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Abstract

Background: Traditional psychological theories are inadequate to fully leverage the potential of smartphones and improve the
effectiveness of physical activity (PA) and sedentary behavior (SB) change interventions. Future interventions need to consider
dynamic models taken from other disciplines, such as engineering (eg, control systems). The extent to which such dynamic models
have been incorporated in the development of interventions for PA and SB remains unclear.

Objective: This review aims to quantify the number of studies that have used dynamic models to develop smartphone-based
interventions to promote PA and reduce SB, describe their features, and evaluate their effectiveness where possible.

Methods: Databases including PubMed, PsycINFO, IEEE Xplore, Cochrane, and Scopus were searched from inception to May
15, 2019, using terms related to mobile health, dynamic models, SB, and PA. The included studies involved the following: PA
or SB interventions involving human adults; either developed or evaluated integrated psychological theory with dynamic theories;
used smartphones for the intervention delivery; the interventions were adaptive or just-in-time adaptive; included randomized
controlled trials (RCTs), pilot RCTs, quasi-experimental, and pre-post study designs; and were published from 2000 onward.
Outcomes included general characteristics, dynamic models, theory or construct integration, and measured SB and PA behaviors.
Data were synthesized narratively. There was limited scope for meta-analysis because of the variability in the study results.

Results: A total of 1087 publications were screened, with 11 publications describing 8 studies included in the review. All studies
targeted PA; 4 also included SB. Social cognitive theory was the major psychological theory upon which the studies were based.
Behavioral intervention technology, control systems, computational agent model, exploit-explore strategy, behavioral analytic
algorithm, and dynamic decision network were the dynamic models used in the included studies. The effectiveness of
quasi-experimental studies involved reduced SB (1 study; P=.08), increased light PA (1 study; P=.002), walking steps (2 studies;
P=.06 and P<.001), walking time (1 study; P=.02), moderate-to-vigorous PA (2 studies; P=.08 and P=.81), and nonwalking
exercise time (1 study; P=.31). RCT studies showed increased walking steps (1 study; P=.003) and walking time (1 study; P=.06).
To measure activity, 5 studies used built-in smartphone sensors (ie, accelerometers), 3 of which used the phone’s GPS, and 3
studies used wearable activity trackers.

Conclusions: To our knowledge, this is the first systematic review to report on smartphone-based studies to reduce SB and
promote PA with a focus on integrated dynamic models. These findings highlight the scarcity of dynamic model–based smartphone
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studies to reduce SB or promote PA. The limited number of studies that incorporate these models shows promising findings.
Future research is required to assess the effectiveness of dynamic models in promoting PA and reducing SB.

Trial Registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42020139350;
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=139350.

(J Med Internet Res 2021;23(9):e26315) doi: 10.2196/26315
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Introduction

In the past decade, there has been a widespread proliferation in
the use of digital technologies to deliver behavior change
interventions for health [1]. Given their ubiquity, smartphones,
in particular, have been used to improve a wide range of
health-related behaviors, including physical activity (PA) and
sedentary behavior (SB) [2,3]. Smartphones offer a host of
relevant functions, including computational capabilities, built-in
sensors (eg, accelerometers and GPS), and internet connectivity,
enabling users to run software apps and connect with third-party
sensors. Collectively, these features offer the potential for
delivering real-time, context-aware, and interactive health care
interventions [4].

Theory-based lifestyle interventions have been shown to be
more effective than nontheoretical approaches [5]. Thus, to
better leverage the potential of mobile technologies for health
behavior interventions (mobile health [mHealth]), appropriate
behavior change theories and models are needed. Such theories
and models need to guide the design and development of
complex smartphone interventions that can adapt rapidly in
response to various inputs [4]. To date, many smartphone-based
interventions to promote PA and reduce SB have relied
predominantly on psychological theory, including social
cognitive theory (SCT) and self-efficacy theory [2,6]. In a
seminal paper, Riley et al [4] argued that current behavioral
theories do not meet the need for a more dynamic and interactive
nature of digital behavior change interventions, such as
just-in-time adaptive interventions. These just-in-time adaptive
interventions are complex interventions that adapt throughout
time to an individual’s time-varying context (where) and status
(when) to meet an individual’s changing needs for support [7-9].
Riley et al [4] argued that existing psychological theories are
relatively static and linear and lack sufficient within-subject
dynamic regulatory processes. Furthermore, current
psychological theories have been used to tailor interventions
based on preintervention data rather than deliver adaptive
interventions.

To transform current theories into dynamic frameworks and
fully maximize the potential of smartphone technologies, Riley
et al [4] highlighted the need to incorporate theories from other
disciplines (eg, computer science and engineering) for the future
development of adaptive and dynamic digital behavior change
interventions. One such theory is the control systems
theory—derived from the control theory or cybernetics—which
is a general concept for the understanding of regulatory
processes [10] and has various applications in engineering,
mathematics, medicine, and economics, among others. Control

systems engineering explores how to influence and regulate a
dynamic system (eg, time-varying adaptive PA intervention)
[11,12]. Applying these dynamic models to health behaviors
offers the potential to better predict behavior and provide greater
insight into real-time changes, which, in turn, enable the
optimization and maintenance of behaviors [9].

Since the study by Riley et al [4] was published, it is unclear
how many smartphone-based interventions targeting PA and
SB have integrated nonpsycholgical theories to create more
dynamic models for digital behavior change interventions, what
adaptive factors have been considered, and whether these
dynamic interventions improve behaviors. Therefore, this review
aims to (1) quantify the number of studies that have used
integrated dynamic models to develop smartphone-based
interventions to promote PA and reduce SB, (2) describe their
features, and (3) evaluate their effectiveness, where possible.

