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Abstract

Background: Many social media studies have explored the ability of thematic structures, such as hashtags and subreddits, to
identify information related to a wide variety of mental health disorders. However, studies and models trained on specific themed
communities are often difficult to apply to different social media platforms and related outcomes. A deep learning framework
using thematic structures from Reddit and Twitter can have distinct advantages for studying alcohol abuse, particularly among
the youth in the United States.

Objective: This study proposes a new deep learning pipeline that uses thematic structures to identify alcohol-related content
across different platforms. We apply our method on Twitter to determine the association of the prevalence of alcohol-related
tweets with alcohol-related outcomes reported from the National Institute of Alcoholism and Alcohol Abuse, Centers for Disease
Control Behavioral Risk Factor Surveillance System, county health rankings, and the National Industry Classification System.

Methods: The Bidirectional Encoder Representations From Transformers neural network learned to classify 1,302,524 Reddit
posts as either alcohol-related or control subreddits. The trained model identified 24 alcohol-related hashtags from an unlabeled
data set of 843,769 random tweets. Querying alcohol-related hashtags identified 25,558,846 alcohol-related tweets, including
790,544 location-specific (geotagged) tweets. We calculated the correlation between the prevalence of alcohol-related tweets and
alcohol-related outcomes, controlling for confounding effects of age, sex, income, education, and self-reported race, as recorded
by the 2013-2018 American Community Survey.

Results: Significant associations were observed: between alcohol-hashtagged tweets and alcohol consumption (P=.01) and
heavy drinking (P=.005) but not binge drinking (P=.37), self-reported at the metropolitan-micropolitan statistical area level;
between alcohol-hashtagged tweets and self-reported excessive drinking behavior (P=.03) but not motor vehicle fatalities involving
alcohol (P=.21); between alcohol-hashtagged tweets and the number of breweries (P<.001), wineries (P<.001), and beer, wine,
and liquor stores (P<.001) but not drinking places (P=.23), per capita at the US county and county-equivalent level; and between
alcohol-hashtagged tweets and all gallons of ethanol consumed (P<.001), as well as ethanol consumed from wine (P<.001) and
liquor (P=.01) sources but not beer (P=.63), at the US state level.

Conclusions: Here, we present a novel natural language processing pipeline developed using Reddit’s alcohol-related subreddits
that identify highly specific alcohol-related Twitter hashtags. The prevalence of identified hashtags contains interpretable
information about alcohol consumption at both coarse (eg, US state) and fine-grained (eg, metropolitan-micropolitan statistical
area level and county) geographical designations. This approach can expand research and deep learning interventions on alcohol
abuse and other behavioral health outcomes.
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Introduction

Background
Alcohol-related causes are the third leading preventable cause
of death in the United States, and alcohol abuse contributes to
many adverse health outcomes, particularly on the developing
brain [1-4]. The rise of alcohol-related content on Twitter is
alarming, with over half of young adults participating in a study
[5] posting alcohol-related content. Social media use and alcohol
consumption are common behaviors; the prevalence rates of
Twitter, Reddit, and annual alcohol use for US adults are 22%,
11%, and 70%, respectively [6,7]. Internet- and social
media–based interventions are scalable and efficient approaches
for developing practical tools for treating and monitoring alcohol
abuse, especially for at-risk adolescents and young adults [8-14].
However, identifying high-risk areas for efficient and helpful
monitoring along with population-level interventions remains
a difficult task, in part because of survey bias [15-17].

