the cocreation process that led to it.

Community-Based Development
The first overview derived from our netnographic analysis of
the four main categories of messages interchanged during the
cocreation of the QF prototypes on its dedicated Slack channel
(March 10 to September 3, 2020) shows a relative balance in
the topics of the web-based messages among the 1171 message
fragments that were annotated (Textbox 2).

Overall, during the development of QF, the Prototyping and
Socialization messages were slightly more common than the
Concept and Ideas ones (Figure 1). On the level of the tags or
subcategories, the most frequent ones are Support or

coordination (227), Protocol or tool design (109), Technical
issues (107), and Help developing (106).

Focusing on these more specific tags, as defined in the codebook
(Textbox 1), within each category over time (Figure 1), we
observe that all the four main categories, as well as the
individual tags, are present over the whole time frame of
cocreation from early April to September 2020. In particular,
messages regarding Support or coordination are present
throughout the entire time range. Other recurrent message types
during the analyzed time span fall within the categories Ideas,
Concept, and Prototyping, highlighting the iterative design,
implementation, and testing participatory processes that took
place to develop and improve the QF prototype over time.

Importantly, the Protocol or tool design, Mention to tool or
wearable, and Feature suggestions categories, which are
indicative of the cocreation process, appear early on but remain
active in bursts throughout the full observed time span, often
following new releases of the QF prototype. In addition, the
Help developing and Help testing categories remain active over
the whole duration of the prototype development, with the
former showing a more constant activity (mean 1.1 tags per
day, SD 1.9) whereas the latter appears in bursts (mean 0.76
tags per day, SD 2.1) around new feature releases.
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Textbox 2. Examples of messages that were tagged according to the codebook used for the netnographic analysis.

Socialization

• Support or coordination

• “Very good community call focused on quantified flu this morning. Glad I participated”

• “Great updates, thank you and I am definitely staying tuned...how can I help other than visualisations. Have a good rest of the day!”

• Possible collaborations

• “[Person outside the community] is usually sitting in the office right next to mine (working from home these days) and we’ll do a call
tomorrow to chat about synergies!”

• “It’s possible we could address these with support from the company, which in turn depends on our convincing them to prioritize this support.
We have some close contacts there that could lead to success”

• Outreach

• “We’re (very briefly) featured in the latest UCSD newsletter”

• “Oh, and we already got some media coverage in the german ‘digital living’ magazine t3n”

• Off topic

• “Not sure if it’s appropriate to ask but does anyone have a way to get discount on the Oura ring?”

• “BTW, semi-related to this project: Just coinciding with the general lockdown in Paris I stopped smoking and could nicely see my resting
heart rate drop, my heart rate variability grow, etc. within the first few days”

Ideas

• Inspiring or similar initiatives

• “Another flu-tracking app, from Duke:...[URL]”

• “Looks like Michael Snyder’s famous self-tracking lab at Stanford is doing something similar”

• COVID-19 related

• “Placing this link here because it was an interesting symptom diary someone shared on Twitter they made”

• “Btw. during the community call yesterday, [community member] shared this symptom report of a contributor who thinks he has covid19”

• Mention to tool or wearable

• “How far is the Fitbit Intraday integration? As of right now the Fitbit Graph seems quite a bit less detailed than the Oura one”

• “The Garmin devices are a bit tricky, as their API is locked off unless you apply for access with them”

• Scientific knowledge or papers

• “August 31 Webinar from hlth.com: Wearable Technology’s Potential to Help Detect Illness”

• “Stanford’s 2017 paper was all about longitudinal health data and health outcomes”

The Quantified Flu concept

• Goal setting or discussion

• “Personally, I see the purpose of this project not so much as epidemiological, but about expanding the personal value of our data. Doing
that as a group helps us learn from context, as well as individually”

• “This project might also be a starting point for prospective tracking for people that get sick, going forward. Still thinking about if/how that
would work.”