Methods

Design
The systematic review was performed according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) statement [13] and was registered with
PROSPERO (International Prospective Register of Systematic
Reviews; CRD42020139350) [14].

Study Criteria
This review included studies that developed or evaluated digital
behavior change interventions targeting PA, SB, or both and
integrated psychological theories with dynamic theories and
computational models (eg, control systems engineering); were
either adaptive or just-in-time adaptive interventions that
included smartphones for delivery; involved human adult
participants; included randomized controlled trials (RCTs), pilot
RCTs, quasi-experimental, pre-post study designs; and were
published from 2000 onward.

Exclusion Criteria
Studies that used conventional theories of behavior change alone
without integration with dynamic theories or computational
models, case studies, protocols, conference abstracts,
dissertations, and reviews were excluded.

Definition
For this review, dynamic theories refer to dynamic models taken
from other disciplines, including engineering (eg, control
systems engineering) and computer science (eg, agent-based
modeling). The defining features of dynamic approaches are
that they are not static, nonlinear in nature, and capable of
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capturing complex and rapid changes in behaviors (ie,
time-variant) and their influential factors (ie, multivariate).
Furthermore, they are quantifiable, empirical, and testable
models.

Search Strategy
Databases (IEEE, PubMed, PsycINFO, Cochrane, and Scopus)
were searched from January 2000 to May 15, 2019, without
language restriction. Keywords (including Medical Subject
Headings terms) and phrases comprised 3 components (mHealth,
dynamic models, and activity), where “OR” and “AND”
Boolean operators were used for within and between component
searching (Multimedia Appendix 1). The wild-card term “*”
was used where necessary to potentiate sensitivity. Snowball
searching was performed using the included studies to identify
additional relevant research. The search results were exported
to a reference manager software (EndNote X9; Clarivate
Analytics) for review and extraction.

Screening Process and Data Extraction
Two researchers (JMV and RDK) independently screened and
reviewed the titles and abstracts to identify eligible studies. The
full text of the included papers was assessed based on the study
criteria. The following information was collected: author and
year, country, study design, duration of the study, recruitment
and setting, the population of the study, sample size, inclusion
criteria, participant characteristics, dynamic model, theory or
constructs integrated, and outcomes measured (SB and PA
behaviors).

Quality Assessment
Two researchers (JMV and RDK) assessed the risk of bias. The
Cochrane Handbook for Systematic Reviews of Interventions
[15] was used to evaluate randomized studies for selection bias,
detection bias, attrition bias, performance bias, and reporting
bias as the main sources of bias. Other sources of bias were also
considered. In addition, the Joanna Briggs Institute Critical
Appraisal Checklist for Quasi-Experimental Studies [16] was
used to assess nonrandomized studies. Where available,
protocols and trial registry data were found for risk of bias
assessment. Where multiple reports existed for the same study,
data were extracted from all reports and expressed together.
The authors were contacted for further information, as needed.

Data Analysis
The data were synthesized narratively to address the aims of
this review. Given the heterogeneity of the included studies in
terms of methodology, outcome measures, and statistical
approaches, a meta-analysis of effectiveness data was not
conducted. Instead, a synthesis without a meta-analysis
method—vote counting based on the direction of effects—was
used to synthesize data [17]. The effect direction is a
standardized binary metric based on the observed benefit
(positive) or harm (negative). Vote counting is based on effect
direction and compares the number of positive effects with the
number of negative effects on an outcome. An effect direction
plot is used for the visual representation of data and linking
narrative synthesis to the overall conclusion [18,19]. In this
review, the updated method of the effect direction plot is used
as outlined elsewhere [20]. Changes within the intervention arm
of controlled studies and changes from baseline in uncontrolled
studies were considered for judgment. PA outcomes including
light activity, walking (time and steps), moderate-to-vigorous
PA (MVPA), nonwalking exercise, and total PA time from 6
studies were grouped as PA health domains. For studies with
multiple PA outcomes, the effect direction was where 70% or
more of the outcomes reported a similar direction (positive or
negative). If less than 70% of outcomes showed a similar
direction, they were reported as conflicting findings or no clear
effect. A sign test was applied to test any evidence of an effect
across studies. A 2-tailed P value was then calculated to show
the probability of observing positive and negative findings for
the PA health domain.

Results

Overview
A total of 1087 study reports were identified after removing
duplicates. In addition, 9 studies were identified through a
manual search. A total of 76 research articles underwent a full
review, and 11 reports describing 8 studies were eligible and
included in this systematic review. The characteristics of the
included studies are summarized in Table 1. The inclusion
process and reasons for exclusion are shown in the PRISMA
flow diagram (Figure 1). The reasons for excluding 65 studies
(in full-text review) are provided in Multimedia Appendix 2
[21-85].
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Table 1. General characteristics of the included studies.

