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Abstract

Background: Advancing the use of genomic data with routinely collected health data holds great promise for health care and
research. Increasing the use of these data is a high priority to understand and address the causes of disease.

Objective: This study aims to provide an outline of the use of genomic data alongside routinely collected data in health research
to date. As this field prepares to move forward, it is important to take stock of the current state of play in order to highlight new
avenues for development, identify challenges, and ensure that adequate data governance models are in place for safe and socially
acceptable progress.

Methods: We conducted a literature review to draw information from past studies that have used genomic and routinely collected
data and conducted interviews with individuals who use these data for health research. We collected data on the following: the
rationale of using genomic data in conjunction with routinely collected data, types of genomic and routinely collected data used,
data sources, project approvals, governance and access models, and challenges encountered.

Results: The main purpose of using genomic and routinely collected data was to conduct genome-wide and phenome-wide
association studies. Routine data sources included electronic health records, disease and death registries, health insurance systems,
and deprivation indices. The types of genomic data included polygenic risk scores, single nucleotide polymorphisms, and measures
of genetic activity, and biobanks generally provided these data. Although the literature search showed that biobanks released data
to researchers, the case studies revealed a growing tendency for use within a data safe haven. Challenges of working with these
data revolved around data collection, data storage, technical, and data privacy issues.

Conclusions: Using genomic and routinely collected data holds great promise for progressing health research. Several challenges
are involved, particularly in terms of privacy. Overcoming these barriers will ensure that the use of these data to progress health
research can be exploited to its full potential.

(J Med Internet Res 2021;23(9):e15739) doi: 10.2196/15739
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Introduction

Background
The progression of genomics in the last few decades has been
remarkable. Since 2001, when the Human Genome Project
mapped and sequenced virtually every gene in the human
genome, genetic sequencing technology has advanced rapidly
in both the public and private domains. Next-generation
sequencing costs have plummeted by almost 100%, and research

opportunities have grown exponentially as a result [1]. For
example, a simple search in the medical database, PubMed,
shows that research on genomics has more than quadrupled
since 2000, from around 340,000 published articles on this topic
growing to 1.5 million by 2020. This increase has translated
into quicker diagnoses, better outcomes, and more effective
health care for patients [2-4]. Great strides have been made in
cancer research, for example, where patients are now being
treated according to their own or the tumor’s genomic data [5].
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Being able to use genomic data in conjunction with routinely
collected data holds even greater potential to advance knowledge
by including factors wider in scope. Precision medicine requires
that novel correlations of genotype, phenotype, and the
environment be identified to inform new methods for
diagnosing, treating, and preventing disease in a way that is
responsive to the individual [5]. Knowledge of
gene-environment interactions can also contribute on a
population level by informing health and public health services
in areas such as service planning, population genetic testing,
disease prevention programs, and policy development [6].
Routinely collected data, electronic health records (EHRs) in
particular, already hold vast amounts of clinical and
environmental information on large numbers of people and
preclude the need for lengthy and expensive data collection.
Adding these phenotypic data to knowledge about a person’s
genome can elucidate new knowledge, such as that about
gene-environment and gene-drug interactions, and can thus
provide a richer understanding of health and disease [7].

Increasing the use of genomic data for health research is a high
government priority to understand and address the causes of
disease. The potential of integrating genomic and routine data
sets has been recognized in the United Kingdom by the Welsh
Government [8] via their Genomics for Precision Medicine
Strategy and by Genomics England [9] with the inception of
the 100,000 genome project in 2018, both of whom are
investigating ways to link genomic data and EHRs. From a more
international perspective, the former president of the United
States, Barack Obama, launched the Precision Medicine
Initiative to improve individualized care by combining genomic
data and EHRs with diet and lifestyle information from US
citizens [10]. The UK Chief Medical Officer, Dame Sally
Davies’s “genomic dream” of mainstreaming genomic medicine
into National Health Service (NHS) standard care is becoming
ever closer, which means that data from a person’s genome will
likely be directly recorded into EHRs, making this type of
research far more accessible [11].