Text-based hashtags are common among many popular social
media platforms such as Twitter, Instagram, and TikTok.
Individuals use hashtags to categorize, label, organize, and
discover posts and content [18]. Previous studies have indicated
that study-specific hashtags are useful for mental health research
[19]. For example, sexual abuse and harassment (#MeToo),
breast cancer (#breastcancer), HIV (#HIV), miscarriages
(#ihadamiscarriage), tobacco use (#Vapelife), and viral
pandemics (#COVID-19) are some of the many important health
outcomes that have been previously studied using hashtags on
Twitter [20-28]. Other social media platforms such as Reddit
contain specific themed communities where interested users
discuss a particular topic. In contrast to hashtags, themed
communities on websites such as Reddit represent posts related
to exactly 1 topic of interest. Like hashtags, these communities,
such as r/cripplingalcoholism, r/depression, or r/opiates Reddit
subreddits and HIV Baidu Tieba bar, contain information that
can target and understand behavioral health and disease [29-33].
In addition to hashtags and subreddits, some social media
platforms allow for geotagging or sharing a user's geographical
latitude and longitude coordinates in a post. Geotags have been
used in social media research to identify geographically relevant
information from social media data [34-36].

Previous Work
Although prior studies have identified specific hashtags or
themed communities for studying behavioral health outcomes,
many insights are platform-specific. Although helpful
information regarding a behavior of interest or themed
community may be available on one platform, there may not
be such knowledge available on a different platform. Many
previous methods examining alcohol content on social media
use data from a single platform [5,37-42]. Single-platform
analyses may limit discoveries and interventions to only a
fraction of the population at risk. There is a growing need for

behavioral health researchers working with social media data
to incorporate analyses from many sources [43,44]. Although
some studies have examined alcohol content on multiple
platforms, many methods need survey data from known active
users from each source or additional manual annotation [45-47].
The ability and insights gained from using deep learning
methods to learn from a large number of posts from specific
communities (ie, Reddit subreddits) to predict alcohol-related
content on a different platform (ie, Twitter) remain unclear.

Many previous studies that identified alcohol-related language
on social media platforms relied on training on extrinsic labels,
such as survey responses. Reliance on self-report data is
problematic as alcohol consumption is subject to bias,
particularly among the youth [15,16,48]. In addition, approaches
that use an outcome of interest to both train and evaluate a model
(eg, identifying and evaluating alcohol-related hashtags or
keywords based on enrichment in regions with higher
self-reported alcohol content) may not be generalizable to other
related outcomes [49].

Other approaches for studying alcohol content involve
identifying a sample as being alcohol-related based on the
identification of keywords. Keyword approaches have distinct
benefits, such as interpretability. However, identifying text from
keywords may rely on standard and predefined terms (eg,
searching drunk), training on self-report data, or manual review
[37,42,49-51]. Classification of social media posts based on
previously defined keywords or vector representations (eg,
Word2vec) is not as useful when the average length of sequences
is small and has out-of-training vocabulary [52-54]. Training
on nonspecific platform information alone may fail to capture
relevant keywords, especially for rarer outcomes not prominent
in the heterogeneity of random and unlabeled social media
chatter [55]. In addition, predefined keywords or word vectors
may fail to capture slang or the different language structures
between Reddit and Twitter [56].

One recent contribution in natural language processing (NLP)
is the Bidirectional Encoder Representations From Transformers
(BERT) neural network, which has demonstrated superior
performance on a wide variety of social media NLP tasks
[57-61]. BERT focuses on learning by analyzing sentences with
randomly masked words. This masked language model
deconstructs larger strings into smaller tokens and is ideal for
dealing with hashtags and other platform-unique token structures
[57]. Before developing BERT, previous models, such as
long-short–term memory networks, logistic regression,
Word2vec similarity, and latent Dirichlet allocation, were not
well suited to process unknown words and hashtag structures.
For example, some previous NLP studies on social media either
removed hashtags, represented them as universal tokens, or
removed # from strings, with no importance given to hashtags
(eg, #ilovebeer represented as “ ” (space), HASHTAG, or
ilovebeer, respectively) [62-64]. In contrast, using hashtags and
themed communities as explicit labels in a deep learning
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architecture allows for identifying relevant, platform-specific
hashtags that can identify posts that indicate the behavior of
interest. In addition, the use of these structures adds a layer of
interpretability to our trained neural networks, which are
commonly criticized as noninterpretable black boxes [65].

