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Abstract

Background: Hemodialysis (HD) therapy is an indispensable tool used in critical care management. Patients undergoing HD
are at risk for intradialytic adverse events, ranging from muscle cramps to cardiac arrest. So far, there is no effective HD
device–integrated algorithm to assist medical staff in response to these adverse events a step earlier during HD.

Objective: We aimed to develop machine learning algorithms to predict intradialytic adverse events in an unbiased manner.

Methods: Three-month dialysis and physiological time-series data were collected from all patients who underwent maintenance
HD therapy at a tertiary care referral center. Dialysis data were collected automatically by HD devices, and physiological data
were recorded by medical staff. Intradialytic adverse events were documented by medical staff according to patient complaints.
Features extracted from the time series data sets by linear and differential analyses were used for machine learning to predict
adverse events during HD.

Results: Time series dialysis data were collected during the 4-hour HD session in 108 patients who underwent maintenance
HD therapy. There were a total of 4221 HD sessions, 406 of which involved at least one intradialytic adverse event. Models were
built by classification algorithms and evaluated by four-fold cross-validation. The developed algorithm predicted overall intradialytic
adverse events, with an area under the curve (AUC) of 0.83, sensitivity of 0.53, and specificity of 0.96. The algorithm also
predicted muscle cramps, with an AUC of 0.85, and blood pressure elevation, with an AUC of 0.93. In addition, the model built
based on ultrafiltration-unrelated features predicted all types of adverse events, with an AUC of 0.81, indicating that
ultrafiltration-unrelated factors also contribute to the onset of adverse events.

Conclusions: Our results demonstrated that algorithms combining linear and differential analyses with two-class classification
machine learning can predict intradialytic adverse events in quasi-real time with high AUCs. Such a methodology implemented
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with local cloud computation and real-time optimization by personalized HD data could warn clinicians to take timely actions in
advance.

(J Med Internet Res 2021;23(9):e27098) doi: 10.2196/27098
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Introduction

Hemodialysis (HD) therapy has a substantial role in critical care
management [1]. Due to oliguria or even anuria, most patients
with renal failure require fluid removal during HD therapy to
maintain an euvolemic status. The volume-dependent component
of hypertension may be corrected by fluid removal, but the
ultrafiltration process exposes HD patients to the risks of
hemodynamic instability, which may lead to fatal consequences
such as cardiac arrest [2]. Intradialytic hypotension is the most
frequent complication during HD [3-7] and has been identified
as a pivotal cause of reduced HD efficacy [4,8]. Acutely,
intradialytic adverse events can be fatal; chronically, frequent
intradialytic adverse events increase patient morbidity and
long-term all-cause mortality [3,9,10]. Therefore, it is urged to
develop a solution for this unmet medical need.

The Crit-Line (Fresenius Medical Care) monitor is a device
developed to assist with fluid removal during ultrafiltration by
noninvasively monitoring real-time hematocrit, oxygen
saturation, and intradialytic volume status, using an optical
transmission method [11]. Although uncontrolled studies have
suggested that this device reduced intradialytic symptoms [5,12]
and assisted in the assessment of target weight [13,14], an
unblinded randomized controlled trial showed a higher
hospitalization rate in the Crit-Line group than in the control
group [15]. Therefore, novel solutions are urged to solve this
unmet medical need.

Artificial intelligence has been applied to HD patients to assist
clinical practice, including prediction of urea clearance [16-19],
dietary protein intake [17,20], volume status [21],
erythropoiesis-stimulating agent response [22-26], iron
supplement response [22,24], hemoglobin level [27], HD quality
[28-31], mortality [32], etc. Although artificial intelligence has
also been applied to predict intradialytic hypotension risks,
previous studies lack time-series data input [17,33]. Therefore,
we aimed to include time-series data in a machine learning
model to predict intradialytic adverse events. Herein, we
hypothesize that the machine learning method can predict
intradialytic adverse events in an unbiased manner. To solve
this unmet need, we conducted this study.