Participants’ characteristicsInclusion criteriaSample, nRecruitment set-
ting

Study design and
duration

CountryAuthor (year)

Not described60Indoor activity
settings (eg,
gyms)

Intervention develop-
ment; 8 weeks

ItalyBaretta et al
(2019) [86]

• People who did not
meet PAa guidelines

• Age (35-60 years)
• Female (35/60, 58%)

69CommunityPre-post single-arm
intervention; 8
weeks

New
Zealand

Direito et al
(2019) [87]
(other related
reference: Dire-
ito et al [88])

• Insufficiently active
healthy adults (either
those who did not meet
PA recommendations
or who intended to de-
crease sedentary behav-

• 17-69 years
• Owning an An-

droid phone

ior)
• Mean age 34.5 (SD

11.8) years
• Female (54/69, 78%)
• Mean BMI 25.6 (SD

4.95) kg/m2
• Ethnicity: New

Zealand European
(38/69, 55%)

Adults not meeting
federally recom-

10Community (via
advertisement)

Single-group mi-
crointervention; 16
weeks

United
States

Conroy et al
(2018) [12]

• Mean age 34.4 (SD
9.0) years

mended levels of
aerobic PA but had

• Female (9/10, 90%)
• Employed full time

(8/10, 80%)no contraindications
to PA • Parents (6/10, 60%)

• Single (5/10, 50%),
married (4/10, 40%), or
divorced (1/10, 10%)

• Education (6/10, 60%
with at least a bache-
lor’s degree)

• White (9/10, 90%),
Asian American (1/10,
10%), and none were
Hispanic or Latino

Adults aged 18-30
years at the time of

104Community (fly-
ers, posters, so-

3-arm quasi-experi-
mental; 12 weeks

The Nether-
lands

Middelweerd et
al (2020) [89]
(Other related

• Healthy young adults
• Mean age 23.4 (SD

3.0) yearsregistration, in pos-
session of a suitable

cial media, per-
sonal contacts,references: • Female (83/104,

79.8%)smartphone running
on Android or iOS,

and snowball
strategies)

Klein et al [90]
and Middel-
weerd et al
[91])

• Students (72/104,
69.2%)apparently healthy,

Dutch-speaking, and
signed the informed
consent form

• Mean BMI 22.8 (SD
3.4) kg/m2

• Previous experience
with PA apps (33/104,
31.7%)

Generally healthy,
insufficiently active,

20Nationally via
community adver-

Pre-post single-arm
intervention; 14
weeks

United
States

Korinek et al
(2018) [92]
(other related
references:

• Overweight and seden-
tary adults

40 to 65 years, BMI

25 to 45 kg/m2,

tising methods
(eg, email to stu-
dent listservs,

• Age (47 years)
• Mean BMI 33.8 (SD

6.82) kg/m2Freigoun et al
[93] and Martin
et al [22])

owned and regularly
used an Android
phone capable of

word-of-mouth,
and social media
ads)

• Female (18/20, 90%)
• Walked on average

4863 steps per dayconnecting to a Fit-
bit Zip via Bluetooth
4.0
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Participants’ characteristicsInclusion criteriaSample, nRecruitment set-
ting

Study design and
duration

CountryAuthor (year)

• Adult students and
staff

• Mean age 28.3 (SD
6.96) years

• Student (13/17, 76%)
• Female (8/17, 47%)
• All participants (low-

to-moderate PA)

Owned an Android
mobile phone, inter-
ested in fitness

17 (intervention=9;
control=8)

Advertisement
placed through-
out the university
campus

Pilot RCTb; 3 weeksUnited
States

Rabbi et al
(2015) [94]

• Adults with chronic
low back pain

• Mean age 41.1 (SD
11.3; range 31-60)
years

• Female (7/10, 70%)

People with a histo-
ry of chronic back
pain (≥6 months in
duration); willing to
use MyBehavior-
CBP; having some
reasonable level of
outdoor movement
(eg, traveling to and
from work); not be-
ing significantly
housebound; with a
basic level of mobile
phone proficiency;
aged between 18
years and 65 years;
and fluent in English

10Via the Wellness
Center and retiree
mailing lists from
Cornell Universi-
ty

Pilot Pre-post single-
arm intervention; 5
weeks

United
States

Rabbi et al
(2018) [95]

• Adult staff employees
• Small fraction had the

following conditions:
high blood pressure
(5/64, 8%), type 2 dia-
betes (5/64, 8%), hyper-
cholesterolemia (7/64,
11%)

• Married or cohabitating
(34/64, 56%)

• White or non-Hispanic
(29/64, 45%)

• Full-time job (45/64,
70%)

• Mean age 41.1 (SD
11.3) years

• Female (53/64, 83%)

Staff member, in-
tended to be physi-
cally active in the
next 10 weeks; own
an iPhone 5s or
newer; willing to
keep the phone in
the pocket during
the day; willing to
install and use the
study App; able to
read and speak En-
glish

64 (intervention=34;
control=30)

Email announce-
ment; university
campus

RCT; 10 weeksUnited
States

Zhou et al
(2018) [96]

aPA: physical activity.
bRCT: randomized controlled trial.
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Figure 1. Flow of studies. PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses [13].

General Description of the Studies
A total of 5 studies were conducted in the United States
[12,92,94-96], 1 in Italy [86], 1 in New Zealand [87,88], and 1
in the Netherlands [89-91]. Of these, 3 studies used pre-post
intervention designs [87,92,95], 2 were RCTs [94,96], 1 was a
3-arm quasi-experimental study [89], 1 was a single-group
microrandomized trial [12], and 1 was development study [86].
The duration of the studies ranged from 3 weeks to 6 months.
A total of 5 studies recruited participants from community
settings [12,86,87,89], 1 from the university campus and
community [92], 2 from the university only [94,96], and 1 from
a university wellness center and retiree mailing list [95].
Populations included insufficiently active and sedentary healthy
adults, healthy and highly educated young adults, overweight
and sedentary adults, adults with chronic low back pain, and
students and staff from a university setting. Sample sizes ranged
from 10 to 104 participants in the intervention evaluation studies
and 60 in the development study. Participants were
predominantly women in all studies except one [94]. The general
characteristics of the included studies are summarized in Table
1.