Other previous social media text mining methods implementing
deep learning often involve training platform-specific models.
One issue with this approach is that each platform’s training
models require an extensive amount of usually labeled data
from that platform [66-72]. In addition, although deep learning
models have been successful at many tasks, training
platform-specific deep networks such as BERT (containing
>100 million parameters) is extremely energy- and
cost-intensive, and CO2 emissions from training BERT models
have raised concerns about their environmental impact [73].
Optimal methods for translating information from previously
trained social media deep learning models to discern insights
from separate social media platforms remain a relatively
unexplored research area.

The Goal of This Study
We aim to examine the effectiveness of using thematic structures
in a deep learning framework to identify alcohol-related
behaviors across different social media platforms. First, we
trained on Reddit subreddits to identify alcohol-related targets
on another social media platform (Twitter) with a different
thematic structure (hashtags). Next, we determined whether the
hashtags predicted by the model correlate to known
alcohol-related outcomes, including self-reported drinking status,
alcohol outlet density, and estimated gallons of ethanol

consumed, after controlling for confounding effects of age, sex,
income, education, and self-reported race. We show that these
data-driven hashtags contain interpretable information about
alcohol consumption in the United States. Finally, we present
validated and queryable hashtags from our model that behavioral
health researchers can use as a starting point for the
identification of alcohol-related content on Twitter, Reddit, and
other social media platforms.

Methods

Overview of the NLP Pipeline
This study fine-tuned a BERT neural network as a binary
classifier to predict Reddit post titles as belonging to either
alcohol-related communities or a random subreddit. Next, we
applied the Reddit-trained network to a smaller set of random,
unlabeled Twitter posts to identify 24 hashtags that were
significantly associated with alcohol content. We identified
25,558,846 tweets that contained at least one alcohol-related
hashtag for the period between 2010 and 2019. A total of
1,412,041 alcohol-related tweets included latitude and longitude
data from geotagging. The locations of 790,544 geotagged
tweets from 2929 US counties and county equivalents were
identified using data from the 2017 US Census Shapefiles
database [74,75]. Finally, we examined the relationship between
the prevalence of alcohol-related tweets per population and
various outcome measures related to alcohol consumption,
including self-reported alcohol consumption and alcohol outlet
density. Figure 1 demonstrates an overview of our NLP pipeline.
Figure 2 illustrates the choropleth of population-normalized
alcohol-hashtagged tweets for US states and Washington, DC.

Figure 1. Overview of the methodological pipeline. A bidirectional encoder representation from transformers model trained to classify posts as either
18 alcohol-related or control subreddits. The bidirectional encoder representations from transformers model was applied to a set of tweets containing
at least one hashtag. The prediction results were analyzed to find 24 significantly enriched hashtags as positive predictions (ie, prediction probability
≥0.5). Tweets posted between 2010 and 2020 with an alcohol-related hashtag were collected and filtered on geotagged location. BERT: Bidirectional
Encoder Representations From Transformers.
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Figure 2. Choropleth of the US state and Washington, DC tweets with alcohol-related hashtags per 10,000 persons.

Reddit Data Set and BERT Training
A large amount of alcohol-related training data were extracted
from Reddit subreddits with the pushshift application
programming interface (API) previously used in social media
research [63,76]. On a subreddit, community moderators create
description texts that contain links to other, usually related,
subreddits. Scraping the description pages for all subreddits
containing at least 1000 posts for any links to r/drunk, one of
the most popular alcohol-related subreddits, and all links from
r/drunk to other subreddits yielded 17 alcohol-related subreddits.
A total of 651,271 post titles from the following 18 subreddits
were used as positive alcohol labels for model training:
r/cripplingalcoholism, r/vodka, r/oldtimehockey, r/alcohol,
r/beer, r/bourbon, r/homebrewing, r/drinkinggames, r/wine,
r/beercirclejerk, r/gin, r/scotch, r/liquor, r/showerbeer,
r/absinthe, r/firewater, r/beercanada, and r/drunk.