Methods

Study Protocol and Subjects
This was a retrospective observational study in a single
institution. We reviewed the records of all patients who

underwent maintenance HD therapy at Changhua Christian
Hospital, a tertiary-care referral center in middle Taiwan,
between August 2017 and October 2017. During this period,
129 patients were eligible for enrollment evaluation, and 108
patients completed the 3-month study. HD sessions were
excluded for the following three reasons: (1) session interruption
due to dialyzer exchange, (2) more than one interruption per
session due to patient urination or defecation, and (3) inability
of patients to freely express their discomfort during the session.
Eventually, a total of 4221 HD sessions from 108 patients were
used to build the model. Each patient received either 39 or 40
HD sessions during the 3-month study period.

The Institutional Review Board of our institution approved all
protocols in April 2017 before the study began, and the protocols
conformed to the ethical guidelines of the Helsinki declaration.
The need for informed consent was waived because of the
retrospective nature of the study.

Dialysis and Physiological Data Collection
Demographic information from medical records, including age,
gender, and years under dialysis treatment, were included for
model building. Dialysis and physiological data of the enrolled
patients during the 4-hour HD session were included in the
study. Physiological data were measured and recorded by
medical staff every 30 to 60 minutes approximately. Dialysis
data were collected from the dialysis machine automatically.
Intradialytic adverse events were documented by medical staff
according to physiological measurements or patient complaints,
as shown in Table 1. The list of HD machine readouts is
presented in Multimedia Appendix 1.

For each HD session i (i=1-4221), the data set HDi consisted
of records {Yj,k, Tk}, where j (range 1-9) is the index for the
dialysis and physiological measurements, and k is the index of
time when a measurement is taking. Yj,k is the value of the
measurement j at time Tk. HDi also included additional
time-invariant patient-specific information Yj (j=10-13),
including age, gender, years under dialysis treatment, and
predialytic weight (Multimedia Appendix 2). According to the
manufacturer default setting, the machine-derived dialysis data
are recorded from the dialysis machine automatically once the
value of venous pressure or transmembranous pressure alters
and becomes different from the last measurement at T=Tk-1.
Therefore, the time interval Tk − Tk-1 between any two
consecutive records may not be equal.
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Table 1. List of intradialytic adverse events.

Episodes, nAdverse event

138Muscle cramps

108Blood pressure elevation

64Low blood pressure

45Miscellaneous

28Headache

26Lightheadedness

23Chest tightness

23Vascular access thrombosis

22Cold sweating

12Nausea/vomiting

10Fever

10Tachycardia

8Dyspnea

8Hoarseness

5Chills

5Leg pain

5Low back pain

5Shoulder pain

4Altered mental status

3Chest discomfort

3Numb hands

3Tinnitus

3Vascular access occlusion

2Abdominal pain

1Hypersomnia

1Palpitation

1Pruritus

Feature Extraction
To avoid the artifacts at the beginning of the data due to the
different procedures on how the dialysis was set up and started
in each HD session, the first data point Yj,1 at the beginning of
each HD session was excluded if the blood flow rate varied
between T1 and T2. We also excluded the data point Yj,k when
the blood flow rate was equal to or below zero due to dialysis
interruption (dialyzer exchange or patient urination/defecation).
An entire HD session was excluded from the analysis if the
session was interrupted more than once.

In our main analysis, the whole data set {Yj,k, Tk} of an HD
session was included for feature extraction if no adverse event
was registered for the session. On the other hand, for the HD
session with adverse events, only data preceding the first adverse
event were included for feature extraction, meaning the length
of HD was less than 4 hours. Because the time interval between
two adjacent records and the length of HD sessions vary,
regression analysis is challenging, and we need to include the

temporal features of the measured variables in the analyses for
classification. To this end, we derived the mean, standard
deviation of the mean, and coefficient of variance, as well as
the slope and R square of linear regression from the dialysis
and physiological measurements {Yj,k, Tk}. We also derived
the maximum, minimum, and mean of change rate (the
first-order derivative), as well as the second-order derivative of
venous pressure and transmembranous pressure as features for
analysis. A total of 84 features {Xh} (h=1-84), including those
from the raw measurements {Yj,k, Tk} and those derived from
the temporal aspect of the data as described above, were
extracted for each HD session (Multimedia Appendix 3). Feature
extraction of data sets was performed using the AWK program
(source code available in the format of .awk; Multimedia
Appendix 4).