• Protocol or tool design

• “So i think it may make sense to give numerical values for each symptom, from 1-5 or 1-10 in terms of intensity, and also timestamp them
to allow for multiple logging within a day”

• “but my vicks smart temp thermometer arrived...the associated app allows me to record...medication, symptoms (cough, sore throat, chills,
body ache, ear ache, nausea, stomach ache, fatigue, short breath, headache, diarrhea, runny nose), a free text ‘notes’”

• Feature suggestion
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• “She wears an Apple Watch and has resting heart rate data. Should I invite her join quantified flu even though she does not have an Oura
or Fitbit? Is adding support for Apple Watch too much work at this stage? Manual entry wouldn’t be very challenging probably”

• “I’m realizing the public list could at least give event IDs so you have some sort of identifier for each one”

• Pattern or data observation

• “Already contributed two sick events of mine from 2019, that are very obvious in the data but also quite different”

• “So I don’t think it’s necessarily measurement noise. For my own data my gut feeling is that all variations ≤ ±0.3 °C are probably just daily
fluctuations for a myriad reasons”

The Quantified Flu prototype

• Incremental development or updates

• “Some publicly available data now – you can explore on the site, and there’s JSON endpoints to get raw data”

• “Hey <!channel>, we have another nice visualization update thanks to [community member]! The retrospective events now have the same
display that can be found for the ongoing symptom reports, check out [QF link] for an example!”

• Technical issues

• “Oh, not sure if that’s true though! I think if the oura dies while doing the recording it doesn’t deliver any data (happened to me 3-4 times
with my broken oura where it would not record anything for the night)”

• “Also, I found a strange inconsistency in the data. For one of the users, the JSON file states that they are sick on July 11th, but the interactive
display on the website does not (the JSON says that the person had a sore throat, but the web display does not). I attach the examples”

• Help testing

• “My daily symptom checkins have stopped, is this happening for anybody else? I thought it might be an email issue on my side”

• “Does anyone of you have an android watch/wearable that would track heart rate to test whether it works?”

• Help developing

• “Hi everyone! I am a programmer and would be happy to help. I have lots of experience with python”

• “I thought a cool starting visualization could be a heatmap similar to the github activity view, but with time only on the x-axis and the
different symptoms on the y-axis and colored by symptom severity. If you have other cool ideas for appealing and insightful visualizations
feel free to let us know!”
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Figure 1. Distribution of message types over time; the frequency of tags are given as 7-day rolling averages. Events 1-7 around Quantified Flu
development are given as vertical lines. Bar plots show the total number of tags per category.

QF: Technical Platform Implementation

Overview
As a result of this community-based development process, QF
evolved into a responsive web application that can connect to
a wide variety of devices, implemented in Python or Django
programming language. Users must be registered on OH, having

the option of linking a range of available wearable devices from
which physiological data (heart rate, body temperature, and
respiratory rate) can be imported into the OH platform; visualize
past sickness or infection events (retrospectively) on it (present
since the first prototype, launched on March 16, 2020); and
engage in daily (prospective) symptom tracking (added in the
second prototype, released on March 24, 2020; Figure 2).
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Figure 2. Data flow and user flow in Quantified Flu. RHR: resting heart rate.

User Accounts, Data Storing, and Anonymization
To enable rapid prototyping, QF is connected to the OH platform
[33] as a back end to manage user permissions and store user
data. OH provides OAuth2-based application programming
interfaces (APIs) to authenticate users while keeping each user
pseudonymous to the QF platform, as no personally identifiable
information is transmitted. Instead, only a random 8-digit user
identifier specific to the QF project is provided. Furthermore,
OH provides APIs to access and store user data in their system
through those identifiers and provides methods for users to
consent to share data from the OH platform with third parties
such as QF.

Wearables
To further bootstrap the creation of the prototype, QF made use
of the existing wearable integrations that OH already offered
(Fitbit daily summaries, Fitbit intraday data resolution, and Oura
Ring). To facilitate usability, QF also integrated these data
import methods directly into the prototype, using OH as the
data store for the wearable data.

Furthermore, following community suggestions and ideation
discussions (Textbox 2; Mention of tool or wearable), QF also
added Google Fit (May 6, 2020), Garmin (June 11, 2020), and
Apple Health (May 14, 2020) as additional supported wearable
devices. Depending on the wearables, users can import and use
their heart rate throughout the day, daily resting heart rate, body
temperature, and respiratory rate in QF (Table 1).

Table 1. Wearables supported by Quantified Flu.

Respiratory rateBody temperatureHeart rate throughout dayResting heart rateDevelopmentWearable

✓aExistingFitbit

✓✓ExistingFitbit Intraday

✓✓✓ExistingOura Ring

✓Extended (added heart rate data)Google Fit

✓✓AddedApple Health

✓✓AddedGarmin

aThe feature is measured by the wearable.

