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Abstract

Background: Glaucoma leads to irreversible blindness. Globally, it is the second most common retinal disease that leads to
blindness, slightly less common than cataracts. Therefore, there is a great need to avoid the silent growth of this disease using
recently developed generative adversarial networks (GANs).

Objective: This paper aims to introduce a GAN technology for the diagnosis of eye disorders, particularly glaucoma. This paper
illustrates deep adversarial learning as a potential diagnostic tool and the challenges involved in its implementation. This study
describes and analyzes many of the pitfalls and problems that researchers will need to overcome to implement this kind of
technology.

Methods: To organize this review comprehensively, articles and reviews were collected using the following keywords:
(“Glaucoma,” “optic disc,” “blood vessels”) and (“receptive field,” “loss function,” “GAN,” “Generative Adversarial Network,”
“Deep learning,” “CNN,” “convolutional neural network” OR encoder). The records were identified from 5 highly reputed
databases: IEEE Xplore, Web of Science, Scopus, ScienceDirect, and PubMed. These libraries broadly cover the technical and
medical literature. Publications within the last 5 years, specifically 2015-2020, were included because the target GAN technique
was invented only in 2014 and the publishing date of the collected papers was not earlier than 2016. Duplicate records were
removed, and irrelevant titles and abstracts were excluded. In addition, we excluded papers that used optical coherence tomography
and visual field images, except for those with 2D images. A large-scale systematic analysis was performed, and then a summarized
taxonomy was generated. Furthermore, the results of the collected articles were summarized and a visual representation of the
results was presented on a T-shaped matrix diagram. This study was conducted between March 2020 and November 2020.

Results: We found 59 articles after conducting a comprehensive survey of the literature. Among the 59 articles, 30 present
actual attempts to synthesize images and provide accurate segmentation/classification using single/multiple landmarks or share
certain experiences. The other 29 articles discuss the recent advances in GANs, do practical experiments, and contain analytical
studies of retinal disease.

Conclusions: Recent deep learning techniques, namely GANs, have shown encouraging performance in retinal disease detection.
Although this methodology involves an extensive computing budget and optimization process, it saturates the greedy nature of
deep learning techniques by synthesizing images and solves major medical issues. This paper contributes to this research field
by offering a thorough analysis of existing works, highlighting current limitations, and suggesting alternatives to support other
researchers and participants in further improving and strengthening future work. Finally, new directions for this research have
been identified.
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Introduction

Medical and Statistical Overview
Blindness and visual impairments often result from cataracts,
age-related macular degeneration, and glaucoma [1,2].
Glaucoma is a neurodegenerative disease that damages the optic
nerve and causes visual field loss [3]. As it is an asymptomatic
disease, it is known as the silent thief of sight [4], and patients
are unaware of the infection until their vision is irreversibly
impaired. Among affected individuals, 50% are ignorant of the
disorder [5-7]. Early phases of glaucoma have no symptoms or
visual field changes [8]. As the disease progresses, a slow
narrowing of the visual field can occur. If left untreated,
glaucoma may contribute to total blindness [9]. Loss of vision
usually begins on the eye’s side and then approaches the middle.

Statistically, glaucoma affects millions of people globally, with
more than 64 million cases recorded in 2013, and other studies
have estimated that 76 million people will be affected by 2020
and 111.5 million by 2040 [9,10]. Glaucoma is the second

leading cause of blindness worldwide, preceded by cataracts
[11], and it impacts 4.5 million individuals [9,12], more than
10% of the gross population [10]. Owing to the asymptotic
function of glaucoma, approximately 70% of individuals with
glaucoma are unaware of the illness’s existence [13,14] in the
early stage. Thus, we need to provide an early detection and
evaluation method [15]. Once glaucoma is detected, a more
effective follow-up takes place as a cure can slow down the
transmission of the disease [8].

Cataracts may be reversed by surgery, while glaucoma causes
lifelong blindness. Elevated intraocular pressure (IOP) is the
most common cause of glaucoma. The tonometer measures IOP.
However, IOP is not always an accurate and adequate indicator
of glaucoma, because glaucoma does not always cause a rise in
IOP [16] but rather a deterioration of the optic nerve head
(ONH). Visual information flows through the ONH to the brain.
The ONH consists of a bright spherical area called the optic
disc (OD) and a wider circle-like area called the optic cup (OC).
Figure 1 shows these structures in ocular images.

Figure 1. Fundus image structure.

ONH assessment is a widely used glaucoma screening tool that
utilizes differential division to distinguish between glaucomatous
and normal images [17]. Manual calculations of ONH geometric
structures, such as the cup-to-disc ratio (CDR); inferior, superior,

nasal, and temporal (ISNT) rule; disc diameter; and rim area,
are recommended as diagnostic features for glaucoma screening
[18-20]. Among them, the CDR is a reliable therapeutic feature
for early glaucoma screening and diagnosis [21,22]. Each of
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the derived CDR parameters (diameter or area) is the ratio
between the OC and the OD. CDR values rise when the illness
progresses and become higher than approximately 0.6-0.7 when
the patient has a stronger chance of developing glaucoma [23].
Based on an earlier study [24], a CDR of at least 0.65 is deemed
glaucomatous in clinical practice. The CDR score tracks the
development of glaucoma over time, effectively screening the
condition early [25]. Currently, to check for retinal diseases,
specialists tend to manually extract the blood vessel (BV), OD,
or OC from retinal images. Accurate segmentation of the retinal
structure is very important during the diagnostic process.
However, doing this process manually is very labor intensive,
time consuming, and risky in terms of human mistakes.
Furthermore, the analysis results may lack objectivity, as
different experts may produce different results. Therefore, it is
important to automate retinal image segmentation/classification
while minimizing expert interference.

Research Background
The development of medical imaging technology has helped to
accelerate the detection of diseases. Additionally, several studies
have been conducted using image processing techniques to
automatically process medical images without the intervention
of experts [26]. Several studies [22,27,28] have examined
vascular tracking and OD and OC segmentation using
fundoscopic images. The main segmentation techniques depend
on visual features such as color and contrast thresholding, region
segmentation, and boundary recognition. Such methods use a
learned classifier to classify pixels as foreground pixels (eg,
OD, OC, or BV) or as background pixels (regions out of the
area of interest) [29,30]. However, most of these methods are
based on hand-crafted features (eg, texture, red green blue
[RGB] color, gradient and Gabor filter), which are susceptible
to low image contrast, pathological regions, and have a lack of
deep feature extraction.

In recent years, automatic learning has been significantly
improved with the assistance of machine learning (ML)
techniques [31]. According to several studies [32,33], ML and
deep learning (DL) algorithms have evolved to the point that
they can compete with and sometimes even outperform humans
on certain tasks, such as object detection [34] and image
classification on ImageNet [35]. Currently, deep learning
methods (DLMs) are an active research field because they can
automatically generate and learn extremely complex features
from input data. In particular, DLMs with deeper and
complicated perceptron layers [eg, convolutional neural
networks (CNNs)] have shown better performance in object
detection than other methods [33]. Researchers have attempted
to use various types of architectures, such as GoogLeNet [36],
AlexNet [33], and DenseNet [37], for glaucoma diagnosis with
the introduction of deep neural networks. Such research mainly
focuses on 2 aspects: using DL for complex and deep feature
extraction and utilizing medical features and spatial domain
knowledge in the detection process. However, the use of deep
fully connected networks is susceptible to imbalanced learning
problems such as high false-negative or false-positive rates,
leading to more fake or skinny branches than those of the ground
truth [38,39]. In other words, retinal BV segmentation still has

issues such as false pathological information segmentation and
low microvascular segmentation [40].

For addressing complex learning issues, deep architectures often
have advantages over shallow architectures; for example, deep
CNNs have demonstrated significant efficiency improvements
over conventional vision-based models [41]. A fully connected
convolutional network has been used to address insufficient
public data. Such methods, however, create very fuzzy vessels
with false positives along with tiny and weak roots. This error
primarily occurs because the CNNs used in current methods
depend solely on pixel-level objective feature to equate the
standard image to the image created by the model and are
incapable of adapting actively to the fundus image of the natural
vascular structure [42]. Empirical studies have proven that deep
CNNs can learn invariant representations and attain human-level
success if sufficient training data are provided. However, one
of the leading shortfalls of DLMs is the lack of available data.
Medical data annotation often requires specific domain experts.
This shortage leads to the need for CNN training approaches
with a limited number of annotated data. However, this can
easily lead to underfitting, and as a result, high error rates on
both training and testing data are recorded. Lahiri et al [43]
demonstrated the effectiveness of using generative adversarial
networks (GANs) [44] to perform some discriminative task with
only 0.8%-1.6% of the amount of annotation data used by other
methods.

GANs belong to the family of unsupervised learning algorithms
that have proven their merits in generating synthetic images
close to real images and solving image-to-image translation
problems in the natural domain [45,46]. GANs have gradually
shown their extraordinary ability and have started to shine
brilliantly in various application fields [45,47,48]. Inspired by
the prevailing learning capability of GANs, Wu et al [49]
proposed the generative adversarial network with U-net, referred
as (U-GAN), which includes an attention gate model in the
generator and a densely connected convolutional network to
segment the BVs automatically. Lahiri et al [50] proposed deep
convolutional GANs (DCGANs) for retinal segmentation to
segment the region of interest (ROI) from a given image. In
addition to segmentation tasks, the synthesis of retinal images
is a large part of the literature. Haoqi and Ogawara [51] trained
a GAN model to learn the mappings of vessels from retinal
images to segmented images for training a model to generate a
synthesized image close to a given real image.