Negative alcohol (control) posts were gathered by querying
651,271 random posts posted in all other subreddits, excluding
the 18 alcohol-related subreddits. Training 79.99%
(521,016/651,271), validation 9.99% (65,127/651,271), and
testing 9.99% (65,127/651,271), data sets were generated for
developing and evaluating the model—a binary classifier trained
for posts belonging to either alcohol-related subreddits or other
random subreddits. The model fine-tuned a pretrained BERT
model with 12 layers and 768 hidden units in PyTorch on an
NVIDIA TITAN Xp graphics processing unit using a batch size
of 64 for approximately 5 weeks [77].

Twitter Data Set and Identification of Hashtags
The Twitter API provides tweet information from 7 days before
a query. Randomly selected tokens in the Twitter GLoVE word
embedding dictionary and their respective hashtags (ie, a string
that starts with #) were queried using the Twitter API to identify
recently posted tweets containing that word or hashtag [78].
Each identified hashtag in the data set was requeried to ensure
that it was monitored for at least 2 weeks. The initial random
Twitter data set comprised 843,769 random hashtag-containing
tweets posted between January 2019 and October 2019. The
Reddit-trained BERT model was applied to this data set to obtain
binary predictions for each tweet. A chi-square test identified
24 significant alcohol-related hashtags from posts predicted to
be alcohol-positive (ie, final softmax layer prediction P value
of ≥0.5) relative to posts predicted as negative (ie, final softmax
prediction P value of <0.5) using a one-tailed greater test. We
included only hashtags with 5 or more occurrences and applied
the Benjamini-Hochberg algorithm for multiple hypothesis
correction using a 0.05 false discovery rate, a common approach
for multiple hypothesis corrections in social media data analyses
[37,42,79-85]. The analysis resulted in 24 hashtags, as indicated
in Textbox 1. GetOldTweets, a Python package widely used in
social media research, was used to identify 25,558,846
alcohol-hashtagged tweets posted throughout 10 years (between
2010 and 2020) containing at least one significant
alcohol-related hashtag [55,86,87].
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Textbox 1. Alcohol-related hashtags extracted by our Reddit-trained classifier according to alcohol category.

Beer hashtags

• craftbeer, beer, ncbeer, brewery, stout, beeroclock, beergeek, beerporn, beers, instabeer, beertime, beerstagram, beerlover, beersnob

Wine hashtags

• winetasting, wine, winelover, wines, redwine

Liquor hashtags

• bourbon, whiskey, whisky

Multiple or ambiguous hashtags

• drinklocal, drunktwitter

Geographical Identification of the Prevalence of
Alcohol-Related Hashtags
Next, we tested whether the knowledge of 24 significant alcohol
hashtags could uncover information on alcohol-related outcomes
in the United States. Alcohol-hashtagged tweets were filtered
to 790,544 geotagged tweets containing longitude and latitude
coordinate locations and mapped to metropolitan-micropolitan
statistical areas (MMSAs), US county and county equivalents,
and US states and Washington, DC. The total number of
alcohol-hashtagged tweets in an area divided by the mean of
the population estimates from the 2013-2018 American
Community Survey yielded population-normalized
alcohol-related hashtag prevalence.

We then tested the association between geographical prevalence
of alcohol-related hashtags and alcohol outcomes. Spearman
rho, a ranked nonparametric measure that is more robust to
outliers than Pearson correlation, is used to report crude
(nonadjusted) correlations [88]. Potential confounding variables
previously studied in alcohol and social media use include race
and sex distribution, median age, education, and income [37,89].
A linear regression analysis evaluated the relationship between
the number of tweets per population and alcohol-related
outcomes after including terms to control for confounding
effects. Specific confounding variables from the 2013-2018
5-year American Community Survey report included Percent
Reporting White, Percent Reporting Black, Percent Reporting
Hispanic, Median Income, Percent High School Education,
Percent Bachelor's Degree Education, and Males/100 Females
[90]. All alcohol outcomes and confounding variables
represented the most recent estimation of alcohol consumption
and related behavior at the time of this study.