Theoretical Premise
SCT was the predominant psychological theory used
[12,89,92,94,95]. A study incorporated self-efficacy theory [86],
with a dynamic decision network—a sequence of simple
Bayesian networks used to describe probabilistic computational
models [97]. A study used an integrated behavior change model
incorporating 33 behavior change techniques (eg,
self-monitoring, goal setting, and review of goals) combined
with the behavioral intervention technology model [87]. Two
studies incorporated control systems engineering models

integrated with SCT [12,92]. In a study, SCT, self-regulation
theory, and health action process approaches were integrated
with a computational agent model—an intelligent reasoning
system [89]. Learning theory, the Fogg behavior model, and
SCT were combined with the exploit-explore strategy in 2
studies [94,95]. Rather than using a theoretical framework, a
study integrated a single behavior change technique (goal
setting) with a behavioral analytic algorithm [96].

Featured Description of Interventions
All studies promoted PA, whereas 4 studies also involved
interventions for reducing SB [12,87,94,95]. Few studies
explicitly stated the inclusion of behavior change techniques
[87,89,92] as part of their intervention, 2 of which included a
range of behavior change techniques [87,89]. Conroy et al [12]
did not describe specific behavior change techniques but stated
using intervention messages, which targeted key SCT constructs
(eg, outcome expectancies, risk awareness and planning,
efficacy-building affirmations, social support, and evoking
anticipated reward or regret). The most common behavior
change technique used across all studies was goal setting
[86,87,89,92,96]. In terms of PA, 3 studies [87,92,96] included
daily goal setting to achieve PA targets, whereas 1 study
promoted weekly goal setting [89]. In a study, weekly step goals
were initially established and then broken down into daily
short-term goals [86]. Only 1 study set goals for SB [87]. To
help participants set PA and SB goals, 5 studies used past
activity performance [86,87,89,92,96], whereas 2 also took into
account individuals’perceptions of self-efficacy [86,92]. Instead
of setting goals, 2 studies focused on habit formation by
providing suggestions from an individual’s past frequent and
infrequent activities after manual and automatic logging and
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clustering of past activities [94,95]. Habit formation was also
accounted for in another study [87]. For SB, Direito et al [87]
encouraged participants to replace periods of extended sedentary
time with light-intensity walking and standing, whereas Conroy
et al [12] included sit less and move more messages. Two other
studies by Rabbi et al [94,95] targeted both SB and standing by
promoting short walks. None of the studies measured standing
as an outcome.

Monitoring and feedback on behavior was another widely used
behavior change technique [86,87,89,92,94,96]. All 6 studies
used visual and numerical feedback on behavior, whereas 2
used biofeedback to help monitor behavior [86,94]. Four studies
included a reward in the form of social rewards [19,20,94] and
material incentives [17]. In terms of the type of intervention, 2
studies used push notification messages [87,89], 3 used push
notifications to present step goals or minutes of activity goals
(eg, walking) [86,92,96], 2 had in-app suggestions selected from

frequent and infrequent past activities [94,95], and 1 used text
messages [12].

In total, 7 studies used mobile apps, 6 of which ran on Android
[86,87,89,92,94,95] and 1 on iPhone operating systems (iOS)
[96]; 1 study did not mention the operating system used [12].
Four studies including TODAY, MyBehavior, MyBehaviorCBP,
and CalFit [87,94-96] used built-in smartphone sensors (ie,
accelerometers) to measure activity, and 3 studies used wearable
activity trackers (Fitbit One, Fitbit Zip, and ActivPAL3)
[12,89,92]. A heart rate sensor was used to measure activity in
the study by Baretta et al [86]. Furthermore, 3 studies used the
phone GPS to identify geo-locations [89,94,95]. Some studies
used built-in phone GPS and apps to capture and account for
environmental contexts such as location (eg, workplace)
[87,89,94,95], weather [89,92], and weekend or weekday
[12,92]. The JustWalk intervention incorporated psychological
states (eg, stress) and measures of busyness and sleep quality.
Further details have been provided in Table 2.
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Table 2. Features of smartphone-based physical activity intervention development or evaluation.

ResultsTechnology featureOther out-
comes

Primary
outcome

Theoretical
premise

ControlInterventionAuthor
(year)

N/APA mea-
sured by

Self-efficacy
theory and dy-

N/AcWeekly tailored PAa

goals

Baretta et
al (2019)
[86]

• N/A• Android app:
Muoviti (visualiz-
ing the heart-beat
rate graph of the

HRd sen-
sor, self-ef-

namic deci-
sion network• Starting goal

(first week): 120 last training ses-ficacy be-
liefs

METb sion, the curves of
weight and waist-• Long-term goal:

600 METs per line variations
week of PA week by week, the

• Weekly goals
broken down in-

burned calories
graph, session by

to daily goals session, and the
• Factors not con-

sidered in the in-
percentage of vig-
orous activity with

tervention devel- respect to moder-
opment but pro- ate activity)
posed for the
next study: • Other: HR wrist-

bands (MioAlphaworking hours,
time of the day, and PulseON)
day of the week,
health and ill-
ness, weather,
etc

Pilot-test-
ing the TO-

DAYf app

Test the ac-
ceptability
and feasibil-
ity of just-

Intervention
mapping tax-
onomy to
identify behav-

N/ADaily individualized
and adaptive PA and

SBe goals:

Direito et
al (2018
and 2019)
[87,88]