As aforementioned, the dialysis data set {Yj,k, Tk} is recorded
once the values of venous pressure or transmembranous pressure
change. Therefore, the value of any measurement at the time
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Tp between two measured time stamps, Tk and Tk-1, can be
assigned as {Yj,k, Tp} = {Yj,k, Tk-1}. Thus, feature extraction of
the data in an HD session could be terminated at an arbitrary
time (Tp).

Outcome Labeling for Model Building
For outcome labeling, the HD sessions with one or more than
one adverse event were labeled as 1, and HD sessions with no
adverse event were labeled as 0. We also randomly relabeled
4221 HD sessions regardless of their true outcome as a negative
control set while kept the same 0 to 1 ratio as the experimental
set. A two-class classification model was built and evaluated
by four-fold cross-validation using Azure (Microsoft Inc). At
least three repeats were performed by introducing different
random numbers for each model building.

Selection for Top Performance Features
To pinpoint which features are more important than others in
predicting HD adverse events, we also selected and used key
features for model building and compared the results with that
by a total of 84 features. The selection of key features was
performed using MATLAB (MATrixLABoratory, MathWorks
Inc) (source code available in the format of .m; Multimedia
Appendix 5). A two-class classification model was built using
ensemble random undersampling boosted trees by four-fold
cross-validation. The score was given by summing up the
percentages of true positives and true negatives.

The key feature selection process started with selecting the top
feature according to the scores obtained from the model using
a single feature from the 84 features once at a time. Next, the
top two-feature combinations were selected from the two-feature
combination pool, which was established by combining the top
feature from the last step with each of the remaining 83 features.
The two-feature combinations that resulted in scores higher
than that of the top feature from the last step were kept for the
next step. Likewise, the top three-feature combinations could
be selected from the pool established by combining the top
two-feature combinations with each of the remaining 82 features
when the three-feature combinations scored higher than the
two-feature combinations. We repeated this procedure until the
top 20-feature combinations were selected. Features that most
frequently appeared in these 20-feature combinations were
defined as key features.

Ethics Approval and Consent to Participate
This study was approved by the Institutional Review Board of
National Yang-Ming University (N_105_0132) and the
Institutional Review Board of Changhua Christian Hospital
(CCH IRB No. 161005).

Results

Demographic Characteristics of the Study Participants
As of November 2017, we enrolled 108 patients. Multimedia
Appendix 6 shows the baseline characteristics of the 108 patients

at the beginning of the study. The mean age was 63.6 years, 60
(56%) patients were male, and the mean duration on dialysis
was 7.7 years. A total of 47 (44%) patients had diabetes mellitus,
69 (64%) patients had hypertension, 11 (10%) patients had
coronary artery disease, 12 (11%) patients had congestive heart
failure, 7 (7%) patients had a history of stroke, and 2 (2%)
patients had malignancy.

The list of intradialytic adverse events and the number of
occurrences are shown in Table 1. Four HD sessions had more
than three intradialytic adverse events, 19 HD sessions had three
adverse events, 106 HD sessions had two adverse events, and
276 HD sessions had a single adverse event. Altogether, there
were 406 HD sessions with adverse events out of 4221 total
HD sessions (Multimedia Appendix 7).

Performance of the Model for Prediction
To increase the outcome 1 to 0 ratios, wherein the session with
an adverse event is labeled as 1 and the session without an
adverse event is labeled as 0, we categorized the 27 adverse
events listed in Table 1 into three groups. The first group was
total events but excluded events of blood pressure elevation,
vascular access occlusion, and vascular access thrombosis. A
total of 323 HD sessions belonged to adverse event group 1.
The second group included muscle cramps, and there were 138
HD sessions in this group. The third group included blood
pressure elevation, and there were 108 HD sessions in this
group.