Objective
As this field prepares to move forward, it is important to take
stock of the current state of play in order to highlight new
avenues for development, identify challenges, and ensure that
adequate data governance models are in place for safe and
socially acceptable progress. Previous work has examined the
benefits and logistical challenges of integrating genomic and
routinely collected data in health care practice, but less is known
of this specifically in a research setting [6,12,13]. Therefore,
our objective is to add to this literature by conducting a narrative
literature review and a series of interviews that would provide
an outline of the use of genomic data alongside routinely
collected data in health research to date. It focuses on the types
of data that have been used, the role of routinely collected data
in these studies, the data sources, how researchers access the
data, and the challenges surrounding their use. This will inform
further work in developing a framework for working with
genomic and routinely collected data [14].

Methods

Literature Review
First, we conducted a literature search of research that used
genomic data in conjunction with routinely collected data. We
define routinely collected data as data collected as a matter of
course and not specifically for research [8]. Genomic data refer
to the data generated after processing a person’s genome, in full
or in part, for example, by sequencing [7]. Studies were eligible
for inclusion if they had used both types of data in combination
to answer a health research question. We included studies of
any design published in either peer-reviewed journals or gray
literature in the English language.

We searched the following databases to identify these studies:
PubMed, Ovid, CINAHL, OpenGrey, CENTRAL, LILACS,
and Web of Knowledge from inception until January 31, 2019.
We also searched for books, gray literature, and websites. We
used a piloted search strategy that included keywords
representing genetic and routinely collected data, and the
following is the search strategy used for PubMed and modified
for use with the remaining databases:

1. (Gene OR Genetic* OR Genome* OR Genomic*)
2. (Administration record* OR Anonymised OR Anonymized

OR Anonymisation OR Anonymization OR Big data OR
Clinical record* OR Data linkage OR Data mining OR
Data science OR Education record* OR Ehealth OR EHR
OR Electronic data OR Health record* OR Housing
record* OR Encrypt* OR Insurance OR Linked data OR
Medical record* OR Patient record* OR Prison record*
OR Publically available OR Publicly available OR Register
OR Registry OR Registries OR Routine data OR Routinely
collected OR Safe haven)

3. #1 AND #2

This search in PubMed resulted in more than 50,000 hits. After
initial pilot screenings, for example, by restricting to only
publications within the last 10 years, it was clear that, given the
number and heterogeneity of potentially relevant articles, neither
a systematic review nor a meta-analysis would be practical. We
took a pragmatic approach by scanning these articles to retrieve
information on the following items until we reached data
saturation, when no new information appeared in the text: types
of genomic data; types and roles of routinely collected data;
data sources; and data access models, that is, how researchers
access the data. We chose examples from each criterion to
ensure that we included a range of health conditions and
presented them in a narrative format, which followed the format
of the criteria given above.

Interviews
To understand the use of genomic and routinely collected data
in context, we recruited a purposive sample of individuals who
have been involved in leading research projects using a
combination of genomic and routinely collected data. We
identified potential participants from the literature search
outlined above and sent 19 interview invitations via email.
Reminders were sent after 2 weeks, and if there was no response,
we made no further contact. In total, 11 individuals agreed to
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participate in either an in-person or teleconferencing interview,
depending on their geographical location. Participants were
involved with the following projects: the Swansea Neurology
Biobank (Swansea, Wales); Dementia Platform UK (Oxford,
England); PsyCymru (Swansea, Wales); UK Biobank
(Stockport, England); BC Generations Project (British
Columbia, Canada); the Province of Ontario
Neurodevelopmental Disorders (POND) Network, IC/ES
(Ontario, Canada); Electronic and Medical Records and
Genomics (eMERGE) Network (Vanderbilt, United States);
and the Sax Institute’s 45 and Up study (New South Wales,
Australia). We omitted any further information on the
participants to maintain their anonymity. We developed
interview questions with our advisory board: a group of UK
geneticists and data scientists who were interested in using
genomic data and our discussions centered around these:

1. What is the purpose of integrating the genetic data with
health data?

2. What types of genetic data are being included?
3. Were there particular approvals you had to obtain? And if

yes, what were these?