To date, several review articles summarizing the technology of
DL in ophthalmology have been published [20,52-55].
Nevertheless, none of them have particularly focused on the
emerging breakthrough GAN techniques using fundus
photographs. Moreover, despite the rapid development of
telecommunication technology, only a few study groups have
examined the possibility of integrating artificial intelligence
(AI) technologies with teleophthalmology [56]. To the best of
our knowledge, no researchers have adopted telescreening for
glaucoma using DL techniques, particularly the GAN.

Shedding light on the importance of telecommunication
technology in DL techniques is a current and very urgent need.
Alongside the emergence of newer low-cost handheld devices,
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glaucoma screening will become more available, even to distant
and poor communities. In addition, maintaining social distance
is very important for mitigating the spread of the coronavirus
pandemic. This paper summarizes the work in the literature on
glaucoma diagnosis and highlights the challenges and gaps of
current studies to uncover the possibilities of filling these gaps
with the recommended suggestions. We aim to elucidate all
research efforts, such as the GAN architectures mentioned
earlier, that have been developed in response to the new and
disruptive technology, mapping the research landscape from
the literature onto a coherent taxonomy of the key features that
characterize such an emerging line of research. Finally, the
future work of this research will be proposed and described in
detail.

Methods

Basic Theory of GANs
We start by reviewing the concept of GANs [44]. GANs consist
of 2 separate neural networks, a generation network (G) and a
discriminator network (D), plus a noise vector (z) sampled from
a known distribution (eg, a Gaussian distribution), which is used
to generate data points (fake samples; see Figure 2). A 2-player
min-max game inspires the basic idea of this technique. The
goal is to train the generator G to learn to capture the potential
distribution in the real data sample and generate a new sample
close to the real data to deceive the discriminator. The
discriminator D is a binary classifier that attempts to
discriminate whether the input data are real or fake [44]. To win
the game, both G and D need to continuously improve their
generation and discrimination capabilities, respectively. The
training process lasts until both G and D reach a convergence
point (Nash equilibrium), where G generates an output
distribution very close to the real data distribution [42,57,58].

Figure 2. GAN architecture. GAN: generative adversarial network.

Mathematically, let G be parameterized by θ, which takes
random noise z as input and produces synthetic images G(z) as
output. The generated G(z) is mapped from a distribution G(z;
θ) ∼ pg. Additionally, the training data set x is sampled from
the real data distribution pdata, and the objective function of the
generator network is used to train G to approximate pdata using
pg. By contrast, the discriminator (D) takes either the original
image x or G(z) as input and indicates whether the input is from
a true data distribution (x) or a synthetic data distribution G(z)
by outputting a probability of D(x) or D(G[z]). This can be seen
in the followig equation, where pdata(x) is the true data
distribution and pz(z) is the noise distribution.

However, the training mechanism of such a model is critical.
Unbalanced training between the G and D networks leads to
model collapse. This happens when D is trained much better
than G. In this case, D is able to easily discriminate between
the real and synthetic images generated by G and reject all its
outputs; thus, the loss log{1 − D(G[z])} saturates, and G learns
nothing from the zero gradient. To avoid the model collapse
issue, the loss function of G should be trained to maximize
logD(G[z]) instead of minimizing log{1 − D(G[z])}. This can
avoid the saturation of the gradient and provides the same
gradient direction as that yielded by the old loss function.

Extension Models of GANs
The first GAN [44] was composed of fully connected layers.
Later, the DCGAN [59] introduced the use of fully CNNs to
increase training stability and improve efficiency. Since then,
many GAN models have followed this set up as the main
components of GAN architecture. Unlike the DCGAN, the
Wasserstein GAN (WGAN) [60] increases the permutation in
the fully connected layer. In this model, the Wasserstein distance
metric is used instead of the Jensen–Shannon divergence to
measure the distance between the generated data distribution
and the real data distribution. Therefore, the problems of model
collapse and training instability were partially solved in this
model. Subsequently, an improved version of the WGAN called
the WGAN-GP (gradient penalty) [61] was proposed. The
WGAN-GP depends on gradient penalty replacement so that it
can solve slow training problems encountered by the WGAN.
Moreover, inspired by the WGAN, Mao et al [62] proposed the
least-squares GAN (LSGAN) to improve the quality of the
generated images. The main idea of the LSGAN is to use a new
loss function in the D network for smooth and unsaturated
gradients.

The original GAN randomly generated a date distribution that
is beyond our control, as the output depends on random noise.
Therefore, a conditional GAN (cGAN) was invented to add a
vector c as a conditional input to the noise vector z so that the
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generator could generate the required data. Hence, the generator
output of the cGAN was defined by G(c,z).

Since the cGAN was proposed, many articles have used the
cGAN applications, for example, Pix2Pix [45], a cGAN-based
technique proposed by PatchGAN to map a set of images to
another image using N × N pixels. It classifies each N × N path
of the image and averages all the scores of patches to obtain the
final score for the image. The main limitation of Pix2Pix is that
it requires images x1 and y1 that are paired with each other in
the training stage. By contrast, CycleGAN [47], which is also
a cGAN-based technique, utilizes an image translation method
that does not need paired data, even though Pix2Pix still
outperforms CycleGAN’s remarkable margin.

Another variation of the GAN combines a variational
autoencoder (VAE) and a GAN in a single model named
VAE-GAN [63]. The idea behind this technique is to exploit
the strength of both the GAN and VAE, as the GAN can
generate sharp images but misses some modes while the VAE
produces blurry images but with a large variety. Studies have
demonstrated that VAE-GAN images are better than those
produced by the VAE or GAN alone.

Information Sources
Guided by [64], we conducted a comprehensive search to find
all GANs-based articles related to glaucoma by searching the
best and most reliable libraries: (1) Scopus, (2) ScienceDirect,
(3) IEEE Xplore, (4) Web of Science, and (5) PubMed Central.
This collection includes technical and medical literature,
perfectly reflecting all research activities in this discipline.

Study Selection Procedure
The method for choosing appropriate studies was on the basis
of 2 stages: screening and filtering. Successively, both stages
met the same criterion for inclusion and exclusion. Both
duplicates and unrelated studies by title and abstract skimming
were omitted during the first stage. Then, the result in a set of
papers was entirely read, analyzed, and summarized in the
filtration stage.

Search
This work was carried out between March 2020 and November
2020. Various keyword combinations were used in the search
of highly reputable libraries (IEEE Xplore, Science Direct,
PubMed, Scopus, and Web of Science). Our search query consist
of 2 parts that are connected with each other using the operator
“and.” The following set of keywords (“glaucoma,” “optic disk,”
“blood vessels”) and (“receptive field,” “loss function,” “GAN,”
“generative adversarial network,” “deep learning,”
“convolutional neural network,” “CNN,” Encoder) belong to
the first and second parts, respectively. The operator “or” is
used to connect keywords within the same part. Based on this,
our study scope is formulated.

The quest focused on different journals and conferences and
omitted books and all other forms of literature. Therefore, we
mainly concentrated on up-to-date and applicable scientific
studies related to the use of GANs in retinal disease, especially
glaucoma. Figure 3 shows the research query and inclusion
criteria used in this work.
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Figure 3. Flowchart of the study selection with the research query and inclusion criteria. GAN: generative adversarial network; WOS: Web of Science.

Validity of the Collected Papers (Scope Validation)
The total number of keywords in the collected papers was 115.
To validate our research scope, we analyzed these keywords
and categorized them according to their co-occurrences. Then,
we set a threshold indicating the co-occurrences of each keyword
across all papers. Let k≥3, where k is a threshold. As a result,
we obtained 15 keywords out of 115 that met the threshold.
That is, each of these 15 keywords occurred at least three times
in all the collected papers.

Figure 4 illustrates the connections of these 15 keywords to
each other. The size of each circle indicates how frequently a
single corresponding keyword occurred. The more frequently
a keyword occurred, the larger circle size it gets, for example,

the keyword “deep learning” has the biggest circle size in the
diagram, which means it is the most frequently appeared
keyword in the collected papers. The second factor is the color,
which indicates how often a single keyword occurred per year.
The last factor is the total link strength, which indicates the total
connection of a keyword to other keywords. The more frequently
2 keywords appeared in the same article, the thicker is the line
drawn between them. For example, the keywords “deep
learning” and “glaucoma” were linked by a thicker line than
the line between the keywords “generative adversarial network”
and “glaucoma,” which means that both “deep learning” and
“glaucoma” appeared together in the collected articles more
than the keywords “generative adversarial network” and
“glaucoma” did. This indication reveals that GANs have been
used less than other DL techniques in glaucoma detection.
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Figure 4. Scope validation diagram.

Table 1 shows the occurrences and the total link strength of the
15 keywords that met our threshold (k≥3). Deep learning is the
most frequently occurring keyword, which has uniquely
appeared 20 times in the collected articles and 27 times with
other different keywords. GANs occurred 17 times, with 18
connections to other keywords, while the keyword glaucoma
occurred 8 times, with 12 connections to other keywords. In

conclusion, these highest scores for the aforementioned
keywords empirically demonstrated the validity of our search
query that is used to collect literature publications. Furthermore,
it proves that our research scope revolves around 3 main
keywords, namely, deep learning, generative adversarial
network, and glaucoma, as they have the biggest circle sizes
with the thickest connection among them.

Table 1. Keywords occurrence.