Group 1: All Events Except Blood Pressure Elevation
A two-class averaged perceptron was used for model building
with a learning rate of 20 and maximal iterations of 20. For the
84-feature model, the mean area under the curve (AUC) was
0.83 (SD 0.03), with an F1 score of 0.53, sensitivity of 0.53,
and specificity of 0.96 (Figure 1A and 1B curve a). Compared
with the negative control, (mean AUC=0.50, SD 0.04; F1=0.15;
Figure 1A curve b), the 84-feature model of the two-class
averaged perceptron could predict adverse events plausibly.
Other algorithms were also tested for the prediction. The mean
AUC obtained by two-class support vector machines (SVM)
was 0.83 (SD 0.02), with an F1 score of 0.55, sensitivity of
0.53, and specificity of 0.96. The results were similar to those
obtained by the averaged perceptron. Compared to averaged
perceptron and SVM algorithms, two-class logistic regression
and decision forest did not predict the adverse events well. The
mean AUC obtained by logistic regression was 0.82 (SD 0.02),
with an F1 score of 0.48, and the mean AUC obtained by
decision forest was 0.83 (SD 0.02), with an F1 score of 0.46.
Additionally, intrapatient partition and interpatient partition for
sampling did not show significant difference in prediction (mean
AUC=0.83, SD 0.03; mean F1=0.53, SD 0.02 vs mean
AUC=0.82, SD 0.04; mean F1=0.50, SD 0.06).
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Figure 1. Prediction of all intradialytic adverse events except blood pressure elevation. (A) Machine learning performance represented by receiver
operating characteristic (ROC) curves from 84 features (curve a, red), the top 21 features (curve c, green), all features but excluding ultrafiltration-related
features (curve d, blue), and the negative control (curve b, black). Each ROC curve shown here is the average of 12 simulated ROC curves. (B). Machine
learning performance represented by ROC curves is obtained from ultrafiltration-related features (curves e, f, g, h, i, j, and k) and from 84 features
(curve a, black). (C) Area under the curve (AUC) and F1 scores from different feature combinations for predicting all intradialytic adverse events. UF:
ultrafiltration.

Ultrafiltration rate and ultrafiltration volume are important
parameters for HD. However, our models indicated that
employing a single feature, such as the maximal value of
ultrafiltration volume (feature 78) or the mean value of
ultrafiltration rate changes (feature 77), cannot predict adverse
events properly (Figure 1B curves j and k). The model built by
the maximal value of ultrafiltration volume, defined as the
ultrafiltration volume recorded at the last time point, had an
AUC of 0.48 and F1 score of 0.15, which were similar to the
results of the negative control. On the other hand, the model
built by the mean value of ultrafiltration rate changes during
HD sessions had an AUC of 0.70 and F1 score of 0.28.
Combining two ultrafiltration-related features also failed to
predict adverse events (Figure 1B curve h). After up to six
ultrafiltration volume-related features (features 78-83) were
used for prediction, the AUC increased from 0.48 to 0.82, and
the F1 score increased from 0.15 to 0.46 (Figure 1B curve f).
The model with 14 ultrafiltration features (features 70-83) had
an AUC of 0.83 and F1 score of 0.52 (Figure 1B curve e).

Next, the 21 features that most frequently appeared in the
20-feature combinations were selected for the evaluation. The
two-class averaged perceptron model based on these top 21
performance features but skipping ultrafiltration-related features
showed a mean AUC of 0.82 (SD 0.02) and F1 score of 0.45
(Figure 1A curve c). The increase of one or two features did
not enhance the prediction significantly (23 top features model:

mean AUC=0.82, SD 0.02; F1=0.46). Compared with the model
based on all features but excluding ultrafiltration-related features
(AUC=0.81; F1=0.45; Figure 1A curve d; 70 features), the
results of the 21 top features model (without
ultrafiltration-related features) demonstrated that a quarter of
the total 84 features was sufficient to predict adverse events.

The 21 features were age, maximum transmembranous pressure,
minimum systolic blood pressure (SBP), minimum diastolic
blood pressure (DBP), minimum pulse pressure, minimum blood
flow rate, mean SBP, mean venous pressure, mean
transmembranous pressure, slope of linear regression of SBP,
slope of linear regression of DBP, slope of linear regression of
pulse pressure, slope of linear regression of pulse rate, slope of
linear regression of transmembranous pressure, standard
deviation of the mean of blood flow rate, R-squared of linear
regression of pulse pressure, and related parameters to the
second-order derivative of venous pressure (features 2, 5, 6, 8,
11, 14, 17, 20, 21, 26, 29, 31, 36, 47-52, 57, and 59) (Multimedia
Appendix 3).