Unlike other wearables integrated into QF, Apple Watch does
not provide a web-based API to access and export data. Thus,
following another community suggestion (Textbox 2; Feature
suggestion), a mobile iOS app was created to provide a link to
QF. This specific app enables users to export their heart rate
data collected by Apple Watch. The source code for this mobile
app is also available under an open license [43].

Symptom Tracking
Users can report symptoms using a QF website. On the basis
of previous works [24-26] and early community discussion and
feedback (Textbox 2; Protocol or tool design), QF implemented
a list of 12 symptoms that were classified as respiratory,
gastrointestinal, and systemic symptoms (Textbox 3), allowing
users to score those on a 5-point scale (1=light; 5=worst). In
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addition, users can report fever measurements and use free-text
fields for the suspected origin of their symptoms, further

symptoms, or notes to put their symptoms into context (Textbox
2; Protocol or tool design).

Textbox 3. Symptoms of sickness that users can monitor in Quantified Flu.

Respiratory

• Cough

• Cough with mucus or phlegm

• Reduced sense of smell or anosmia

• Runny or stuffy nose

• Sore throat

• Shortness of breath

Gastrointestinal

• Diarrhea

• Nausea or vomiting

Systemic

• Chills and sweats

• Fatigue and malaise

• Headache

• Muscle pains and body aches

Users can opt in to receive daily symptom report reminders that
are sent through the anonymous OH email system at a
user-selected time, as another tool feature that was discussed
and regularly tested by participants (Textbox 2; Help testing).
Each email contains the following two links: (1) the reporting
no symptoms link, a single-click link that requires no further
interaction of the user, and (2) the reporting symptoms link,
which takes users to the symptom report form.

Data Visualization

Overview

To provide users with easy ways to facilitate understanding of
their own physiological data and potentially explore it in relation
to their own symptom reports, QF used D3.js to create
interactive visualizations. These visualizations present the
evolution of the various physiological data points and put them
into the context of their symptom reports where available.

The QF platform provides personal science practitioners 2 main
ways to explore their physiological wearable data in relation to

infections—the retrospective analysis of prior events and an
ongoing (prospective) analysis of symptom reporting.

Retrospective Analysis

Users can select a given, historic date on which they fell sick
or had specific symptoms, and QF will, if available, extract
wearable data for the 3 weeks before that date and 2 weeks after
the incident. This allows users to visualize sickness incidents
that occurred before the launch of QF. Depending on the
wearable (Table 1), users are given the option to display
different physiological variables over that 5-week time period
and explore how they change over time. To facilitate the
interpretation of changes and outliers in the graphs, both the
first and second SDs are presented as well (Figure 3). Although
users can add comments to retrospective events, detailed
symptom reports are absent in this mode, as most users do not
have detailed records of the historic sickness events. The
retrospective analyses were part of the first prototype of the QF,
launched on March 16, 2020.
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Figure 3. Screenshots of the Quantified Flu prototype showing typical visualizations generated by users. (A) An example data visualization of an
individual, retrospective sickness incident that happened on December 31, 2018. The data plotted are the resting heart rate recordings as measured by
the Fitbit and Oura Ring. (B) An example of an ongoing symptom report visualization. The top half shows a heat map of the symptoms that were present
along with their strength, and green boxes display user-provided free-text comments. The bottom half shows physiological data from wearables. bpm:
beats per minute.

Ongoing Symptom Reporting

Users can also report currently experienced symptoms through
QF at any moment in time by selecting symptoms and their
experienced strengths from a list (Textbox 3). This self-report
is likely triggered by email, as explained earlier. Following
symptom reports, users are automatically taken for their data

visualization (Figure 3). On a wearable device data level, this
visualization provides the same details as that of the
retrospective analyses (Retrospective Analysis section). The
ongoing symptom reports (Figure 3) were launched as a new
feature in the second iteration of the prototype on March 24,
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2020, also following discussion and contributions from the
community (Textbox 2; Incremental development or updates).

In addition, this latter view aligns a heat map of each daily
symptom report to the wearable data timeline, allowing the
identification of patterns within the reported symptoms
themselves and for visual cross-comparisons between the
physiological data and the symptom reports. Furthermore, users
can also access their comments for each symptom report from
this visualization, allowing them to understand the contexts in
which they made those reports.