4. What were the main challenges encountered?
5. How did you address the challenges?
6. What is your main model for storing these data?
7. What access model(s) do you use? For example, safe room

only, remote access, data released externally to researchers;
8. What are the conditions for access to data?

We followed up interviews by email if any answers needed
clarification.

Results

Textbox 1 provides a summary of the results of the literature
review and interviews. Multimedia Appendix 1 Table S1 [15-32]
provides a detailed summary of the results.

We included 19 studies in this literature review that provided
broad examples of the different types of genomic and routinely
collected data that can be used together to answer a
health-related research question. The countries where this
research was based were the United Kingdom [15-20], China
[21], United States [22-29], Canada [19,30,31], and Australia
[32].
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Textbox 1. Summary of results.

Type of genomic data

• Single nucleotide polymorphisms

• Polygenic risk scores

• Gene activity scores

• DNA methylation status

Purpose of combining data

• Genome-wide association studies

• Phenome-wide association studies

• Longitudinal studies

• Candidate gene studies

• Gene profiling studies

• Exploratory studies

Types of routinely collected data

• Electronic health records

• Disease registry data

• Disease registries

• Mortality registers

• Deprivation indices

• Health insurance

Role of routinely collected data

• Identifying cases and controls

• Baseline data

• Deep phenotyping

• Long-term follow-up

• Sociodemographic information

Sources of data

• Databanks

• Biobanks

Governance models for data access

• Publicly available on the web

• Released to researchers

• Data safe havens

Challenges

• Data collection

• Data storage and costs

• Technical and/or software issues

• Data privacy and data protection laws

Types of Genomic Data
Examples found of the types of genomic data used in these
studies included single nucleotide polymorphisms (SNPs), gene

activity scores, and DNA methylation status. The most
frequently used were SNPs [16,17,19,23-29], which represent
a single base-pair change in the DNA sequence and are highly
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granular; hence, they are popular in health research [33].
Research studies tend to refer to SNPs by their reference SNP
number, a unique identifier given to a SNP, or a cluster of SNPs
by the National Center for Biotechnology (NCBI) [34].

Polygenic risk scores are closely related to SNPs and were used
in 2 of the studies included in this review [15,16]. These predict
a person’s likelihood of developing a particular disease based
on the cumulative effect of a number of genetic variants [15].
Our literature search found other instances of quantitative
measures of gene activity combined with routine data, including
the 21-gene Recurrence Score, which measures the activity of
21 genes (16 cancer-related and 5 reference) for patients with
breast cancer [33] and the enzyme activity score for the CYP2D6
(cytochrome P450 family 2 subfamily D member 6) gene, which
codes for an important drug-metabolizing enzyme, and is highly
polymorphic in humans [34]. Rusiecki et al [29] measured
changes in DNA methylation status in their participants to
investigate whether this predicted posttraumatic stress disorder
in US military service members.

Purpose of Combining Genomic and Routine Data
Conducting genome-wide association studies (GWAS)
[15,17-19,21], phenome-wide association studies (PheWAS)
[24,25], and a combination of both [26,27] were the main
purposes of combining genomic and routine data. Both these
methods use powerful statistical techniques to find associations
between genetic variants (SNPs) and phenotypes, which can
then be used to predict the genetic risk factors of disease, levels
of gene expression, and even social and behavioral
characteristics such as educational attainment, impulsivity, and
recreational drug experimentation [35,36]. Given the number
of tested associations, these studies require large sample sizes
to yield enough statistical power to detect differences in genetic
variation between cases and controls [37]. Other study designs
included longitudinal studies [16,18,30-32], a candidate gene
study [23], case control studies [19,29], a gene profiling study
[22], and an exploratory study [28]. Each of these studies was
designed either to identify genetic risk factors of the disease or
to investigate drug safety or efficacy (Multimedia Appendix 1
Table S1).