Metropolitan-Micropolitan Statistical Areas
MMSAs are US Census Bureau designations of concentrated
urban centers that may be the integrated areas of multiple cities
and states (eg, the single Washington-Arlington-Alexandria,
DC-VA-MD-WV MSA contains 3 US states and Washington,
DC) [74]. The Behavioral Risk Factor Surveillance System
publishes reports of survey responses at selected MMSAs for
the following categories [91]:

• any alcohol consumption, defined as at least one alcoholic
drink in the last 30 days;

• binge drinking behavior, defined as drinking >5 drinks in
1 event for men or >4 drinks in 1 event for women;

• heavy drinking, defined as drinking >1 drink per day for
women or >2 drinks per day per man;

All yearly records from 2010-2019 for each MMSA were
averaged to obtain a single number for outcome measurements.

US County and County Equivalent
Primary US county outcomes were gathered from the University
of Wisconsin Population Health Institute County Health
Rankings and Roadmaps 2020 data, which included the
estimates of excessive drinking, defined as the percentage
reporting either binge or heavy drinking behavior as well as
measurements of the percentage of motor vehicle fatalities that
involved alcohol for the period between 2013 and 2018 [92].
In addition, data from the North American Industry
Classification System provided by 2017 County Business
Patterns (US Census) was used for the number of Drinking
Places (Alcohol Beverages); Wineries; Breweries; and Beer,
Wine, and Liquor stores (North American Industry Classification
System codes 722410, 312130, 312120, 445310, respectively)
present in each county [93]. Counties were included if they
contained at least one tweet and an average reported population
>1000 between 2013 and 2018.

US States and Washington DC
Twitter posts containing alcohol-related hashtags were
aggregated by state and compared with the National Institute
on Alcohol Abuse and Alcoholism's 2018 report, Apparent Per
Capita Alcohol Consumption: National, State, and Regional
Trends. This report predicts gallons of ethanol consumption
based on alcohol sales and taxation data, separated for the
consumption of wine, beer, or liquor products [94]. To determine
which hashtags may be useful for detecting individual
preferences of alcohol consumption, we calculated the
correlation between the consumption of alcohol from different
sources of alcoholic drinks (beer, wine, and liquor) and the
prevalence of 19 beer, 5 wine, and 3 liquor-specific hashtags,
as indicated in Textbox 1.

Results

Table 1 demonstrates the results from the analysis of
alcohol-related hashtags and alcohol-related outcomes. The
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number of geotagged and alcohol-hashtagged tweets per
population significantly correlated with many alcohol-related
outcomes, including self-reported measures of individuals (1)
reporting any alcohol consumption within 30 days (P<.001),
(2) meeting the criteria for heavy drinking (P<.001), and (3)

meeting the criteria for binge drinking (P<.001) at the MMSA
level (Figure 3). However, the relationship between MMSA
tweets and binge drinking level was not significant after
adjusting for confounding effects (P=.37).

Table 1. Spearman correlation and linear regression results between the number of tweets per population and alcohol-related behavior and health
indicators.

Sample size, nAdjusted regressionSpearman correlationOutcome

P valueCoefficient βP valueρ

Metropolitan-micropolitan statistical area

179.011038<.0010.526Alcohol consumption

179.37184.0<.0010.355Binge drinking

179.005244.8<.0010.387Heavy drinking

County and equivalent

2641.0332.8<.0010.377Excessive drinking

2641.21110.0.0020.063Percentage of alcohol motor vehicle fatality

1479.23−2.18e–03<.001−0.177Drinking places (alcoholic beverages) per capita

334<.0011.86e–03<.0010.263Breweries per capita

228<.0012.73e–02.050.130Wineries per capita

1444<.0010.0039.11−0.043Beer, wine, and liquor stores per capita

US states and Washington, DC, all hashtags

51<.00174.11<.0010.756Wine, gallons of ethanol per capita

51.639.911.73−0.050Beer, gallons of ethanol per capita

51.0362.54.010.320Liquor, gallons of ethanol per capita

51<.001146.6<.0010.437All sources, gallons of ethanol per capita

US states and Washington, DC, hashtags stratified by alcohol category

51<.001214.6<.0010.754Wine, gallons of ethanol per capita (5 hashtags)