Total link strengthOccurrencesKeywords

Techniques

2720Deep learning

1817Generative adversarial network(s)/GAN

83Artificial intelligence

83Machine learning

Diseases

128Glaucoma

63Diabetic retinopathy

Imaging

63Fundus image

54Medical imaging

Papers’ contribution

43Adversarial learning

63Optic disc segmentation

43Retinal vessel segmentation

33Generative models

33Retinal image synthesis

Inclusion and Exclusion Criteria
In this section, papers that met the criteria in Figure 3 were
included. We taxonomized the included papers on a general and
in-depth diagram consisting of 2 paper groups, namely, the

development studies group and the reviews and surveys group.
The papers in the first group were classified according to 8
consecutive layers. In the literature, researchers classified GANs
into 2-4 categories; these categories were separately used by
different researchers, as referenced accordingly in the points
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below. However, in our taxonomy, we combined them all.
Furthermore, we added 4 more classification criteria as follows:
(1) method architecture (direct, hierarchical, iterative) [32]; (2)
model structure (2 players, multiple players) [65]; (3) GAN
category (optimization function, structure, and conditional)
[66-68]; and (4) generator backbone (U-Net based or CNN
based) [69].

Further, we added 4 additional categories as follows: (1) type
of GAN used in a paper (eg, variational autoencoder with GAN
[VAEGAN], DCGAN, cGAN, CycleGAN); (2) discriminator’s
receptive field (PixelGAN, PatchGAN, ImageGAN); (3)
landmarks used during the segmentation/classification process
(single, multiple); (4) paper contributions (segmentation,
classification, image synthesis, mixed).

The exclusion criteria followed in this paper were as follows:
(1) ML approaches, (2) 3D-based imaging methods (optical
coherence tomography), (3) between-class papers, and (4)
out-of-scope papers.

Data Collection Process
All papers from different sources were summarized and saved
in a single spreadsheet file for simplicity and a quick review.
Significant remarks and comments were illustrated by full-text
reading in our analysis scope and classification stage, which
further refined our taxonomy. Finally, our results were
summarized on an Excel sheet (Microsoft) and listed in a tabular
format. The additional data set includes a list of articles,
publishing source, articles’abstracts and contributions, the tools
used in papers, audiences, objectives, architecture-based
categorization table, and a list of relevant figures.

Results

Overview
The cumulative number of articles in the original search process
was 455. Eighty percent (364/455) of the findings released in
2018-2021 and 20% (91/455) in 2015-2017 were distributed as
follows: 15 papers from IEEE Xplore, 86 from Web of Science,
138 from Scopus, 147 from PubMed, and 69 from
ScienceDirect. Approximately 62 papers were duplicates across
the 5 databases.

Later, 318 papers (not GAN based) were omitted after skimming
through the articles’ titles and abstracts, leaving only 75 papers.
Further screening via full-text reading was carried out on these
75 papers, which resulted in excluding 16 nonrelevant papers.
A comprehensive reading was performed on the final 59 papers
to create a general map to study this newly emerging
methodology.

Of these 59 papers, 51% (n=30) focused on the development
and training of various GAN models and real attempts to
improve the efficiency of the network architecture to improve
segmentation/classification precision, especially at an early
stage of the disease with fewer false positives/negatives. Nearly
49% (29/59) of publications included general reviews and
surveys relating to GAN technique and its variants; recent GAN
applications, limitations, and potential future prospects; reviews
of retinal diseases; various DL detection methods; general
analytical knowledge such as the most frequently used data sets;
and the countries contributing to the current research area. From
all these observations, we got a thorough view on the literature,
determined the general categories of the study scope, and
boosted the taxonomic classification of the literature. Figure 5
presents the groupings of the GAN-based approaches used in
the literature according to their structures or optimization
functions.

Kumar and Dhawan [70] classified GANs based on their
architectures or the loss functions used to train their generators.
It is worth noting that the first 4 layers of our taxonomy have
been separately used in other papers; therefore, inspired by those
studies, we used these categories together as a baseline for our
taxonomy. We added other categories to classify brief literature
works in depth according to (1) their level of feature
discrimination (PixelGAN, PatchGAN, or ImageGAN), (2) the
numbers of landmarks used in the segmentation or classification
process (a single landmark or multiple landmarks), (3) the
backbones of the GANs used in the articles (eg, DCGAN [59],
Info-GAN [71], WGAN [60], CGAN [45], Pix2Pix [45], and
Cycle-GAN [47]), and (4) the contribution of each paper (eg,
segmentation [s], classification [c], or synthesis [y]). In the
following sections, we describe each category and provide some
accompanying statistics.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e27414 | p. 8https://www.jmir.org/2021/9/e27414
(page number not for citation purposes)

Saeed et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Taxonomy of the literature on glaucoma screening based GANs technique. cGAN: conditional GAN; CNN: convolutional neural network;
DCGAN: deep convolutional generative adversarial network; DL: deep learning; GAN: generative adversarial network; LSGAN: least-square GAN;
WGAN-GP: Wasserstein GAN-gradient penalty.

Development Studies Category
GANs were first developed by Goodfellow et al [44] in 2014.
Although researchers have continuously attempted to improve
the performance of GANs in various ways, such as weight
regularization, new loss functions, weight pruning, and Nash
equilibrium, it is still a new research field among deep learning
techniques [70,72]. Only recently did this technique start to be
adopted by researchers in the field of retinal disease, particularly
glaucoma (roughly at the beginning of 2018). Therefore, the
total set of papers that described various experiments and tools
used for the detection or segmentation of retinal images included
30/59 (51%) articles.

Among these categories, it is notable in Figure 5 that the first
4 layers classified articles based on the method used (direct,
hierarchical, or iterative) [32], the model structure [65], the
architecture category (optimization function or structure and
conditional based) [66-68], and the generator’s backbone (CNN
based or U-Net based) [69] consecutively.

In the first layer, all the literature work followed the direct
methods. This means that all these methods follow the
philosophy of using 1 generator and 1 discriminator, and the
structures of the G and D are straightforward without any
branches. None of the articles used hierarchal or iterative

methods; this reveals a new opportunity to apply GANs in the
field of retinal disease.

The second layer classified articles based on the number of
players. Nearly 25/30 (83%) articles used 2 players, and only
5/30 (17%) articles utilized multiple players. In the latter case,
some studies used 3 player-based methods [73-75], with the
frameworks of [74] and [75] comprising segmentation,
generator, and discriminator networks. In the study by Liu et
al [74], the segmentation network and generator enlarged the
training data set to improve the segmentation performance,
while the discriminator solely focused on identifying fake
image–label pairs to ensure compatible utilities. However, in
Yu et al [75], the same architecture was used to synthesize
images after performing traditional annotation-free methods to
obtain coarse segmentations.

A slight difference was observed in Wang et al [73], where a
pathology-aware visualization network was used instead of the
segmentation network, with both pathology-aware visualization
and the generator used to enhance the synthesized glaucoma
images in specific pathological areas. The synthesized image
was re-enforced to provide a heatmap close to that of the input
reference image. The Patho-GAN can thus generate images of
glaucoma fundus with clearer pathologies. In Yang et al [76],
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the VGG19 network was incorporated with the 3 players to find
the topology structure loss, which was combined with the other
3 losses (adversarial loss, weighted cross-entropy loss, and total
variation loss) to be used by the generator. However, in [77],
the authors used 2 encoders, namely, Es and Et, where (s) is the
source domain and (t) is the target domain; these encoders were
trained to impede the classification performance of the
discriminators (D+, D–). In turn, D+ and D– were trained to
distinguish between positive/negative source images and
positive/negative target images, and finally, a classifier (C) tried
to classify source/target images.

Following [66-68], we added a third layer to our taxonomy to
classify papers as either structure-based or optimization-based
methods. The majority of studies (27/30, 90%) at this level were
structure- and conditional-based methods, while only 3/30 (10%)
of the studies, namely, those in [42,78,79], were
optimization-based methods with 2-player structures; none of
these methods have been recorded as multiplayer-based
structures.

Some researchers tend to use objective function–based methods
by updating specific loss functions or using a combination of
losses to overcome the model collapse of GANs. This occurs
when the generator continuously generates images with the
same distribution or generates images with the same texture
themes or color as the original image but with marginal
differences in human understanding [65]; for example, Ma et
al [42] used a least-squares loss function instead of sigmoid
cross-entropy. Therefore, their experiment greatly improved
the segmentation accuracy of the utilized model on both the
digital retinal image for vessels extraction (DRIVE) and
structured analysis of the retina (STARE) data sets by forcing
the generator to generate images with distributions close to
those of the real images. In Tu et al [78], the authors used the
WGAN-GP method to overcome the training instability of the
traditional GAN and generate accurate probability maps of BVs.
The WGAN-GP is an extension of the WGAN; it uses a gradient

penalty instead of weight clipping to enforce the Lipschitz
constraint. This type of GAN can be trained faster and generates
higher-quality samples than those produced by WGANs
[61,68,70,78]. Last, Kadambi et al [79] proposed a framework
for domain adaptation guided by the Wasserstein distance metric
instead of typical adversarial methods for more stable training
and better convergence.

The subsequent layer in our taxonomy was to classify methods
according to the generator’s backbone (eg, U-Net based or CNN
based) [69]. Papers [42,46,49,51,57,73,75,76,80-87] represented
about 50% of the studies (n=16) and were U-Net-based
architectures. However, the other 50% of the papers
[43,46,50,51,58,74,77-79,88-94] were CNN-based generators
(n=16).

The study by Yu et al [46] was very intensive; the authors
proposed multiple-channels-multiple-landmarks as a new
preprocessing framework. They used a combination of
landmarks (vessel trees, ODs, and OC images) to synthesize
colored images with 2 types of GANs (Pix2Pix and CycleGAN).
Additionally, they used a Pix2Pix architecture with 2 different
generator structures (eg, U-Net-based and CNN-based). They
empirically demonstrated that the Pix2Pix network with a
ResU-Net generator using high-resolution paired images and
multiple-channels-multiple-landmarks outperforms every single
landmark-based GAN method regardless of their architectures.
Furthermore, they were able to generate significant and realistic
images.