Group 2: Muscle Cramps
The model, which was based on 14 ultrafiltration-related
features, had a mean AUC of 0.85 (SD 0.04) and F1 score of
0.45 (Figure 2 curve d) for predicting the occurrence of muscle
cramps, and the result is similar to that of the 84-feature model
(mean AUC=0.83, SD 0.04; F1=0.42; Figure 2 curve a) and
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better than that of the model built based on all features but
excluding ultrafiltration-related features (mean AUC=0.79, SD
0.04; F1=0.30; Figure 2 curve c). However, a single
ultrafiltration-related feature cannot predict cramps properly
(Figure 2 curves i and k). The combination of two

ultrafiltration-related features also failed to predict muscle
cramps (AUC=0.79 and F1=0.29 for features 70 and 77;
AUC=0.84 and F1=0.37 for features 78 and 83). Our results
demonstrated that ultrafiltration-related features contribute more
than other features to the prediction of muscle cramps.

Figure 2. Prediction of a specific intradialytic adverse event: muscle cramps. (A) Machine learning performance is represented by receiver operating
characteristic (ROC) curves from 84 features (curve a, red), all features but excluding ultrafiltration-related features (curve c, orange dot),
ultrafiltration-related features (curves d, e, f, i, k), and the negative control (curve b, black). (B) Area under the curve (AUC) and F1 scores from different
feature combinations for predicting muscle cramps. UF: ultrafiltration.

Group 3: Blood Pressure Elevation
The model, which was based on a total of 84 features, had a
mean AUC of 0.93 (SD 0.02) and F1 score of 0.41 for predicting
the occurrence of hypertension (Figure 3 curve a). Compared
with the model built based on 14 ultrafiltration-related features
(AUC=0.72; F1=0.22; Figure 3 curve c), our results

demonstrated that ultrafiltration parameters did not play
important roles in predicting intradialytic hypertension. Even
though the model based on 24 blood pressure–related features
had an AUC higher than 0.9 (AUC=0.92, SD 0.03; F1=0.38;
Figure 3 curve d), features other than blood pressure can further
contribute to an additional improvement in the F1 score.
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Figure 3. Prediction of a specific intradialytic adverse event: blood pressure elevation. (A) Machine learning performance represented by receiver
operating characteristic (ROC) curves from 84 features (curve a, red), blood pressure-related features (curve d, green), ultrafiltration-related features
(curve c, blue), and the negative control (curve b, black). (B) Area under the curve (AUC) and F1 scores from different feature combinations for predicting
blood pressure elevation. UF: ultrafiltration.

Consistency of the Predicted Probabilities of Adverse
Events Over Time
As shown in Figure 1, the time series features were collected
throughout the HD session, from the beginning of HD to the
time point right before the index adverse event or right before
the end of the HD session, which has no adverse event. In this
case, we defined the end of feature collection as 0 minutes if
this ending time point was right before the occurrence of the
index adverse event. In addition to 0 minutes, we also set the
cutoff ending time points of feature collection as 5, 10, 15, 20,
and 60 minutes before the occurrence of the adverse event to
evaluate the prediction accuracy. Machine learning for
predicting all intradialytic adverse events, except blood pressure
elevation, showed that features of the 0-minute cutoff led to the
best AUC and F1 score (AUC=0.83; F1=0.53) compared to
those learned from the features of earlier cutoff time points
(Figure 4A and 4B), even though AUC scores from the features
of the cutoff ending time points 5, 10, 15, and 20 minutes before
the index adverse event or before the end of HD sessions without
an adverse event were about 0.80 and their F1 scores were all
lower than 0.5. The results suggest that while the information
embedded in the 20-minute time window before the index
adverse event is valuable, the information embedded in the
5-minute time window before the index adverse event is more
influential for event prediction.

To further understand the cutoff ending time point dependence
of prediction accuracy, 500 HD sessions were randomly selected
to compare the prediction probabilities of adverse events
obtained from 84 features with cutoff ending time points of 0,
5, 10, 15, and 20 minutes before the index adverse event. As
shown in Figure 4C (red circles), five HD sessions possessed
strong consistency in the predicted probabilities of adverse

events using extracted features based on different cutoff ending
time points, and adverse events indeed occurred in these five
HD sessions. Since there should be approximately 40 HD
sessions developing adverse events among 500 randomly
selected HD sessions, the results suggest that at least one-tenth
of HD sessions with adverse events can be sighted as early as
20 minutes in advance and can be further confirmed by real-time
machine learning using features from subsequent cutoff ending
time points (Figure 4C).