51.6316.05.99−0.001Beer, gallons of ethanol per capita (19 hashtags)

51.01338.0.330.140Liquor, gallons of ethanol per capita (3 hashtags)
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Figure 3. Metropolitan-micropolitan statistical area correlations for alcohol-hashtagged tweets and percent self-reported alcohol consumption. (A)
Number of alcohol-hashtagged tweets and self-reported alcohol consumption within 30 days (N=179); (B) number of alcohol-hashtagged tweets and
self-reported binge drinking within 30 days (N=179); (C) number of alcohol-hashtagged tweets and self-reported heavy drinking within 30 days (N=179).

There was a significant correlation between the percentage of
motor vehicle deaths reported as involving alcohol (P<.001)
and aggregated measures of excessive drinking behavior
(P<.001) at the county level (Figure 4). However, the

relationship between alcohol-related motor vehicle fatalities
and county tweets per population was not significant after
adjusting for confounding effects (P=.21).
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Figure 4. County- and county-equivalent–level correlations for alcohol-hashtagged tweets, alcohol motor vehicle fatalities, and self-reported excessive
alcohol consumption. Counties are included if they contain at least one tweet and 1000 people (N=2641). (A) County-level correlations for
alcohol-hashtagged tweets per population and percentage of motor vehicle fatalities involving alcohol. (B) County-level correlations for alcohol-hashtagged
tweets per population and percent self-reporting excessive drinking (reporting either more than five alcoholic drinks on a single occasion for men or
more than four alcoholic drinks on a single occasion for women, or more than two drinks per day for men or more than one drink per day for women).

There was a significant correlation between the number of
alcohol-hashtagged tweets and wineries (P=.05), breweries
(P<.001), and drinking places (alcoholic beverages; P<.001)
but not beer, wine, and liquor stores (P=.11) per capita at the

county level (Figure 5). However, after adjusting for
confounding effects, there was a significant association between
alcohol-related tweets per population and beer, wine, and liquor
stores (P<.001) but not drinking places (P=.23) per capita.
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Figure 5. County- and county-equivalent–level correlations for alcohol-hashtagged tweets per person and alcohol-serving outlets, as reported by the
North American Industry Classification System. Counties are included if they have at least one (1) tweet in our data set, one (1) alcohol outlet, and
contain a population of 1000. (A) Wineries per 10,000 people (n=228 counties); (B) breweries per 10,000 people (n=334); (C) liquor stores per 10,000
people (n=1444); (D) drinking places (alcoholic beverages) per 10,000 people (n=1479).

There was a significant correlation between the prevalence of
alcohol-hashtagged tweets and gallons of wine (P<.001), liquor
(P=.01), and overall gallons of consumption (P<.001) at the
state level (Figure 6). However, the association with all
alcohol-hashtagged tweets and gallons of beer consumed was
not significant (P=.63).

The prevalence of five wine hashtags had a significant
association with wine consumption at the state level (P<.001),
but 3 liquor hashtags and 19 beer hashtags did not have a
significant relationship with liquor (P=.33) and beer (P=.99)
consumption at the state level. However, there was a significant
relationship between gallons of liquor consumed and the
prevalence of 3 liquor hashtags (P=.01) after controlling for
confounding effects (Figure 6).
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Figure 6. Gallons of ethanol consumed for US states and alcohol-hashtagged tweets. Population normalization was performed using the average reported
population between 2010 and 2018, as reported by the National Institute of Alcohol Abuse and Alcoholism. Top, all 24 hashtags used; gallons of ethanol
consumed from (A) wine; (B) beer; (C) liquor; and (D) all alcohol sources and Twitter posts per population. Bottom, only specific hashtags, gallons of
ethanol from wine, beer, and liquor, and Twitter posts per population from specific hashtags: (E) wine (5 wine hashtags); (F) beer (14 beer hashtags);
(G) liquor (3 liquor hashtags).