• TODAY app: low-
effort and pleasant
(54.3%), provides
guidance on
changing activity

• Android apps: Art
of Living app and
TODAY app. Oth-
er: built-in phone
sensors for SB and• Daily activities

(eg, transport to
in-time
adaptive in-

ior change
techniques profile (52.6%),activity (ie, ac-

or from work, positively framedcelerometer)tervention(eg, self-moni-
PA at work) messages (64.4%),on PA and

SB
toring, goal
setting, or re-
view of goals)

• Light-intensity
activity to re-
place SB (eg,

the app sustained
interest over the 8
weeks (28.8%)from litera-

walking to a col- ture. Integrat- • Most favorable
behavior changeleague’s desk

rather than call
ed behavior
change model techniques for the

or email, stand users (goal setting,constructs and
up while on the discrepancy be-behavioral in-
phone) tween current be-tervention

• Leisure-time
moderate-to-vig-

havior and goal,
feedback on behav-

technology;
33 behavior

orous PA (eg, ior, instruction onchange tech-
cycling) how to performniques were

included• Daily goals, visu-
al and numerical

the behavior, and
behavior substitu-

feedback on past tion)
day and histori- • Only significant

improvement wascal data, tips or
suggestions, info- occurred on light
graphics, videos, PA (see the results
and links, fre- for statistics)
quently asked
questions, re-
minders, and
push notifica-
tions

• Context: work-
place (location)
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ResultsTechnology featureOther out-
comes

Primary
outcome

Theoretical
premise

ControlInterventionAuthor
(year)

• (Proof-of-concept
study) 50% of the
sample: more pro-
nounced behav-
ioral responses to
text messages on
weekends than
weekdays; 50%
had similar week-
end or weekday
responses; 50% of
responders in-
creased stepping
time in response to
“move more”
messages, and
50% increased
stepping time in
response to “sit
less” messages

• No app or text
message

• ActivPAL3 (activ-
ity tracker)

N/AStepping
time

Social cogni-
tive theory
and control
systems engi-
neering

N/AFive daily text mes-
sages (between 8 AM
to 8 PM). Three mes-
sage types (move
more, sit less, general
facts or trivia [unrelat-
ed to PA or SB]).
Message receipt was
confirmed with a re-
ply. Factors: context
(weekday and week-
end)

Conroy et
al (2018)
[12]

• No significant in-
tervention effects
were found for the
Active2Gether-full
and Active2Geth-
er-ight conditions
on levels of PA
compared with the
Fitbit condition:
larger effect size
for Active2Geth-
er-ight (β=3.1,
95% CI −6.66 to
12.78, for minutes
of moderate-to-
vigorous PA;
β=5.2, 95% CI
−1334 to 1345, for
steps). Smaller ef-
fect size for Ac-
tive2Gether-full
(β=1.2, 95% CI
−8.7 to 11.1, for
minutes of moder-
ate-to-vigorous
PA; β=−389, 95%
CI −1750 to 972,
for steps)

• Android app: Ac-
tive2Gether

• Fitbit One (for
self-monitoring
only), ActiGraph
wGT3XBT and
GT3X+ (activity
trackers)

N/ATo increase
the total
time spent
in moder-
ate-to-vig-
orous PA

Social cogni-
tive theory,
self-regulation
theory and
health action
process ap-
proach and
computational
agent model

N/AWeekly moderate-to-
vigorous PA goals: 30
minutes of moderate
PA for at least 5 days
a week or 20 minutes
of vigorous PA for 3
days a week

Contexts (location,
weather, occupation)

Connected friends

(Facebook APIg), if 2
participants of the in-
tervention are connect-
ed

Up to 3 messages a
day

Middel-
weerd et al
(2020)
[89], Klein
et al (2017)
[90], and
Middel-
weerd et al
(2018) [91]

• Android app: Just-
Walk

• Fitbit Zip (activity
tracker)

• Other: web-based
mobile question-
naire

N/AFeasibility,
daily steps

Social cogni-
tive theory
(particularly
self-efficacy
construct),
goal setting
and control
systems engi-
neering (sys-
tem identifica-
tion)

N/AKorinek et
al (2018)
[92] and
Freigoun et
al (2017)
[93]. More
informa-
tion is
available in
Martin et al
(2018) [22]
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ResultsTechnology featureOther out-
comes

Primary
outcome

Theoretical
premise

ControlInterventionAuthor
(year)

• Linear mixed ef-
fect model: each
individual walked
below 5000 steps
at baseline with
significant varia-
tion; mean inter-
cept value 4863.3
steps (SD
1838.42),
t98=10.49; P<.001.

• Daily steps in-
creased by 2650
steps per day on
average from day
0 to day 16 (cycle
0 to cycle 1);
t98=6.54, P<.001.

• Quadratic mixed
effect model: each
individual walked
roughly 5000 steps
at baseline with
significant varia-
tions; mean inter-
cept value 5301.5
steps (SD
1862.04);
t98=11.29, P<.001.