Community Use
A total of 190 personal science practitioners engaged with QF
between its launch on March 16, 2020, and December 22, 2020.
The initial prototype of QF (in place until March 24, 2020) only
offered the possibility of analyzing retrospective sickness events.
This feature was rarely used: only 24 users tried the feature,
creating a total of 47 retrospective analyses. In total, 34
individual wearables were linked by these 24 users. The

prospective ongoing symptom report feature was launched on
March 24, 2020. In total, 92 users made use of this feature at
least once, covering a range from a single symptom report being
done up to over 300 reports for some members. Overall, 11,658
symptom reports were filed and 112 wearables were linked to
it, between the launch of the feature and December 22, 2020.

The distribution of user engagement for the entire period (Figure
4), as measured by the number of reports, shows an
approximately linear relationship between the number of reports
done and the user’s rank of activity. The reports with symptoms
are also not equally distributed across all 92 users, with a sizable
fraction of users having no or only a few reports that include
symptoms, whereas for some users, symptom reports comprise
half or nearly all of the reports. Overall, the vast majority
(10,594/11,658, 90.87% reports) were reports that included no
symptoms. Of the 1064 reports with symptoms, 176 (16.54%)
included explanatory notes or comments, in addition to the
standardized symptom reports.

Figure 4. The use of Quantified Flu as measured by ongoing symptom reports filed by users. (A) Users were ranked by the number of symptom reports
they have filed; data were broken down into whether symptoms were reported (blue) or not reported (red). (B) The number of symptom reports filed
per day. Values were averaged into a weekly rolling average. The blue line represents the local regression–smoothed data along with SE (gray background).

Looking at the number of symptom reports filed per day, we
can observe a rapid rise in daily reports at the beginning of April
2020, reflecting the launch of the first prototype with the

ongoing symptom reports. The second rise in daily reports
started in July 2020, leading to the numbers starting to stabilize
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at around 45 symptom reports filed per day (by an average 45
users per day, SD 5; Figure 4).

Discussion

Principal Findings
In this paper, we present QF, a cocreated web-based project that
enables personal science practitioners to engage with their own
wearable data and visualize it in the context of when they are
experiencing symptoms of potential infection. The spark that
led to this community deciding to cocreate a symptom tracking
tool was the beginning of the global COVID-19 pandemic, along
with population-wide studies that made individuals wonder how
useful their own wearable data might be for them in such a
pandemic context. With its focus on individual learning, QF
stands in contrast to various population-level studies performed
to evaluate the usefulness of wearable technology for the
prediction of illness [20,24-27]. At this individual scale,
symptom tracking and health data more generally can offer
support for individual sense-making on health experiences and
conditions [44], which can be idiosyncratic and complex [45].
QF was also distinguished by a cocreation approach that targeted
the individual learning and research interests of a web-based
community and involved the iterative development of a digital
tool in response to feedback, resulting in a format that attracted
increased and sustained participation from early users.

One of the main aims of our work is to investigate the
consequences of a cocreation approach that focuses on personal
science: We observe that the initial QF prototype, which focused
solely on retrospective symptom tracking, was rarely used. Only
24 users were engaged in this prototype. However, importantly,
this initial version facilitated additional discussions about
designing both the data collection protocol and extending the
prototype (Figure 1), leading to the creation of the ongoing
symptom reports as a feature launched in the next QF iteration.
This feature received much more attention from the participants,
with a total of 92 people using QF for their own regular
symptom tracking, delivering some first insight into the
importance and potential benefits of early engaging potential
users in a health research design cocreation approach.

Furthermore, we observe that the level of engagement across
these 92 QF users seems to drop linearly when ordered from
most to least engaged users (Figure 4). This distribution is
atypical for user engagement in web-based communities, where
one typically observes power-law distributions for engagement
[46]. Related to this, digital or mobile health apps in particular
typically struggle with achieving continued use, as a large
fraction of users drop out after a few interactions [47,48]. In
previous studies, only 2% of initial users showed sustained use
in the most extreme cases, with observational studies having
an average dropout rate of 49% [49]. In contrast, around half
of the QF users who engaged with ongoing symptom tracking
did so on a regular basis, leading to 45 (SD 5) symptom reports
per day on average (Figure 4), and over 50 users reported more
than 3 months of symptom reports, highlighting continued
longitudinal use. We argue that these uncharacteristically high
numbers of user engagement, which is sustained over time, is
a result of the community cocreation process that led to the final

prototype of QF. Previous studies have found that users are
more likely to continue using mobile health apps if there is a
good fit between users and applications [50], which means that
a cocreation process among future users could be a key way of
achieving this fit.