Discussion

Principal Findings
We demonstrated that information from alcohol-related
subreddits could identify alcohol-related hashtags that correlated

with multiple alcohol-related outcomes. The prevalence of
geotagged tweets containing these significantly alcohol-related
hashtags correlates with alcohol-related behaviors and alcohol
outlet density, which are associated with adverse outcomes,
including deaths from motor vehicle crashes and excessive
drinking [95-97]. This approach has distinct benefits for studying
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alcohol-related outcomes. Compared with other approaches to
detect alcohol consumption on Twitter, the pipeline presented
here is trained using relatively few interpretable input and output
parameters, specifically, 18 subreddits and 24 hashtags. The
NLP pipeline identified language associated with alcohol abuse
on Twitter without manual annotation or predefined keywords
and with only the knowledge of relevant subreddits. These
results indicate that alcohol-related language, when defined by
inclusion into the themed communities of subreddits or
containing alcohol-related hashtags, can be used to understand
population-level behavior in multiple geographic areas with
different population granularity.

Qualitatively, the model presented here detects a wide variety
of different alcohol-related hashtags, including slang. Tweets
containing these hashtags capture a large amount of information
regarding alcohol consumption behavior at a broad population
level. The set of hashtags resulting from this study is useful for
future alcohol-related research on Twitter and identifying
relevant hashtags or community forum labels on other platforms.

A notable benefit of using hashtags and subreddits as
platform-specific labels for studying alcohol-related outcomes
is interpretability. Although deep learning models excel at
understanding massive quantities of data, many NLP and deep
learning models rely on complex feature representations to
classify or characterize text. However, this approach is not easily
interpretable [65,98]. We have demonstrated that by treating
subreddits and hashtags as learnable labels, it is possible to
directly use hashtags as interpretable features in our NLP
pipeline for social media data to understand alcoholic beverage
preferences while still learning from a large amount of data.

Consumption of different alcohol types is associated with a
variety of both beneficial and detrimental outcomes [99-101].
For example, wine consumption is associated with protection
from cardiovascular diseases; however, the cause of this effect
may be dietary factors and other lifestyle choices [99,102].
Other studies have associated preferential beer and liquor
consumption with adverse outcomes, such as dangerous drinking
and other risky behaviors [101,103,104]. Notably, although
many studies have examined overall alcohol mentions on
Twitter, few models created have been explicitly examined in
terms of differences in the types of alcoholic beverages
mentioned.

Our study indicates that information capturing consumption of
wine and liquor is directly observable using social media data,
as shown by the significant associations between the prevalence
of 5 wine-related hashtags and the amount of wine consumed,
as well as the number of posts containing at least 1 of the 3
liquor-related hashtags and liquor consumed. However, there
was no significant relationship between beer consumption per
capita and the number of alcohol-hashtagged Twitter posts in
an area. The results here indicate that our model can detect
certain types of alcohol consumption behavior (wine and liquor
consumption) on Twitter using the interpretability of hashtags
but not others (beer consumption). It remains unclear whether
our results indicate a bias in our model’s methodological choice
(eg, use of hashtags or training procedure) or a difference in
social media populations that prefer different alcohol beverages.

The difference in correlations might be because of several
variables, including the existence of confounding factors related
to the prevalence of social media use in the underlying
populations that preferentially consume beer over other alcohol
types, differences in perceived acceptance of beer consumption
behavior, or because of other factors that may confound alcohol
and social media posting [89]. Alcohol preference is an example
of having interpretable hashtag representations for a given model
that may help identify behavioral differences associated with
an outcome of interest. This evidence suggests that similar
models trained on Twitter may detect alcohol wine and liquor
consumption but not beer.