The next distinguishing level in our taxonomy addressed the
landmarks used in the papers. As Figure 5 shows, references
containing “N” letters refer to a single landmark (eg, the BV,
OD, OC, retinal nerve fiber layer [RNFL], or rim loss [RL]).
These references contributed to 20/30 (67%) of the total papers.
Seventeen of them were BV-based methods
[42,43,49-51,58,75,76,78,81-85,88,91,92,94]. Only 2 studies
[57,81] were OD-based detection approaches, and 1 [82] utilized
RNFL-based detection (Figure 6).
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Figure 6. Distribution of papers per landmark(s). BG: background; BV, blood vessel; OC: optic cup; OD: optic disc; RL: rim loss; RNFL: retinal nerve
fiber layer.

Another set of articles used multiple landmarks and was
represented with an “M” letter in Figure 5. These articles
contributed to 33% (10/30) of total papers. Some studies
[80,90,93] used the BV and OD, while [74,77,79,86,89] used
the OD and OC to classify the disease. In addition, Wang et al
[73] used RL and RNFL, and Yu et al [46] used BV, OD, and
OC.

The rest of the researchers used multiple landmarks, such as
[74,77,79,86,89], which involved OD and OC segmentation.
Studies [80,93] worked on BV and OD segmentation, and only
Wang et al [73] used RNFL and RL. The rest of the papers used
triple landmarks in their work, such as [58] and [90], which
involved work on BV, OD, and background, and Yu et al [46]
used BV, OD, and OC.

In the next layer of our taxonomy, articles were classified
according to the discriminator’s receptive field. As illustrated
in Figure 5, references with P, H, or G letters represent refer to
PixelGAN, PatchGAN, or ImageGAN, respectively. ImageGAN
papers were [42,51,58,80,86,88,90,93,94], while PixelGAN
papers were [49,73,74,76-78,82,91,92]. In addition, PatchGAN
papers were [43,46,50,57,75,79,81,83-85,87,89].

Isola et al [45] proposed a Pix2Pix-based conditional adversarial
network (cGAN) as a general-purpose solution to
image-to-image translation problems, and demonstrated that a
70 × 70 PatchGAN alleviates artifacts and achieves the best
scores. Scaling beyond 70 × 70 to a full 286 × 286 ImageGAN
did not appear to improve the quality of the results and, in fact,
the latter model obtained a considerably lower fully connected
network (FCN) score. This scaling mechanism may have been
effective because there are more parameters in ImageGAN than

PatchGAN and greater depth, which made it harder to train. By
contrast, 3 studies [57,81,89] proved that the 64 × 64 Patch-SAN
is the best, while one [84] concluded that a 120 × 120 patch is
better than a 64 × 64 patch size. Studies [80,88] concluded that
ImageGAN is better than PatchGAN. Last, pixel-level
annotation [50] is much more tedious than image-level
annotation.

Each reference in Figure 5 is denoted with a letter indicating
the contribution of the relevant paper. Nearly 57% (17/30) of
papers worked on the segmentation task and were denoted by
(s), 17% (5/30) worked on image synthesis and were denoted
by (y), and only 2 papers worked on the classification task and
were denoted by (c). The remaining 6/30 (20%) papers worked
on multiple tasks (eg, sc, sy, ysc). Multimedia Appendices 1-7
summarize the literature results reported in the papers.

Reviews and Surveys Category
In this category, 2 sets of reviews were identified. In the first
set, detailed discussion is presented about recent breakthrough
techniques of GANs, their development, variations, and medical
field applications. The second set shows the impact of deep
learning on ophthalmology. In total, this category includes 29/59
(49%) papers.

For the first set, studies [32,65,66,68-70,95-98] provided
detailed reviews about GANs including their basic background,
theory, and implementations. Also, they present current research
hotspots and proposed GANs in different applications. They
provided the reader with a clear insight into GANs’ advantages
and disadvantages, its different evaluation metrics, and proposed
a bright prospect of this technique. Studies [32,95] focused on
the importance of GANs, especially in medical field
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applications, and their capability to generate data through image
synthesis technique without explicitly modeling the probability
of density function. Wang et al [96] provided a further
investigation of GAN in parallel intelligence. Another study,
[99], discussed incorporating GANs in the signal processing
community, showing different training methods, constructing
GANs, and highlighting current challenges to their theories and
applications. References [100,101] are practical prospective
studies, and in [100], the authors tried to assess GAN algorithms
and find the best architecture among all. However, they
concluded that most of the models could achieve similar scores
with enough hyperparameter optimization and random restarts.
Additionally, they tried to overcome the limitation of evaluation
metrics by computing precision and recall on several proposed
data sets. Also, in [101], the authors reproduced the current
state-of-the-art GANs, aiming to explore their landscape,
discussing their pitfalls, and reproducibility issues. Turhan and
Bilge [102] presented a comprehensive study about generative
models such as GANs and autoencoders (AEs) and identified
the relationship among them for better understanding and
emphasizing on the importance of generative models. Oussidi
and Elhassouny [103] proposed a starting point survey for those
who have interests in deep generative models such as deep belief
networks (DBNs), deep Boltzmann machine (DBM), restricted
Boltzmann machines (RBMs), VAE, and GAN. They explained
their building blocks, learning procedures, and limitations.

In the second set of articles, [52,54,72,104] presented an
overview of DL applications in ophthalmic disorder using digital
fundus images. They summarized the publicly available data
sets used for different retinal diseases such as cataracts,

retinopathy, glaucoma, and age-related macular degeneration.
They also provided a detailed summary of the pros and cons of
this emerging technique for both computer scientists and
ophthalmologists and specified the clinical and technical aspects
to address deep learning challenges and future directions. Some
studies [56,105,106] discussed the importance of clinical
considerations and potential challenges for clinical adoption
and telemedicine integration to reduce cost, increase accuracy,
and facilitate health care accessibility. Ting et al [53] described
the importance of deploying deep learning algorithms within
clinical settings. Hogarty et al [55] clarified the
misunderstanding between ML and deep learning terms and
presented an overview of AI and its development in the
ophthalmology field. Mayro et al [107] also provided an
overview of AI and deep learning DL applications in glaucoma
detection using fundus images, optical coherence tomography,
and visual field interpretation.

Other studies, [20,108], followed the systematic framework in
their reviews: [20] discussed the main algorithms used for
glaucoma detection using ML, indicating the importance of this
technology from a medical aspect, especially retinal image
processing, whereas [108] performed a systematic review on
investigating and evaluating DL methods’ performance for
automatically detecting glaucoma using fundus images.

Figure 7 illustrates the publicly available data sets, their sizes,
and how often researchers used them. Each data set is collected
using a particular camera with different standards and used for
a specific disease type. Thus, generalization is the key problem
of DL approaches as described in the “Challenges” section.

Figure 7. Total use of various datasets in glaucoma screening.

As Figure 7 illustrates, DRIVE and STARE are the most
frequently used data sets. In other words, researchers often rely
on BV segmentation in the diagnosing process [72]. However,

few researchers have used Messidor-1, high-resolution fundus,
2D Neurons(NeuB1), and CHASEDB. For OD and OC
landmarks segmentation, DRIONS-DB, retinal fundus glaucoma
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challenge (REFUGE), ORIGA, RIM-ONE (r3/v2), and
Drishti-GS were the most used, while seldom used is the
large-scale attention-based glaucoma (LAG) data set, which is
for RNFL and RL landmarks segmentation.

Figure 8 shows the distribution of the collected papers per year
regardless of their duplications. The statistics in Figure 8
indicates the recent interest of researchers to adopt GANs
techniques. Furthermore, it reveals the need to explore this
newly emerging technique in ophthalmology. Therefore,
extensive further work is needed to cover this area of research.

Figure 8. Distribution of papers per libraries. WOS: Web of Science.

This work has targeted 5 search engines: Scopus, ScienceDirect,
Web of Science, IEEE, and PubMed, which are highly reputed
and reliable resources for research. They include studies on
implementation of deep learning techniques for different retinal
disorder fields to help ophthalmologists and patients. Journal
articles comprised 36 papers and only 23 were published in
conferences.

According to Multimedia Appendices 1-7, each paper has used
a different set of evaluation metrics; thus, we concur with Yu
et al [46] in concluding that there are no uniform evaluation

indexes in the literature to evaluate synthetic and real images.
To further clarify this issue, Figure 9 shows the distribution of
evaluation metrics used in the collected papers. To present
Multimedia Appendices 1-7 visually, a T-shaped matrix diagram
in Multimedia Appendix 8 illustrates in the upper part, named
“Metrics used,” the total use of each metric in all articles
according to the used data set. Similarly, in the lower part,
named “Task,” the diagram shows the total use of each data set
in all articles according to a specific task (classification,
segmentation, or synthesizing).
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Figure 9. Distribution of frequently used evaluation metrics in glaucoma screening. AUC: area under the curve; BLE: Boundary Distance Localization
Error; IoU: Intersection over Union; ISC: Image Structure Clustering; MCC: Matthews correlation coefficient; mAP: Mean Average Precision; MIoU:
Mean Intersection over Union; PSNR: peak signal-to-noise ratio; ROC: receiver operating characteristic curve; SSIM: structural index similarity.

Based on the observations of the upper part of the diagram, the
top 5 metrics (sensitivity, specificity, accuracy, area under the
curve [AUC], F1 score, and Dice Co.) were used the most with
various data sets. Furthermore, 87% (13/15) of metrics were
mainly performed on STARE and DRIVE data sets, unlike other
data sets, such as Rim-ONEv3 and Drishti-GS, that use another
set of metrics (eg, F1 score, Dice Co, peak signal-to-noise ratio,
structural index similarity, and δ) to evaluate the performance.
This indicates the need to consider standard effect metrics in
future research irrespective of the type of data set used.