Types and Role of Routinely Collected Data
EHRs appear to be, by far, the most common form of routinely
collected data used in the studies identified in this review. For
the type of research discussed here, data in EHRs have been
used to identify eligible participants, for phenotyping, and to
provide long-term follow-up on specific health outcomes. These
data are collected as a matter of course in health care systems,
and depending on their country of origin, EHR content can vary,
although usually this digital record will include the patient’s
name, address, demographics, medical history, care preferences,
lifestyle information (such as diet, exercise, and smoking status),
and free-text notes [38]. An example of EHR data used in the
identified studies was the International Classification of Disease
(ICD) coding. This allows clinicians to record the status of a
patient in a standardized way, whether it is for disease, disorder,
injury, infection, or symptoms [39]. Hebbring et al [26] used
ICD codes in EHRs to identify appropriate cases and controls
for their PheWAS study of the HLA-DRB1*150 gene involved

in immune regulation. Rusiecki et al [29] used ICD codes to
identify cases with a postdeployment diagnosis of posttraumatic
stress disorder in their study on the link between gene expression
and posttraumatic stress disorder in US military service
members.

EHRs were also used to describe and validate a phenotype of
interest, which is particularly important for PheWAS studies.
The large number of phenotypes used in these analyses need to
be clearly defined to ensure that any associations made with
genetic variants are precise and replicable [40]. For example,
Breitenstein et al [23] used EHRs to define the type 2 diabetes
phenotype needed for their candidate gene study based on
diagnoses, medications, and laboratory tests. The algorithm
used to achieve this was developed by the eMERGE Network
(see below for more details on this organization) and has been
used successfully many times since [41].

In addition to providing a baseline snapshot of the patient, EHRs
are also longitudinal in nature, and this makes them ideally
placed to provide long-term follow-up to study participants. An
example of this is the Genetics and Psychosis (GAP) study,
which looked at a purported association between a variant of
the ZNF804A gene and poor outcomes after first-episode
psychosis [20]. Using individual-level linkage between EHRs
and genotype data, this study followed the clinical outcomes
for 291 patients over a period of 2 years, and subsequently found
strong evidence for their hypothesis.

Other examples of routine data used in genomic research include
disease registry morbidity and mortality records [20,22]. Disease
registries collect information on clinical outcomes and care for
a specific patient population over time. EHRs often feed data
into these registries, but registry data can also include
patient-reported outcomes and other biometric data, and
therefore provide a more holistic view of the patient than an
EHR would in isolation, for example, the UK MS Register [42].
Routine data sets need not be individual-level or person-based
to prove useful in genetic research. A case in point is the Scottish
Index of Multiple Deprivation, which gives an indication of a
geographical area’s socioeconomic deprivation based on data
about employment, income, health, education, housing, crime,
and access to services [43]. Clarke et al [15] were able to link
participants’ postcodes to the Scottish Index of Multiple
Deprivation and generate socioeconomic deprivation variables
to investigate their association with polygenic risk scores for
alcohol dependence.

Sources of Genomic and Routinely Collected Data

Overview
Although individual research projects often collect biological
samples and generate their own genomic data for combination
with routinely collected data [19,29], studies can also make use
of the many sources of genomic and routinely collected data
already available. Our interview participants spoke to us about
the different data sources they used in their research and
provided details on the use of these data and the participants of
their projects. From this information, there seem to be two
general categories of these sources: databanks and biobanks,
the former where only the data are stored, and the latter, which
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store both biological samples and genomic data. Below are
illustrative examples; therefore, this is not an exhaustive list.