Even though none of the 84 features contained explicit time
series information, the linear and differential analyses that
feature extraction employed may be affected by the length of
HD sessions. Therefore, we truncated the HD sessions with no
adverse events (negative ones) and compared the prediction
results with those from the untruncated ones. Since the average
length of HD sessions with adverse events (positive ones) was
3.3 hours, negative HD sessions were truncated and randomly
assigned endpoints (Tend) between 3 and 3.5 hours, yet the
endpoints of positive ones remained unchanged. The data set
{Yj,k, Tk} at endpoint Tend was defined according to the same
method used for {Yj,k, Tk} at arbitrary time Tp. Regarding the
results, the mean AUC was 0.89 (SD 0.019), F1 score was 0.55,
sensitivity was 0.52, and specificity was 0.97. Alternately, the
AUC was 0.86 with an F1 score of 0.55 when the endpoints
were assigned exactly at 3.3 hours. Compared to the original
results obtained from the untruncated negative HD sessions
with a duration of about 4 hours (AUC=0.83, F1=0.53,
sensitivity=0.53, and specificity=0.96), the prediction results
were better when the endpoints were set earlier. Indeed, the
AUC was 0.92, with an F1 score of 0.62, sensitivity of 0.61,
and specificity of 0.98, when the endpoints were randomly
assigned between 2.5 and 3.5 hours for negative HD sessions.
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Figure 4. Prediction performance for group 1 intradialytic adverse events using the features of different cutoff ending time points. (A) Machine learning
performance represented by receiver operating characteristic (ROC) curves from 84 features extracted from [Yj, Tk]HD terminated at different cutoff
ending time points as follows: one time point before an adverse event (noted as 0 minutes), and 5, 10, 15, 20, and 60 minutes before an adverse event
or before the end of the hemodialysis (HD) session if no adverse event. (B) Area under the curve (AUC) and F1 scores. (C) Probability of adverse event
occurrence in 500 randomly selected HD sessions. The red circle indicates the HD session with adverse events, and the predicted probabilities of adverse
events are all higher than 0.8 independent of the cutoff ending time point.

Discussion

Contributions and Principal Findings
Our findings indicate that algorithms combining linear and
differential analyses with two-class classification machine
learning predict intradialytic adverse events with high AUCs.
We attempted to identify features that contribute the most to
predicting all adverse events, except hypertension, (group 1)
from a total of 84 features extracted from [Yj, Tk]HD. Among
the top 23 features, only feature 76 and feature 82 were related
to ultrafiltration (the number of times that the ultrafiltration rate
changes and the linear regression slope of ultrafiltration volume).
After excluding these two ultrafiltration-related features, we
found that the remaining 21 features were sufficient for accurate
prediction with good discriminating power, with a slight
reduction in the AUC from 0.83 (84 features) to 0.82 (21
features). The model built by 14 ultrafiltration-related features
also had a good AUC of 0.83. Therefore, instead of including
all 84 features for model building, selecting the top 21
ultrafiltration-unrelated features or integrating a total of 14
ultrafiltration-related features can reduce computing load. Our
results also suggest that these two clusters of features (Figure
1A curve c and Figure 1B curve e) may embed similar factors
contributing to the onset of adverse events.

In our study, muscle cramp was an adverse event that occurred
most frequently during HD treatment. A muscle cramp is a
common adverse event that happens during HD therapy, with
a prevalence of 28% among all HD sessions [5,34]. Muscle

cramps result from ischemia of the skeletal muscle tissue,
indicating an early sign of hypotension, and it may lead to
premature discontinuation of HD sessions [35,36]. Tissue
ischemia during HD is positively related to the ultrafiltration
rate [5,37,38]. Indeed, the model built by 14
ultrafiltration-related features had an AUC of 0.85 for predicting
the occurrence of muscle cramps in this study. We excluded all
ultrafiltration-related features to test the prediction accuracy,
including ultrafiltration rate and ultrafiltration volume, and the
AUC reduced from 0.82 (84 features) to 0.79 (70 features),
indicating that ultrafiltration-related features are important but
not necessarily required to predict muscle cramps. The results
from machine learning revealed that ultrafiltration-independent
features contribute to predicting intradialytic muscle cramps as
well.