By contrast, in the lower part, the segmentation task was
reported as the most applied task in the collected articles,
followed by images synthesizing, with the classification task
being the seldom applied. Nevertheless, the best results reported
were in a classification study by Bisneto et al [81], which
utilized a combination of Dristh-GS and RIM-ONE data sets.
They achieved 100% in sensitivity, specificity, accuracy, and
AUC in OD/OC classification. Their method was based on
cGANs with taxonomic diversity and distinction indexes.
Although most of the studies are on segmentation tasks and
professionally segmented BVs and ODs [42,78,80,91], they still
lack segmenting fine and small vessels and suffer from false
positives. By contrast, images synthesizing attracted increased
interest of researchers, as it assists in overcoming the shortage
of medical images. Some researchers, such as [58,87], have
used GAN with adversarial AE to enhance the generated image
and some others tend to rely on using different loss functions
to better train G and D networks. However, generated images
are blurry, noisy, and of low quality with lack of details. Other
studies, such as [76,88,89,94], adopted preprocessing (eg, data
augmentation, localization of ROI, automatic color equalization)

and postprocessing (eg, Lanczos resampling method,
morphological operation, contrast enhancement) to enhance the
performance of their methods, and they experienced a further
improvement in their segmentation result.

Discussion

Principal Findings
This study aimed to provide a detailed summary of the literature
on retinal disease detection or segmentation, particularly
glaucoma, using GANs and highlight the recent trends exhibited
by researchers on this topic. We mainly focused on articles that
worked on enhancing the segmentation or detection of the
disease rather than improving GAN techniques. Furthermore,
we provide a taxonomy of papers related to this area to further
assist future research.

Several benefits may arise from our taxonomy. First, organizing
tens of papers in a single diagram provides better understanding
of literature work, as people with less experience may be
confused if many papers remain unorganized. Second, the
taxonomy helps sort literature works and activities into
meaningful, easy to manage, and coherent frameworks. Third,
it provides researchers with better insights into a given theme,
thus finding current literature gaps and discovering new research
directions. Last and most importantly, it helps highlighting
articles’strengths and weaknesses of a particular research scope.

From the developed taxonomy, we can quickly see that all the
published papers followed the direct method of the GAN
architecture; hence, there is an urgent need to discover the
impact of the hierarchical or iterative method on glaucoma
screening. Moreover, almost all of the researchers worked on
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BV segmentation, and very few used OD and OC segmentation,
which are the most reliable indications of glaucoma according
to ophthalmologists. Future GAN research should focus on
disease classification rather than on the segmentation of retinal
anatomy. Most of the literature studies faced difficulties in terms
of the early detection of glaucoma and low segmentation of fine
vessels; therefore, alternatives should be developed, for example,
using the RNFL to indicate the early presence of the disease or
exploiting the prior knowledge of vascular connectivity to
improve upon the segmentation performance of the current
methods. Although the RNFL is a good sign for early glaucoma
screening and has been incorporated as one of the gold standards
of glaucoma evaluation [109], very few studies utilized the
RNFL with GANs. OD/OC segmentation may lead to
interference with pathological aspects such as large genetic OD
sizes. Based on the reviewed papers, we noticed that only one
article [1] has used RNFL for glaucoma screening. Although
that study achieved impressive results, the authors used a private
data set.

Most of the previous studies concentrated on the segmentation
task. As much as 17/30 papers worked on retinal landmark
segmentation [1-17], while only 2 papers worked on disease
classification [18,19], and 5 papers worked on image synthesis
to address the lack of medical images [20-24]. However, the
rest of the papers (6/30) performed multiple tasks (eg,
segmentation and classification, synthesis and segmentation)
[25-30]. In conclusion, more than 50% (17/30) of the literature

worked on segmentation task and few researchers have worked
on classification and synthesizing retinal images. Therefore,
future studies should take these statistics into considerations.

In the following sections, the included papers will be discussed
in detail. We present comprehensive diagrams showing the
factors that motivate researchers to carry out their work in this
area, highlighting their encountered challenges, and
summarizing significant recommendations for addressing their
faults in future work.

Challenges

Overview
Glaucoma is a serious disease. Therefore, researchers and
developers attempt to exploit the magic of DL technique to help
doctors and patients diagnose the disease at its early stage.
However, various challenges hinder their expectations; some
of those challenges implicitly exist in the nature of DLMs, or
are somehow incorporated within DLMs (eg, data richness,
diversity of data, and powerful hardware), besides the challenges
of GANs architectures (eg, model collapse, optimization, Nash
equilibrium, and evaluation metrics). All these challenges have
been summarized and discussed in this section along with their
relevant references to provide the readers with direct access to
the original papers for further discussion. Figure 10 categorizes
literature challenges into 6 groups to further assist discussion.
Each group is indicated with a separate shape.
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Figure 10. Challenges of glaucoma screening using GANs technique. AL: artificial learning; GAN: generative adversarial network.

Challenges Related to Patients
The silent progress of glaucoma disease constitutes a crucial
challenge worldwide. Half of the infected people do not
experience any symptoms at early stages [5-7]. According to
various studies, more than 60 million cases were diagnosed
globally in 2013, and it is expected to exceed 75 million and
111 million cases by 2020 and 2040, respectively [9,10].
Especially among rural populations, China and India are
considered to be the home to approximately 40% of glaucoma
cases globally [110]. These populations, mostly in developing
countries, suffer from difficulties in accessing medical centers,
unavailability of experts, high costs of health care, and
sustainability of health care services [111], in contrast to
Western countries, where health care is cost-effective and
different socioeconomic situations of patients are supported,
and thus treatment for glaucoma remains affordable [106].

In addition, the recent pandemic, COVID-19, has enforced social
distancing during communication. Therefore, there is a great
need to promote ocular screening in conjunction with
telemedicine as a remote monitoring tool [112], alongside the
presence of handy cheap smartphones, whereby patients can
collect their own IOP data themselves with accurate tonometers
and free anesthesia [113]. Although DLMs positively affect
both doctors and patients’ style in terms of decision making,
cost affordability, and health care accessibility, there remain
some serious challenges, such as technical and clinical
challenges, interpretation of the results, and patient trust in
machines [112]. Zapata et al [114] predict that very soon AI
will start assisting specialists in achieving high levels of
consistency and accuracy beyond human abilities.

Challenges Related to Reliability
Reliability is a key to adopting computer technology in the
medical field. Deep learning techniques may misclassify
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segmenting some pixels due to low image contrast or heavy
overlap between foreground and background pixels, leading to
false-positive/false-negative result [57,81]. In some cases,
doctors are dissatisfied with deep learning segmentation
performance, as it is not as real as their expectations. Taking
RNFL segmentation as an example, the segmentation results
do not have specific geometrical shape of RNFLD as the gold
standards and large segmentation errors of fundus images [83].
Furthermore, the variability of shape and extremely
inhomogeneous OD structure appearance result in inaccurate
CDR measurement compared with ideal ones [115-117]. In
some cases, deep learning approaches neglect domain
knowledge that doctors care about, such as CDR [118].

Existing methods often suffer from poor segmentation of the
fine vessels [78,80] due to weak ability of antinoise interference
or insufficient segmentation of vessels [49]; therefore, prior
knowledge of BVs connectivity may improve the segmentation
performance. Meanwhile, the low reliability of manual detection
and the small size of public data sets increase the complexity
of morphological assessment of nonglaucomatous optic
neuropathy [119,120]. Robust ground truth labeling must be
generated after a comprehensive evaluation, including structural
imaging, clinical examination, and perimetry [121]. Doctors
mostly decide the disease status. Although all clinical symptoms
occur, it can lead to differences within annotators, and thus
exaggerated annotations [52,106,122,123]. The reliability of
glaucoma algorithms is restricted due to the lack of reference
ground reality for glaucoma [115,124]. DLMs have a remarkable
ability to address glaucoma. However, it is critical to have
gold-standard algorithms for assessing and detecting glaucoma
[54], as well as for editing or synthesizing images using the
GAN techniques [97].

Sometimes, researchers tend to exclude low-quality or sparsely
annotated images during the training phase; this kind of regime
weakens the algorithm and leads to less reliability in real-life
cases [111]. Furthermore, incorporating nonspecialists for image
grading limits the reliability of identification [125]. Finally,
although most of the reviewed papers have shown outstanding
diagnostic performance, at times researchers do not mention
some hyperparameter values used in the training stage,
particularly when they use their own private dataset [112].
Excessive screening can result in overdiagnosis. DLMs could
also be harmful if the diagnostic software is issued directly to
patients, as future opportunities and risk of AI could be
magnified [55].

Challenges Related to Biological Effects
Pathological change and image quality play a major role in the
accuracy of glaucoma diagnosis [57,73,123]. Early and moderate
glaucoma stages are considered one of the biggest challenges
faced by ophthalmological practice due to the marginal variation
size of CDR compared with normal eye [126]. Serener and Serte
[127] have used ResNet-50 and GoogLeNet with transfer
learning for early and advanced glaucoma detection, and found
that GoogLeNet outperforms ResNet-50 with a trade-off
performance between sensitivity and specificity. Besides,
Bisneto et al [81] proposed GAN-based OD segmentation allied
with an index of taxonomic diversity for extracting texture

attributes aiming to detect early stages of glaucoma. They
achieved outstanding results reaching up to 100% for accuracy
and 1 for the receiver-operating characteristic curve. The
misclassification of glaucoma and nonglaucoma is usually due
to heavy overlap and extremely bad contrast between ocular
structure and the background, leading to unsatisfied
segmentation performance due to OC’s undistinguishable
boundaries [116]. Low-quality images (blurring and contrast)
can result in unreliable model predictions. Furthermore, the lack
of a clear OC border increases the misclassification rate [128].