• Daily steps in-
creased by 1500
steps per day on
average from cy-
cle 0 to cycle 1
(1505 steps;
t=5.52, P<.001);
however, daily
steps decreased by
247.3 steps per
day on average
from day 0 to day
16 (cycle 0 to cy-
cle 1); t98=-5.01,
P<.001

• High adherence
was observed (on-
ly 10 days of hav-
ing missing step
data; only 40 days
of nonwear; <500
step counts). Com-
mon problem:
sync lag with Fit-
bit

Daily step goal:

• Pseudorandomly
assigned daily
step goal (doable
[based on base-
line median daily
step] and ambi-
tious [ie, up to
2.5×baseline me-
dian])+ rewards
(points>Amazon
Gift Cards)

• Six 16-day cy-
clesh (cycle 0
[baseline], cycles
1 to 5 [step goals
assigned])

• Step goals
prompted every
morning+there
were daily,
weekly and
monthly surveys

• Morning and
evening EMAi
assessed con-
structs including
(eg, confidence
in achieving the
goal, predicted
busyness for that
day, previous
night’s sleep
quality)

• Factors consid-
ered: perceived
stress, perceived
busyness, weath-
er information,
sleep quality

• Android app: My-
Behavior; other:
phone accelerome-
ter and GPS

N/AAdherence,
acceptabili-
ty, behav-
ior change

Learning theo-
ry, Fogg be-
havior model,
social cogni-
tive theory,
and exploit-
explore strate-

gyj

Nonpersonal-
ized generic
recommenda-
tions

Rabbi et al
(2015) [94]
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ResultsTechnology featureOther out-
comes

Primary
outcome

Theoretical
premise

ControlInterventionAuthor
(year)

Daily personalized
context-sensitive sug-
gestions (PA and sta-
tionery). Manual and
automatic logging to
track activity and user
location. Start of each
day: 10 in-app activity
suggestions (90%
users’ most frequent
activities [exploit];
10% from users’ infre-
quent activities [ex-
plore]). MyBehavior
app included both PA
and dietary interven-
tions

• Intervention partic-
ipants more intend-
ed to follow per-
sonalized sugges-
tions than control
(effect size=0.99,
95% CI 0 to
1.001; P<.001).
Most intervention
participants (78%)
had a positive
trend in walking
behavior (also in-
creased daily
walking by 10
minutes during the
intervention),
whereas most con-
trol participants
(75%) showed a
negative trend.
The users found
MyBehavior app
suggestion very
actionable and
wanted to follow
them

• Intervention condi-
tion increased dai-
ly walking by 4.9
minutes (β=4.9;
P=.02) significant-
ly. Exercise time
was increased
nonsignificantly
by 9.5 minutes
(β=9.5; P=.31).
MyBehaviorCBP
was opened 3.2
times a day (on
average). MyBe-
haviorCBP sugges-
tions were per-
ceived as low-bur-
den (β=.42;
P<.001). Back
pain was reduced
in the intervention
condition, but not
significantly
(β=−.19; P=.24).
Participants sug-
gested considera-
tion of weather,
weekend or week-
day, and level of
pain for future in-
terventions

• Android app: My-
BehaviorCBP;
other: phone ac-
celerometer and
GPS

Qualitative
feedback

Use, accept-
ability, ear-
ly efficacy

Learning theo-
ry, Fogg be-
havior model,
social cogni-
tive theory
(self-efficacy)
and exploit-
explore strate-

gyj

Static sugges-
tions

Context-sensitive sug-
gestions (PA and sta-
tionery). Manual and
automatic logging to
track activity and user
location. In-app sug-
gestions (80% users’
most frequent activi-
ties [exploit]; 20%
from users’ infrequent
activities [explore]);
total time for each se-
lected activity must
not exceed 60 min-
utes. End of day re-
ward score

Rabbi et al
(2018) [95]

• iOS app: CalFit;
other: built-in
health chip in the
iPhone

Change in
daily step

Goal setting
and behavioral
analytics algo-

rithmk

Steady step
goals (10,000
per day)

Zhou et al
(2018) [96]
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ResultsTechnology featureOther out-
comes

Primary
outcome

Theoretical
premise

ControlInterventionAuthor
(year)

• Mean daily step
count was de-
creased by 390
steps (SD 490) per
day in the interven-
tion versus 1350
steps (SD 420) per
day in the control
from baseline to
10 weeks (net dif-
ference: 960 steps,
P=.03)

Step goal
attainment,
weight,
height, bar-
riers to be-
ing active
quiz,

IPAQl-short
form

Daily step goals (real-
time, automated adap-
tive). Push notifica-
tions via app. Daily
notifications at 8 AM.
If the goal was accom-
plished before 8 PM,
a congratulation notifi-
cation was sent.

aPA: physical activity.
bMET: metabolic equivalents.
cN/A: not applicable.
dHR: heart rate.
eSB: sedentary behavior.
fTODAY: Tailored Daily Activity.
gAPI: application programming interface.
hStep goals did not increase between cycles.
iEMA: ecological momentary assessment.
jGrounded in artificial intelligence and a subcategory of a broader decision-making framework called multiarmed bandit, which stems from probability
theory.
kBehavioral analytics algorithm uses machine learning to build a predictive model–based on historical and goal steps for a particular person and then
uses this estimation to generate challenging yet realistic and adaptive step goals based on a predictive model that would maximize the physical activity
in the future.
lIPAQ: International Physical Activity Questionnaire.