For some users, this continued engagement might also be an
indication that they experience regular or recurring symptoms,
making them particularly interested in learning empirically
about them through this specific kind of self-tracking. This is
supported by the number of reports that include symptoms,
where a subset of users reported having symptoms frequently,
with some users reporting symptoms in 40%, or extreme cases
even 90%, of the time (Figure 4). Further evidence for this
comes from the notes or annotations that users can submit to
the QF website along with their symptoms when filing their
daily reports. Looking at the publicly shared notes in these
reports, we find examples like “the cough is smokers
cough...because I’ve been smoking more since being out of
work” and “I was deep cleaning the house...all the dust got my
allergies going again” highlighting possible reasons for recurring
symptoms. Furthermore, these annotations help to provide
context to individuals and others that aim to reuse publicly
shared data. Although a severe case of coughing or nasal
congestion might hint at acute infection, they might also be
unrelated, as the annotations highlight. These contextual
descriptions can be difficult to formalize, potentially explaining
why symptom-based diagnoses are difficult to achieve in many
cases [51,52].

Our second main goal, in parallel to the development of the QF
prototype itself, is to explore how a community-driven initiative
can contribute to collectively creating the tools needed to build
self-knowledge by conducting a netnographic analysis of the
main QF communication channel. Reflecting on the use of this
qualitative and interpretative methodology for the study of
web-based communities [53], we find that it adapts well to
user-led prototypes, with some particular strengths and
limitations. In the case of QF, we found that the netnographic
approach was well suited to allow a posthoc study of the
participatory design process after the prototype creation. This
approach could be valuable in obtaining a better understanding
of cocreation dynamics in similar health-related projects and
studies [54], as it can be applied to existing text corpora of
community interactions on digital text tools such as Slack,
mailing lists, or forums. Its reliance on text communication is
also one of the main limitations, as synchronous
meetings—remote and physical—are less accessible as archival
data, requiring recordings and transcriptions. Given this, it might
be advisable to organize cocreation processes with Netnography
techniques in mind to ensure adequately sized text corpora.

Applying such a netnographic approach to QF, we found a
marked overlap of the various phases of ideation,
conceptualization, and prototyping over time. Although a greater
number of interactions can be found in the initial phases, there
is a sustained regularity later on, particularly in areas such as
feature suggestions or the design of the tool and protocol. In
this sense, messages and interactions related to helping with
development throughout the whole process reflect a typology
of continuous and iterative cocreation, which is typical of
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collaboration processes in the development of open-source tools
[55].

This iterative cocreation process is also highlighted in the
burst-like appearance of feature suggestions and protocol or
tool design discussions, which frequently appear following the
release of new features, suggesting that new releases spark
further protocol refinements and feature ideas, which in turn
lead to the QF prototype refinement. Importantly, this means
that the protocol itself, along with the concrete implementation,
remains in a stage of flux over a longer period of time, compared
with more traditional research design approaches. As a result,
this type of collaborative approach is at odds with standard
ethical oversight procedures for human subject research that
require a precise predefinition of the protocol and the role of
the individuals, whereas the main feature of cocreation is that
it is emergent and adaptive, making detailed prespecifications
impossible [56]. To fully take the advantage of the benefits of
cocreation in the participant-led research, it might be necessary
to develop different models of ethical oversight that recognize
the autonomy of participants [57,58], to not discourage or stifle
valuable forms of participant-led research [2].

Finally, it is also important to highlight how the other types of
messages associated with communication in a community of
practice context, which favor both web-based empathy and

effective coordination, were produced in a prominent, constant,
and sustained manner from the beginning of the cocreation
process (Support or coordination; Figure 1). This mode of
cocreation can be understood as an example of uninvited citizen
science that relies on a shared set of values, self-stabilizing
communication infrastructure, and a loosely defined coproduced
knowledge object [59] (eg, the QF prototype itself). This way,
the development of the data collection platform itself is framed
in a dynamic, bottom-up, and adaptive way, similar to other
open source and peer production experiences.

Conclusions
Although QF is a project that is still at the prototype stage and
with a correspondingly small user base, the cocreation processes
of the platform prototype described here represent an example
of how the codevelopment of digital research objects, within
the relatively new participatory paradigm of extreme citizen
science [60], can be implemented following bottom-up, dialogic
approaches and a high level of participant engagement. This
aligns with the still scarce literature on what has been called
do-it-yourself science or peer-to-peer science [61,62], in which
similar participatory approaches can offer an opportunity for
early and sustained engagement from personal science
practitioners in the collaborative definition of concepts, features,
and protocols for health-related digital platforms.
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