There is a trade-off between image’s quality and computational
parameters of the network [129]. Therefore, the need for DLMs
to downsample images into lower resolution (ie, 224 × 224) to
reduce the computation time leads to reducing image contrast,
and hence deteriorating key diagnostic parts of ocular images
and weakening the capability to recover contextual information
[86]. By contrast, performance of DLMs varied among
ethnicities, for example, the Saudi population’s performance is
not the same as on Western populations. The differences among
populations is due to the richness of melanocytes in the retinal
pigmented epithelium of darkly skinned people compared with
Whites [52]. Therefore, data sets used in glaucoma detection
must follow specific standards to ensure heterogeneity and
diversity of images.

Multiple eye disorders such as high myopia or pathologic are
another major challenge leading to false-negative and
false-positive results [54]. The main reason for the incorrect
segmentation of glaucoma in myopia cases is the alteration of
the macula and optic nerve appearance. In addition, the use of
RNFL imaging for glaucoma diagnosis in patients with diabetes
should be made carefully [130]. Myopia affects macular and
RNFL thickness measurements due to the thinning and
stretching of these layers caused by the increased axial length
and optical projection artifact of the scanning region [131].
Myopia mostly causes misclassification of glaucoma due to its
irregular ONH appearance [132]. In severe myopic cases, the
color contrast between the foreground (OC) and the neuroretinal
rim decreases due to an increased pallor in the rim. Furthermore,
the increased pixels’values brighten the underlying peripapillary
tissue and lead to difficult evaluation of the RNFL in the
peripapillary area. In addition, torsion or tilting of the OD can
occur, and the OD’s rotation can result in an oblique view of
the ONH [128].

In other cases, it is hard to distinguish between physiologic
large cups and glaucomatous cases because both cases share a
common feature (eg, large CDR) [117]. Diseases such as OD
edema, OD hemorrhage, and glaucoma frequently make
segmentation of OD rather difficult [133]. By contrast, retinal
BV segmentation also has inherent challenges such as incorrect
segmentation of pathological details and low microvascular
segmentation [40].

Challenges Related to Availability/Services
Time, efforts, and lack of experts are the main challenges of
medical care centers [88,134]. Therefore, computers have been
increasingly used for automatic retinal segmentation to serve
as a second opinion to the doctors, improve the diagnostic
accuracy, and reduce the tedious work of annotating images
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[43,46,135]. Particularly, GANs showed impressive performance
in medical image synthesis and it is usually employed to tackle
the shortage of annotated data or lack of experts [74,79,95].
Generally, medical images are usually rare, expensive, and full
of patient privacy issues [51,88] and the publicly available data
sets are often imbalanced in size and annotation [46,57,84]. In
general, segmentation tasks suffer from an immense problem
of class imbalance. Thus, the accuracy metric is not sufficient
alone until concluding a system’s efficiency on both sensitivity
and specificity. They should, however, be considered as an
essential evaluation metric [72].

Diaz-Pinto et al [90] proposed a GAN method with
semisupervised learning to develop a good image synthesizer
to tackle the shortage of retinal image availability and support
generalization ability. Additionally, Liu et al [136] created a
large-scale glaucoma diagnostic fundus images (FIGD) database.
They proposed the glaucoma diagnosis with a complicated
neural networks method for automatic detection of glaucomatous
optic neuropathy. Importantly, the method has the potential to
be generalized throughout populations.

Various GAN-based methods have been proposed to mitigate
image labeling [43,50,51,75,87,92]. However, this challenge
remained open as the current literature results are still inaccurate
(eg, fail to generate very thin vessels). Lahiri et al [43]
concluded that the diversity of annotated images is more
important than the actual number of annotations. Finally, rural
areas experience difficulties in locating ophthalmologists. This
also necessitates more future work to use telemedicine in
ophthalmology [55].

Challenges Related to the Nature of Deep Learning
With the recent advancements in DLM methodologies,
promising results in the field of ophthalmology have been
obtained. Many GANs and CNNs models are proposed in
computer vision. However, DL approaches face several
difficulties, such as domain shift.

Domain shift is the disparity in appearance distribution between
various data sets due to different camera settings, illumination
variation, different screening angles, or out-of-focus ROI. As
a result, domain shift hinders the generalization capability of
deep networks [89]. In most literature, training and test data
sets come from the same image distribution. However, this is
not always the case in real life. Therefore, it may significantly
damage the real-life applications if not handled beforehand [72].
Kadambi et al [79] proposed an unsupervised domain adaptation
framework by allowing the model to learn domain-invariant
features to enhance segmentation performance and
generalization capability. Wang et al [77] tried to align the
distributions of the source and target domains so that the labeled
source images can be used to enhance the classification
efficiency of the target domain.

Deep learning addressed many issues in the traditional methods
of ML. However, it also brought new difficulties. The most
crucial issue is the ambiguity of the diagnosing result; in other
words, the blackbox problem [53,56]. DLMs are blackbox in
nature and do not have diagnostic explanations to confirm their
effectiveness in a real clinical setting. Wang et al [73] proposed

a pathology-aware visualization approach for feature
visualization using DNNs to explain better how decisions are
taken by computer, and therefore find pathological evidence
through computer-aided diagnosis. Furthermore, for this
purpose, Zhao et al [115] proposed a weakly supervised model
due to its ability to simultaneously learn the clinical evidence
identification and perform the segmentation task from
large-scale weak-label data that further improves glaucoma
diagnosis.

The lack of publicly available data sets for training the model
is another significant challenge concerning deep learning
approaches. Therefore, Orlando et al [132] proposed a data set
named REFUGE, which contains 1200 fundus photographs with
standard gold segmentations and clinical glaucoma marks.
Moreover, Li et al [137] created the LAG database containing
11,760 fundus photographs classified as either positive glaucoma
(4,878) or negative glaucoma (6,882), which is the largest
among the currently existing databases. According to Asiri et
al [52], the key problem of constructing a robust deep CNN
method is not the availability of broad data sets but instead the
diversity of annotation of those images [43]. A major difficulty
of each algorithm is its validity in multiple patient cohorts with
diverse conditions. Therefore, for a DLM to be sturdy, it must
be effective across various data sets [105].

Recent studies demonstrated that more complicated and
informative image features might be discovered when growing
the depth of the network [138,139]. However, as the network
depth rises, deeper CNN has poor diagnostic efficiency due to
the gradient disappearance issue or the gradient explosion
problem [88,140,141]. Researchers mostly use shortcut links
(skip connections) that skip one or more layers while training
deep networks, as was the case with [88,126,128,129].
Alternatively, in GANs techniques, using WGAN or LSGAN
gives a smoother gradient that contributes to stable training
[42,79]. Another concern that should be considered before
building up deep models is the computation time. As there is a
trade-off between model’s depth and the efficiency, the deeper
the architecture the greater the number of parameters it gets,
which eventually increases computation time [140].

Challenges Related to GAN Technique
Despite all the ongoing developments and studies, GANs suffer
from several challenges and weaknesses besides the challenges
related to deep learning nature (eg, blackbox, generalization
capability, computation time, and annotation cost). The most
critical concern with GANs is the instability of the training
process (Nash equilibrium point) [98,142]. Zhao et al [82] used
the residual module that allowed easy optimization of
competitive networks, while Tu et al [78] used WGAN-GP to
alleviate training instability of the traditional GAN. Biswas et
al [92] carefully adjusted hyperparameters to balance between
the 2 networks (G and D). Park et al [94] improved learning
performance and mitigated imbalanced learning by introducing
new loss functions for the generator and re-designing the
discriminator’s network. However, it remains challenging to
determine which algorithm works better than others or what
modifications are critical to enhancing the results. Lucic et al
[100] found that most models could achieve comparable scores
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with appropriate hyperparameter optimization and random
restarts. According to Kurach et al [101], the nonsaturating loss
over data sets, architectures, and hyperparameters is sufficiently
stable.

Besides, in GANs, the possibility of mode failure/collapse
persists while training the model. Model collapse occurs when
data generated from GANs mostly concentrate on very narrower
modes (partial collapse) or 1 single mode (complete collapse)
[68,99]. By contrast, if the discriminator becomes very strong
during training, the generator gradient gradually decreases and
eventually disappears. As a result, the generator learns nothing.
The imbalance between generator and discriminator networks
contributes to overfitting. Many approaches have been proposed
to tackle these challenges; for example, Radford et al [59] aimed
to address instability training issues, and Kadambi et al [79]
created a new adversarial domain adaptation architecture, led
by Wasserstein for better stability and convergence.

The lack of standard evaluation metrics is another big issue in
GANs compared with other generative models. Inception score
(IS), average log likelihood, Fréchet inception distance (FID),
Wasserstein metric, etc. are quantitative measurements of GANs.

There is no majority vote on which assessing measurement is
the best. Different scores rely on various aspects of image
generation. However, some measurements seem more plausible
than others (eg, FID is more durable to noise). FID can compare
the similarity between real and generated images [143], which
is considered more effective than IS [70].

In conclusion, the main causes of GAN problems can be
summarized as follows: (1) The distance calculation of the
corresponding optimization (such as Kullback–Leibler
divergence and Jensen–Shannon divergence) is unreasonable.
(2) It is difficult to overlap the generated distribution with real
distribution. Although the GAN technique is a new, interesting,
and attractive field of study in many applications, further studies
are needed to resolve the uniqueness of generated samples, poor
convergence, and complete model collapse challenges.

Motivations
Adopting deep GAN in ophthalmology is a promising and
significant field of study. This section reports some of the
literature’s characteristics, which we classified on the basis of
references to support further discussion (Figure 11).