Effectiveness of Interventions

Narrative Synthesis of Individual Studies
A total of 6 studies reported on the effectiveness of the
intervention [87,89,92,94-96]; the details are presented in Table
1. The intervention by Direito et al [87] increased the time spent
in light and moderate-to-vigorous intensity PA and total PA
time; however, only light-intensity PA achieved statistical
significance from pre- to postintervention assessments (adjusted
mean difference 2.2 minutes, SE of difference 1.0; 95% CI
0.78-3.56; P=.002). A small, but statistically nonsignificant,
decrease in SB was observed (adjusted mean difference −9.5
minutes, SE of difference 7.5; 95% CI 19.98-1.05; P=.08). The
Active2Gether intervention involved 3 arms of
Active2Gether-full (tailored coaching messages, self-monitoring,
and social comparison), Active2Gether-light (self-monitoring
and social comparison), and Fitbit app control condition
(self-monitoring). The Active2Gether did not show an effect
on PA levels (average daily minutes of MVPA and step counts)
compared with the Fitbit app (β=1.2, 95% CI −8.7 to 11.1,
P=.81, for minutes of MVPA; β=−389, 95% CI −1750 to 972,
P=.57, for steps and β=3.1, 95% CI −6.66 to 12.78, P=.53, for
minutes of MVPA; β=5.2, 95% CI −1334 to 1345, P=.99, for
steps, for the full and light app, respectively). The JustWalk
intervention increased the average daily steps by 2650 steps in

16 days (t98=6.54; P<.001). This effect decreased from day 16
to day 96 (average daily change −109.1 steps; t98=−1.42; P=.15),
suggesting acceptable maintenance. Users of the MyBehavior
app walked an average of 10 minutes per day more from the
first to the third week. There was no change in the control group
(between-group differences were statistically significant (t15=2.1;
P=.06; 95% CI −0.23 to 19.05; d=0.9). In the second study by
Rabbi et al [95], MyBehaviorCBP was associated with an
increased daily walking time of 4.9 minutes (β=4.9; P=.02; 95%
CI 0.8-0.89; d=0.31) among adults with chronic back pain.
Nonwalking exercise time also increased by 9.5 minutes, but it
was not statistically significant (β=9.5; P=.31; 95% CI −6.3 to
21.8; d=0.03). The Cal Fitness trial showed that the mean daily
step count decreased in the 10-week intervention for both the
intervention (mean −390, SD 490) and control group (mean
−1350, SD 420; net mean difference 960; 95% CI 90-1830;
P=.03). The Conroy et al [12] study was conducted to determine
proof-of-concept and did not report effectiveness data (for
descriptive results, see Table 2).

Effect Direction Plot
This study included 6 interventional studies. Figure 2 shows
the effect direction plot for the PA health outcome domain; 5
of 6 interventions reported a positive effect direction, with 1
study showing a negative effect on PA health. The P value for
the sign test for PA health was P=.21.
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Figure 2. Effect direction plot summarizing the direction of impact from smartphone-based physical activity interventions.

Risk of Bias Assessment of the Included Interventions
Judgments on the risk of bias for the 2 RCTs and 4
quasi-experimental studies are presented in Multimedia
Appendix 3 [12,87,89,92,94-96]. Overall, the included studies
were of relatively high quality. The 2 RCTs [94,96] were judged
to be low risk in all domains except one (ie, blinding of
participants and personnel). All included quasi-experimental
studies lacked a control group because of a pre-post [87,92,95]
or single-group intervention [12] design. These interventions
did not introduce additional risks to the remaining eight
domains.

Discussion

Principal Findings
This review aims to quantify the number of studies that have
integrated traditional psychological theories with dynamic
computational models in the development or evaluation of
smartphone interventions to reduce SB and promote PA.
Although we showed that a few studies—mainly pilot,
feasibility, and proof-of-concept—have taken an integrated
dynamic approach, there was no consensus on what dynamic
model–based approach should be used and how. Overall, it was
difficult to draw a conclusion on the effectiveness of the
included smartphone interventions; however, preliminary
findings on PA are promising, less so for SB. Moreover, an
effect direction plot was used to illustrate the direction of the
intervention effect on PA outcomes, regardless of their statistical
significance.

This review was driven in part by a paper by Riley et al [4] who
argued that to truly capture the benefits of smartphones to
deliver real-time and adaptive interventions, they need to adopt
principles from other disciplines, such as control systems
engineering, and integrate them with traditional health behavior
theories. In total, we found only 8 studies that had adopted this
notion, most of which used SCT for integration, with
considerable complexity in the approaches used, ranging from

a basic use of behavioral analytic algorithms to a more
sophisticated approach using control systems.

Advancements in smartphone technology have enabled the
collection of intensive contextual and longitudinal (time-variant)
data, which facilitate the delivery of automated, real-time, and
adaptive behavior change interventions such as just-in-time
adaptive interventions. These features permit the testing of
specific intervention components (eg, behavioral messaging
comprising behavior change techniques). Control systems appear
to offer an excellent fit for the development of adaptive
smartphone interventions. It explores ways to influence a
dynamic system (eg, time-varying adaptive PA intervention)
and how to regulate it [11,12]. In other words, control systems
engineering provides a dynamic approach to designing tailored
interventions that adapt over time and are based on real-time
data (ie, intensive longitudinal data) [98]. Despite the variability
in the application of dynamic models outlined in this review,
existing evidence suggests that their integration with traditional
behavior change and psychological theories offer exciting
opportunities to better understand human behavior (eg, SB and
PA), identify patterns of behavior, and optimize individually
adapted behavior change interventions.

Few of the included studies evaluated the effectiveness of the
interventions, and small effects were observed on PA and SB.
Possible reasons for the small effect sizes may have included
inappropriate design (nonrandom allocation) [89], lack of
exposure to automated intervention because of technical
problems [89], use of nonpersonalized behavioral interventions
[94], lack of participant engagement with the intervention [87],
and insufficient inclusion of behavior change techniques [96].
Moreover, a binary sign test conducted in this review attempts
to provide additional information and contribute to transparency
in interpreting the effect direction. However, this should be
interpreted carefully, as the small number of studies may have
underpowered the test.