Comparison With Previous Works
Many previous studies have used hashtags as target labels.
However, they mostly rely on a predefined set of hashtags that
may not be data-driven or require extensive expert annotation
instead of taking advantage of topic-specific sources and social
media content on other public social media platforms
[40,105-107]. Notably, using a predefined number of hashtags
could be biased and too narrow for capturing relevant
information, potentially missing informative hashtags for
exposure or outcome. Traditional keyword approaches may fail
to capture various pieces of information from slang and novel
hashtags from platform-specific languages as they are created
and popularized. In addition, keyword databases may not exist
for all outcomes of interest. Semantic similarity measures, such
as Word2vec, may identify hashtags with similar contexts;
however, integrating vector representations may lose valuable
information relative to training over individual samples, and
prediction probabilities or certainty are not readily observable.
In contrast, this study indicates that a model trained on a large
set of data relevant to the behavior of interest and its application
to an unlabeled data set from a different platform can identify
data-driven hashtags related to that behavior. This ability to
learn hashtags from data is critical, as new hashtags are created
every day and may differ substantially between platforms.

Many social media platforms are directly searchable using
hashtags, allowing the ability to gather many highly specific
posts instead of gathering a large number of nonspecific posts
to identify relevant hashtags, keywords, or alcohol content based
on available prevalence data. Although the latter approach has
shown success in studying alcohol-related behavior previously,
methods to extend the analysis to alternative but potentially
related outcomes, platforms, or different geographical
designations remain unclear [39,40,108]. The generalization of
such models necessitates the creation of individual models for
each particular outcome and geographic area. Finally, these
models may fail to take advantage of extensive research on
themed communities to understand alcohol use and other
outcomes of interest [30,39,40,76,106,109,110]. In contrast, the
method outlined here may help create more efficient public
health interventions to analyze the alcohol consumption behavior
for a given geographic area of interest, such as a city or hospital
catchment area. This approach is particularly useful when the
relevant language is dynamic or contains area-specific slang,
making previously established dictionary-based methods
incomplete or impractical. In particular, our proposed
methodology for identifying hashtags using a previously trained
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deep learning model can be useful for detecting alcohol
consumption behavior on various social media platforms.

Limitations and Future Work
There are some limitations to the model and approach proposed
in this study. Other health-related behaviors that are not
discussed frequently on social media may be more difficult to
ascertain and translate between platforms using hashtags. Any
model trained on a limited number of social media platforms
may be confounded by differences in user preferences, such as
age or socioeconomic status. Furthermore, this method relies
on identifying known or previously studied subreddits, which
may not be suitable for outcomes without known relevant
subreddits. Furthermore, we did not compare our models’
performance with the BERT large model or other deep learning
alternatives, which can have a different performance for our
task. In addition, including additional social media data in model
development and using domain knowledge from ontologies,
controlled vocabularies, lexicons, and relevant rules and regular
expressions can further improve the presented results.

As future work, we plan to extend this study to other mental
and behavioral health topics, such as depression and substance

use, and other social media platforms that use hashtags, such
as Facebook and Instagram. Deep learning has previously been
used to combine the analysis of images and texts from social
media users [38]. In our future work, we will expand the
presented architecture to include other data modalities, such as
images and videos, to increase screening capabilities.

Conclusions
These results indicate that using alcohol-related subreddits as
learnable labels to train a BERT neural network can capture
interpretable, alcohol-related language on Twitter. Our study
suggests a significant correlation between the prevalence of
alcohol-related geotagged Twitter hashtags and alcohol-related
behaviors as measured by self-reported alcohol consumption,
alcohol preferences, and alcohol outlet prevalence. This method
has the unique advantages of previous methods, including
allowing examination at the MMSA, US county, and US state
level for different alcohol-related outcomes. These results
suggest that using previously studied hashtags and subreddits
as learnable targets in a machine learning framework could
expand public health outreach efforts and epidemiology
research, particularly for monitoring behavior related to alcohol
consumption.
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