Figure 11. Benefits of GANs-based methods for glaucoma screening. DCNN: deep convolutional neural network; GAN: generative adversarial network.

Motivations Related to Experts/Doctors
Detection of any retinal defects must be through analysis of
ocular images. Analysis of retinal images, however, must
involve trained physicians to analyze and assess digital color
fundus images. Such a process requires a great deal of time and
human work; therefore, GANs support doctors in mitigating
this extensive bottleneck [50,51,91]. Furthermore, deep GANs
techniques are unlike CNNs, where the same GAN approach
could be applied to a wide variety of cases and still produce
reasonable results [45]. GANs can detect the OD in fundus
photos with pathological changes or irregular highlights [57,86].

In the case of vessel segmentation with CNN-based methods,
outputs are usually blurry around small and weak branches or
suffer from a problem of nonconnectivity of segmented vessels;
however, GANs better segment capillary/thin vessels of fundus
images [76,80,84], and thus serve as a second opinion to
ophthalmologists [72]. GANs are the framework that allows to
create and use practical outputs as a gold standard [44].
Therefore, these frameworks were adopted by Lu et al [83] due
to their ability to generate the required specific geometry of
RNFLD, which is close to ground truth with high precisions,
accuracy, and fewer segmentation errors, despite the existence
of multiple pieces of RNFL or low-contrast images. Thus, its
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segmentation results are much more trusted by doctors than
CNN’s.

Adversarial learning avoids scarcity of manual annotation and
subjective segmentation made by non-expert clinicians as this
methodology is mainly data driven [72,85]. In glaucoma
classification, enforcing GANs to synthesize images with similar
visualization results as the reference image will help mitigate
the drawbacks of binary labels (negative or positive) that limit
the visualization methods to recognize pathological facts
underlying diagnosis by DNNs [73].

Motivations Related to Researchers
Deep learning in retina images is very effective and useful [72].
However, they are often affected by domain shifts across data
sets. As a result, a generalization of DLMs was severely
hindered. Therefore, researchers tend to exploit generative
adversarial learning for domain adaptation by encouraging the
target domain predictions to be close to the source ones [79,89].
Domain adaptation is often used to overcome the lack of large
pixel annotation using off-the-shelf annotated images from other
relevant domains. Alternatively, researchers exploit the existence
of a large amount of unlabeled data to train a classifier using
the power of DCGAN in a semisupervised learning scenario
[90]. Semisupervised learning is in the middle way between
unsupervised and supervised learning; therefore, less human
intervention is required when combined with GANs for better
semantic segmentation [74]. Using GANs techniques, Lahiri et
al [43] performed image segmentation with very few annotated
samples (0.8%-1.6%), nearly 500-1000 annotations. Further,
Zhao et al [93] proposed an image synthesizer using GANs with
style transfer and then integrated the outputs into the training
stage to boost segmentation efficiency using just 10 samples.

With deep adversarial learning, researchers aim to reduce
domain discrepancy [144,145] by improving the quality of the
generated outputs to be as close as possible as the inputs. Wang
et al [77] exploited label information for matching domain
distribution. Ma et al [42] applied the least-squares loss function
instead of sigmoid cross-entropy to generate images with
distribution close to the real ones and also alleviate gradient
vanishing problems. Furthermore, Liu et al [57] added a
patch-level adversarial network to enhance image consistency
between ground truth and the generated samples, which further
boosts segmentation performance.

GANs are capable of learning the mapping from the input image
to the output image as well as learning a loss function to train
this mapping [45], unlike existing DLMs, which use a unified
loss function for retinal vessels segmentation, thereby producing
blurry outputs with false positives around faint and tiny vessels
[84], which is in contrast to GAN variations (eg, WGAN-GP
and M-GAN) that provide accurate segmentation results around
small and weak branches [78], reduce low microvascular
segmentation [94], and preserve the connectivity of
arteriovenous vessels [76]. Moreover, AEs and GANs in a single
system facilitate generating vessel maps without the previous

existence of retinal vessel tree [87]. Besides, unconditional
GANs can synthesize retinal images without using prior vessel
images [92].

Although researchers recommend using DCNN for efficient
segmentation tasks [146], the existing limitations of DCNNs
are insufficiency of feature extraction, weak generalization
capability, and poor capability to recover low-context
information, unlike GANs, which are used to alleviate these
problems as in Jiang et al [86], who proposed GAN with transfer
learning, data augmentation, and skip connection concepts to
overcome these challenges. Bisneto et al [81] impressively
improved glaucoma segmentation and classification results
using GANs allied with texture attributes identified by
taxonomic diversity indexes. They achieved promising results
(sensitivity, specificity, and accuracy of up to 100%).

For optimizing network complexity, Wu et al [49] applied the
attention Gates technique in a standard GAN to encourage the
propagation of features, promote reuse of features, and greatly
reduce network parameters when paired with DenseNet instead
of conversion layer. Alternatively, using dilated convolutions
in the generative networks effectively expands the generator’s
receptive field without the number of calculations [82].
Adversarial training has been shown to improve the long-range
spatial label interaction without expanding the segmentation
network’s complexity [147].

Motivations Related to Medical Centers
We think the best medical treatment is achieved when the
doctor–patient relationship is built on honesty and concern. DL
cannot substitute real relationships, but can complement them
[104]. GAN architectures are versatile. For various training
samples, the objective feature can be re-designed and more free
model designs can be used [98]. The extraordinary feature of
GANs in the medical field is synthesizing high-quality images
with global consistency(eg, color consistency and both BV and
OD occupy the same proportional area as the real images)
[58,92]. Bisneto et al [81] proposed a method that learns the
mapping function between retinal landmarks (BV, OD, and OC)
and synthesizes images using the 3 channels (RGB).
Furthermore, the method exploits the merit of a large receptive
field of GANs to generate good segmentation results [82].

Incorporating GAN techniques in the medical field helps enrich
health care centers with various data and effectively solves data
imbalance problem [87,134]. As a result, this feature facilitates
solving ethical issues surrounding patients’ privacy [72], saves
memory and time needed to collecting images [79], reduces
costs [88], and saturates the nature of data-hungry DLMs [51].

Recommendation
In this section, we briefly include guidelines from the literature
to alleviate existing challenges faced by researchers, doctors,
medical centers, and patients, as well as present ways to achieve
a correct diagnosis of retinal defects (Figure 12).
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Figure 12. Recommendations of using GANs-based methods in glaucoma screening. AI: artificial intelligence; CAD: computed-aided design; GAN:
generative adversarial network; OC: optic cup; OD: optic disc; VAEGAN: variational autoencoder with GAN.

Recommendations to Doctors and Medical Centers
Higher-image resolutions significantly improve performance
of GANs [87,148]. The key factor in obtaining GAN’s
high-quality synthetic outputs is the high-resolution paired
images and the architecture of the generator [46]. Moreover,
annotation variety is more important than the actual number of
annotations [43]. Therefore, doctors must develop a public data
set with high-resolution images that meet the quality assessment
system [105]. Furthermore, it must be accessible and include
multiethnicities to ensure generalization capability [108].
Besides, experts must validate deep learning models on the
sizable heterogeneous population under different conditions
[52], as direct release of DL application without prior checking
could be harmful [55].

To improve public health, reduce health care costs, and enhance
patients’ perception, doctors shall adopt DL techniques in the
medical field to tackle these challenges [53]. Adopting deep
learning applications in magnetic resonance imaging and X-ray
image processing is an interesting area of research [93]. All
glaucoma studies emphasized the importance of CAD programs

for early disease detection and for improvement of screening
reliability [20].

In the future, GANs may be utilized to speed up AI development
and application, allowing AI to comprehend and explore the
environment [66]. Innovative and radical solutions for the health
care system must be improved alongside glaucoma screening
[106]. Significant improvements in instrumentation and
interpretation can lower the cost of glaucoma screening in the
future. Embedding glaucoma AI algorithms in the electronic
medical record will improve outpatient management [107].
However, it is up to the physicians to lead the way in deciding
how to incorporate AI in a new era of glaucoma management.

Automated retinal imaging technologies can reduce barriers to
access and monitoring of the health system. Thus, AI integration
into ophthalmology can improve patient care [56], help
clinicians focus on patient relationships, and enhance health
services [104], all of which can decrease irreversible blindness
[54]. GANs can reduce the scarcity of manual data annotation
and also be used as a clinical support tool [72].
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Recommendations to Developers
A CNN in a generative learner is used for image segmentation
tasks and obtaining successful outcomes [149]. GAN is an
inclusive system that can be combined with various deep
learning models to address problems that conventional ML
algorithms cannot solve, such as poor quality of outputs,
insufficient training samples, and deep feature extraction [68].
Furthermore, it outperforms conventional methods in editing
and synthesizing image [69]. GAN allied with transfer learning
can effectively reduce misjudgment of OD/OC in glaucoma
cases and improve accuracy and generalization capability;
however, better backbone network and different upsampling
methods are required to improve performance [86] and exploring
other downstream tasks may enhance the model’s performance
[93]. Although there is a vast increase of GAN applications,
further studies are required to improve its efficiency and
performance [70]. Incorporating spatial information,
attention-based information, feature-maps information, and
image channels (RGB) to improve network performance is a
current research trend [140].

GANs can generate samples with distribution close to real data.
Thus, they can be used in a systematic study of parallel systems
[96]. GANs or its variants remain the future trends for mitigating
imbalanced learning through generating samples close to real
data, or enhancing model performance when combined with
VAEs [58,65,72]. Thus, it is used as a sophisticated data
augmentation technique to generate heterogeneous samples and
ensure prognostic characteristics of images [52].