Most of the studies included in the review focused on PA,
whereas only a few targeted SB; none assessed standing as a
distinct outcome. Moreover, most smartphone-based SB and
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PA interventions used built-in smartphone accelerometers and
sensors as a tool to capture individual behaviors to inform
behavioral interventions (ie, step counts were used to help
participants set goals and monitor progress or provide activity
suggestions) [87,94-96].

The benefits of smartphone interventions include the ability to
collect and measure contextual factors (eg, location, weather,
and emotional or psychological states), which could be used to
personalize behavior interventions [99]. Existing research
evidence has shown that contextually aware reminders increase
the effectiveness of mHealth PA interventions [21,100].
Furthermore, leveraging contextual information in PA
interventions enables the triggering of more frequent reminders
without annoying the individual receiving the reminder, and
these types of interventions are considered more acceptable
[100]. Despite these proposed benefits, most of the included
studies lacked an assessment of contextual factors. A likely
reason for the lack of contextual factors in the reviewed studies
is the technical challenges, such as system requirements. For
example, high battery consumption and low localization speed
by a built-in smartphone GPS compromise mobile app
performance [101]. Another important reason might be the
privacy implications for smartphone users [102]. Privacy
breaches are most probable when context-sensitive information
such as location is monitored [103]. Moreover, people generally
refuse to be monitored for where they go or what they do [104].
A limitation of using native smartphone sensors is that they do
not provide research-grade precision for measuring PA and SB.
Commonly used accelerometers (eg, built-in smartphone
accelerometers and Actigraph GT3X) measure SB by focusing
on periods where the device records activity counts below a
certain cutoff point, such as less than 100 counts per minute
[105]. This leads to the miscategorization of SB [106]. Although
postural devices (inclinometers) such as activPAL have excellent
accuracy in measuring SB [107], they require proprietary
software (activPAL Professional Research Edition, PAL
Technologies) to process and collect the data and thus have low
utility for real-time interventions. Finally, as highlighted above,
none of the included studies assessed standing as an outcome,
despite 3 studies promoting standing in their intervention
messages [87,94,95]. This might be explained by the inability
to measure standing in real time for a dynamic intervention
purpose and limited evidence advocating standing as a distinct
activity that brings health benefits. However, short-term and
small-scale studies that support standing are emerging. In a
lab-based study, breaking up every 30 minutes of sitting by 5
minutes of standing was shown to reduce postprandial blood
glucose (34% reduction) compared with prolonged sitting in
postmenopausal women [108]. Moreover, an office-based study
has shown that an afternoon of standing reduced postprandial
glucose (43% reduction) compared with sitting while performing
computer work [109].

The included interventions comprised pre-post, RCT, and 3-arm
quasi-experimental designs. These commonly used experimental
designs are unable to assess rich context and time-intensive
data. For example, RCTs do not provide information on the
particular time when the intervention had an effect and the
moderators that affected the behavior change [110]. In fact,

RCTs typically consider the overall impact of an intervention
package on behavior or health outcomes, not specific
components of that intervention. Other study designs, such as
factorial designs, are capable of investigating the effects of each
intervention component and the interactions between
components and the dosing of the intervention. However, they
are not sufficient to delineate when the intervention was most
effective and what moderators influenced the intervention [110].
A microrandomized trial may address these design limitations.
The microrandomized trial is a novel experimental design to
determine the optimal delivery of just-in-time adaptive
interventions [110]. A key advantage is that microrandomized
trials not only assess the effect of specific intervention
components but also changes in effects over time and
moderators, including contextual and psychological factors
[110]. Microrandomization can help elucidate potential causal
relationships between each randomized intervention feature and
proximal effects (what happens in a limited time window, for
example within 1 hour, following a randomized intervention)
and allow assessment of time-varying contextual and
psychological factors moderating those proximal effects [110].

Most of the included studies lacked comprehensive incorporation
and testing of behavior change techniques, although they were
theory-based. The precise specification of behavior change
techniques—which are active ingredients of behavior change
interventions and specification of intervention features of PA
(eg, mode of delivery and frequency)—help provide
accumulative evidence for effective and replicable interventions
[111]. Smartphone-based interventions undertaking dynamic
approaches with a proper experimental design (ie,
microrandomized), while testing various behavior change
techniques, are expected to provide more robust evidence than
traditional theory approaches.

Limitations and Strengths
A limitation of this review is the heterogeneity in the reported
effectiveness data that prevented a pooled meta-analysis. Other
limitations include the small sample size and short duration of
the included interventions and nonrandomized study designs.
Moreover, women exceeded men in most studies, and all studies
involved adult populations, which might limit the
generalizability of the findings. A key strength of this review
is that it focuses on the integration of dynamic models in
smartphone-based PA and SB studies, as such dynamic models
fit best with mobile technologies. Another strength is the use
of the effect direction plot to present the direction of the
effectiveness results. This methodology is superior to narrative
synthesis, as it helps with the overall interpretation of the
findings. Future studies, in the context of SB and PA behaviors,
are suggested to incorporate and assess the effect of relevant
environmental and internal contextual moderators, use
computational models, and investigate SB, in particular, as there
is a significant evidence gap.

Conclusions
In conclusion, despite the recommendation for integrating
dynamic models such as control systems to better harness the
potential of mobile technologies, this review showed that few
studies have actually adopted this approach to promote PA and
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reduce SB. To some extent, this research gap may be because
of the complex and multifaceted nature of dynamic models,

such as control systems, in integrating adaptive contexts and
real-time measurement of outcomes.
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