In general, symptomatic hypotension occurs in 20% to 30% of
dialysis sessions [6,39-43]. There are two major
pathophysiological mechanisms of intradialytic hypotension.
First, when plasma fluid removal through ultrafiltration exceeds
the rate of plasma refilling into the blood vessels, blood volume
reduces [5]. In the meantime, if the cardiovascular and
neurohormone systems fail to compensate for the acute vascular
volume depletion during ultrafiltration, hypotension occurs
[3,44-47]. Frequent episodes of intradialytic hypotension may
cause reduced ultrafiltration, inadequate “dry weight,” increased
preload, and impaired heart function that eventually leads to
more episodes of hypotension, thus creating a vicious cycle.
Meanwhile, frequent intradialytic hypotension disrupts dialysis
efficiency and efficacy. It is associated with higher morbidity
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and mortality [48-51], which partly contributes to the fact that
cardiovascular disease is the leading cause of morbidity and
mortality in HD patients [52]. Lin et al recently developed an
intelligent system to predict intradialytic hypotension [53].
However, our prediction models not only further precluded
ultrafiltration-related features but also examined overall
intradialytic adverse events instead of only focusing on the
hypotensive episode.

As shown in Multimedia Appendix 8, the top 16 features that
majorly contributed to predicting muscle cramps included patient
characteristics, venous pressure, transmembranous pressure,
ultrafiltration, blood flow rate, and pulse pressure. The minimal
value of venous pressure and the mean value of
transmembranous pressure were features that had the most hits
(20 and 17 hits, respectively). These top two features for
predicting muscle cramps were derived from dialysis machine
output parameters, indicating that there is a potential to integrate
our algorithm into the dialysis machine software to alert
clinicians and to adjust dialysis machine settings in advance.
Nevertheless, unlike prediction of all adverse events, for which
only two out of the top 23 features were related to ultrafiltration,
eight out of the top 16 features were related to ultrafiltration in
terms of predicting muscle cramps, indicating that
ultrafiltration-related parameters are important factors of muscle
cramps.

Compared with several two-class classification modules, such
as Bayes point machine, boosted decision tree, and SVM,
models built by two-class average perceptron had the best AUC
and F1 score. We also built models by deep learning (data not
shown), but the results from deep learning did not show a good
AUC and F1 score, possibly due to the limited number of our
HD data sets. As clinicians are now facing the new era of
artificial intelligence [54], the integration of computer science
and dialysis medicine could be regarded as the first step to

improve HD patients’ care quality comprehensively. Our study
demonstrated the feasibility of this integration. Even though
the limited number of data sets and imbalanced data outcomes
in our research hinder better prediction accuracy, it is anticipated
that increased data sets will further improve the AUC and F1
score. Moreover, integrating machine learning with the dialysis
machine and modifying algorithms in real-time by cloud
computing with accumulation of data sets could enhance
prediction performance.

Several questions may be answered if the size of the HD data
set is expanded in future studies. First, how early can we predict
adverse events? The consistency in the predicted probabilities
of adverse events using features based on different cutoff ending
time points could detect about one-tenth of HD sessions with
adverse events (Figure 4). We anticipate that an increase in the
number of HD sessions with adverse events for model training
can improve imbalanced data and possibly bring forward the
timing for the alert. Second, since most of the adverse events
took place in second-half HD sessions, whether the data sets of
second-half HD sessions are sufficient for prediction can be
further studied. Finally, if more HD sessions with adverse events
are recruited, we can build models for different adverse events
instead of grouping the events to reduce imbalanced data
outcomes.

Conclusion
In this study, a model of two-class classification was established
to predict intradialytic adverse events in quasi-real time, with
AUCs higher than 0.8. The consistency in the predicted
probabilities of adverse events obtained from the features
extracted in the ongoing HD process in real time could have
the HD session tagged for forthcoming adverse events. Such a
methodology implemented with local cloud computation could
warn clinicians to take necessary actions and adjust the HD
machine settings in advance.
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