To date, only a few studies have experienced AI technologies
in teleophthalmology [56]; photography using smartphones can
be used as a diagnostic tool for ocular diseases [105]. Nowadays,
there is a great need for remote disease monitoring and screening
[107], especially during the COVID-19 pandemic and the vast
infection transmission [150]. Thus, future study should
emphasize on deep learning and telemedicine/teleretinal as
potential gamechangers in the eye-care field [106].

Wang et al [89] proposed a very lightweight network
architecture for joint OD and OC segmentation based on the
MobileNetV2 backbone, which has few parameters and half
testing time compared with the XCeption backbone, which
promotes the network as a mobile app for glaucoma detection.
Bisneto et al [81] presented GAN and texture features for
automatic detection of glaucoma, and achieved impressive
results that reached up to 100% for sensitivity, specificity, and
accuracy. The authors indicated a proposal to transfer their
method into a mobile app in a future study.

Future research should emphasize GANs and semisupervised
learning for image synthesizing, aiming to improve the
classification accuracy and the quality of the generated images
simultaneously [43,75,90]. Adopting GANs in the medical field
remains in its infancy, with no breakthrough application yet
clinically implemented for GAN-based approaches [95]. For
better feature extraction, researchers must exploit full feature
information on RBG channels, spatial structure, and geometry
of landmarks [83]. Semantic segmentation may reduce manual
labeling effort [50,74] and enhance model performance when
incorporated with WGAN domain adaptation [79]. In

ophthalmology diagnosis, adversarial domain adaptation can
be an important and effective direction for future research
[72,88,151]. In addition, exploring the relationship between the
quality of the generated image and the performance of the CAD
system is needed [46].

With the envision to improve deep learning performance,
preprocessing and postprocessing are essential for accurate
segmentation [52,80,94]. Barros et al [20] concluded that data
set size has a huge impact on the results. However, Lahiri et al
[43] amazingly demonstrated that annotation diversity is more
important than annotation count. GAN can make use of large
amounts of unlabeled data [66,87].

Regarding GAN evaluation metrics, future studies should focus
on more objective and systematic evaluation methods. However,
further FID examination is required [100]. Developing
quantitative assessment metrics thus remains a crucial research
direction [152,153]. Researchers should evaluate their
segmentation performance on public data sets [74] with
heterogeneous and multimodal designs using less data-hungry
algorithms [105]. In addition, the performance other classifiers
(eg, XGBoost) and other cGAN architectures should be
examined for faster and more accurate learning [81].

For glaucoma diagnosis, CDR and ISNT metrics present
substantial information to be assessed [20]. More studies are
needed to assess the validity of ophthalmology applications to
detect AMD, diabetic retinopathy, and glaucoma in terms of
accuracy, sensitivity, and specificity [54]. AUC, sensitivity, and
specificity should be included in AI studies as the bare minimum
[53].

Moreover, future research may utilize fine-tuning and data
augmentation techniques to effectively improve model
performance [52,81,86] and increase data set size for better
training, and thus, synthesizing better classifiers [77]. GANs
strength lies in its discriminator [32,80]. Duplicating the
generator’s structure improves robustness [94]. Adding more
network layers help capture more in-depth features [82].
Training and optimizing the model remain critical [84,87], with
regard to careful balancing between G and D [92]. Patch-based
images should be used as input for both G and D [51,84].
U-GAN instead of U-Net should be used to improve the model’s
performance [49]. Additionally, exploiting previous knowledge
of vessel structure [78,80,92] is critical for accurate
segmentation [91]. Objective function supported with various
loss functions may enhance model performance [84]; for
example, WGAN-GP can avoid gradient disappearing and
enhance training [92], Dice coefficient loss function for
segmenting hard images [57], and least-squares loss function
with dilated convolution can enhance small vessel segmentation
[42]. On top of that, topological structure loss can enhance the
connectivity of A/V classification [76], whereas binary
cross-entropy loss function with false-negative loss function
can improve training efficiency and increase segmentation
robustness [94]. Furthermore, an adversarial loss can reduce
the domain overfitting [154], and Wasserstein distance is
preferable for domain adaptation, as it decreases the probability
of mode collapse and avoids the gradient vanishing [79]. Weight
normalization along with average pooling is the best design
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setting when structured prediction is used with U-Net [43].
Exploring a combination of different styles instead of training
dedicated models for a particular style is necessary [93]. MISH
is a modern activation function that presented better results than
ReLU on most current benchmark data sets [155].

To date, explainable DLMs for glaucoma screening utilizing
retinal fundus images have not been proposed [156]. Researchers
should focus on relational and locational explanation using
saliency maps, heatmaps, or other invented methods to provide
plausible explanations of DL decisions.

Lastly, future research should incorporate the distributed ML
library GPipe proposed by Google [157] to mitigate hardware
limitations. This may help train large-sized models and enhance
performance without tuning hyperparameters [140].

Recommendations to Patients
Increasing the amount of data using a successful GANs
synthesizer significantly saves the privacy of patients [72]. Good
DLM offers timely treatment by providing wealthy information
regarding patients’ eye conditions [49]. In the near future, AI
can support telemedicine platforms by facilitating the
self-monitoring by patients through home-based diagnosis [56].
The availability of cheap, handy smartphones may also assist
as a remote diagnostic tool [105]. This eventually could improve
patient’s perception and satisfactions [53], as well as encourage
continuous follow-up and treatment [106].

New Direction of DL
Recently, DLMs have achieved positive retinal disease
identification and segmentation outcomes. These technologies
can revolutionize our way of life, and, probably in the next few
decades, the field of medicine will change rapidly [53].
However, these techniques involve expensive hardware (eg,
GPU requirements) and are greedy for images by nature. Thus,
more advanced data augmentation techniques must be introduced
to create heterogeneous samples while preserving the prognostic
features of fundus images. A possible approach in this regard
is to explore GANs [52,158]. Building systematic deep learning
models trained on heterogeneous and multimodal data with
fewer data-hungry algorithms can boost the effectiveness of AI
in clinical settings [105]. Additionally, AI algorithms should
be incorporated into electronic medical records to promote
outpatient management, which is another fascinating subject
[107].

From the viewpoints of accessibility, cost-effectiveness, and
health care protection, there is a tremendous need to promote
remote glaucoma monitoring in developed countries and rural
communities, allow patients with glaucoma to obtain their own
IOP data with anesthesia-free and reliable tonometers [113],
and enable home-based evaluation and disease control (eg,
rendering home tonometry accessible at a lower cost). Most
importantly, within the current situation of the COVID-19
pandemic, new directions for DLMs can be implemented via
teleretinal screening apps in ophthalmic settings to maintain
maximum protection for both physicians and patients at a lower
cost.

Improving the quality of diagnosis in terms of class imbalance,
refining the training phases of GANs, and enhancing the
computation time to better diagnose glaucoma variants remain
obstacles [20,52,100]. Furthermore, it is necessary to note that
GANs have not been used to diagnose difficult retinal disease
to date, and GAN evaluation metrics are yet another challenging
path of study [68].

Finally, combining GANs with other approaches is another
prospective research approach; for example, the fusion of GANs
with reinforcement learning, function learning, or conventional
learning to create new AI applications and facilitate the
advancement of these methods is also worth investigating
[66,98].

Limitations of the Study
This most important limitation of our analysis is the number
and identification of the source databases; however, the selected
works form a reasonable and broadly representative selection
of the chosen sources. Furthermore, the exclusion of other retinal
diseases besides glaucoma, due to its severity worldwide, is
considered another limitation. In addition, a quick view of the
research activities on this critical retinal disease and GANs does
not necessarily reflect the research community’s response.

Conclusion
Providing adequate health services to people with retinal
disorders has been a global issue. Studies are still ongoing to
diagnose retinal disorders using deep learning; however, papers
adopting GANs for glaucoma detection are not as abundant as
those utilizing DL or ML methods. Consequently, insights into
this emerging area are needed. Six papers [18,19,26-29] have
worked on glaucoma classification–based GANs, and the
majority tended to use GANs for segmentation or synthesizing
retinal images.

The contribution of this study lies in analyzing and taxonomizing
literature works in the field of glaucoma detection using
GAN-based methods. To the best of our knowledge, all the
previous studies generally discussed AL or DL effects on retinal
diseases, and none particularly surveyed GANs for glaucoma
detection. This makes our work first to address this emerging
technique.

According to our taxonomy, the majority of the collected papers
paid more attention to single landmark segmentation (eg, BVs)
than to the segmentation of multiple landmarks. Some
techniques were of tremendous or little interest (eg, the DCGAN
and cGANs). Researchers worked in this field, identified their
difficulties, and suggested recommendations to overcome the
current and expected challenges. Other studies focused on
improving GAN architectures rather than adopting them for
diagnosis. To date, there has been no specific work adopting a
GAN as a smartphone app or in telemedicine. Therefore, filling
this gap is important for both patients and physicians to ensure
fewer physical meetings during the global COVID-19 pandemic.
Furthermore, new directions in this field have been explained.
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cGANs: conditional generative adversarial networks
CNN: convolutional neural network
DCGAN: deep convolutional generative adversarial network
DLM: deep learning method
DRIVE data set: digital retinal image for vessels extraction
GANs: generative adversarial networks
ISNT: inferior, superior, nasal, and temporal rule
LAG data set: large-scale-attention-based glaucoma
LSGAN: least-square GAN
OC: optic cup
OD: optic disc
ONH: optic nerve head
REFUGE data set: retinal fundus glaucoma challenge
RGB: red green blue
RL: rim loss
RNFL: retinal nerve fiber layer
ROI: region of interest
STARE data set: structured analysis of the retina
VAEGAN: variational autoencoder with GAN
WGAN: Wasserstein GAN
WGAN-GP: Wasserstein GAN-gradient penalty
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