Dementias Platform UK
Dementias Platform UK (DPUK) [16] is a data portal funded
by the Medical Research Council that hosts the data of 2 million
people from over 40 cohorts relevant to dementia research.
Combining these data enhances the individual research power
of each study and brings together knowledge from a number of
stakeholders to facilitate and accelerate new discoveries.
Examples of these cohorts are the GENetic Frontotemporal
Dementia Initiative (GENFI; genotype data for GRN, MAPT,
and C9ORF72 genes) and the Genetic and Environmental Risk
in Alzheimer’s Disease (GERAD) Consortium (whole exome
sequences) [16]. Presently, DPUK provides EHR linkage for
Welsh participants via the Secure Anonymized Information
Linkage (SAIL) databank [44].

UK Biobank
UK Biobank [45] is a national resource with data from 500,000
participants aged between 40 and 69 years who have donated
blood, urine, and saliva samples, have undergone a number of
baseline measures, and have provided detailed health and
behavioral information about themselves. Genomic data are
available for 488,000 participants and comprise SNPs,
genotypes, and haplotypes. The UK Biobank holds a number
of routine data sets, including hospital inpatient episodes, cancer
registrations, and deaths. Studies using the UK Biobank genomic
and routinely collected data include genome-wide meta-analyses
of depression [17] and identifying candidate gene and disease
associations that could help predict adverse drug reactions [26].

Personal Genome Project
The Personal Genomes Project (PGP) is a databank founded in
2005 at Harvard University and now extends worldwide. It
provides a web-based platform for individuals (over 100,000
people to date) to share their genomic data publicly, along with
their EHRs, and other trait information to progress science
without many of the governance restrictions of traditional
research. Most of the genomic data on the PGP database are in
SNP format, although files of raw sequence data are available
for some participants [43].

eMERGE Network
The eMERGE Network is a consortium of American medical
institutions whose goal is to use EHR data in combination with
a variety of genomic data types to advance translational research.
The network also releases its genomic data, including GWAS,
whole genome, and whole exome sequence data, along with a
subset of phenotypic elements to the broader community of
researchers via the dbGaP—an NCBI [46] database of genotypes
and phenotypes. Through this mechanism, any research project
can be applied to the uploaded data. A wealth of publications
have resulted from eMERGE’s work; these are available to view
on the web [24,25,47].

POND Network
The POND network is an IC/ES [31] initiative based in Ontario,
Canada, and involves a cohort of children and young people
(the total number of the sample is approximately 3000) with a

neurological development disorder, with a particular focus on
autism. This is a highly phenotyped cohort with all participants
having undergone multiple clinical tests, including those for
attention-deficit/hyperactivity disorder, obsessive-compulsive
disorder, and family history and demographic data. A subset
(n=667) provided consent for linkage with administrative data
held in IC/ES via health card numbers. The aim is to identify
subgroups of autism based on the co-occurrence of other
developmental conditions, other comorbidities, and health
service use, and to characterize these groups based on clinical
attributes and genomics. The network data are project-level
only, although it is anticipated that linkage of genomic data to
administrative and health data will become more routine in the
future.

BC Generations Project
The BC Generations Project [48] is British Columbia’s (BC)
largest ever health study and is part of a national initiative—the
Canadian Partnership for Tomorrow Project—to aid researchers
in answering questions about how environment, lifestyle, and
genes contribute to cancer and other chronic diseases. Almost
30,000 participants were involved in the project, and they
provided baseline information about their health, diet, lifestyle,
and medical and family history. Many have also donated blood
and urine samples, and the type of genomic data generated from
these samples is based on the needs of the researchers (subject
to approval). The BC cohort is one of several provincial cohorts
that can be combined for national studies or can be linked to
provincial administrative data via PopDataBC [49].

Sax Institute and the 45 and Up Study
Based in Australia, the main business of the Sax Institute is to
manage the 45 and up study, which has been following 260,000
people for over 12 years who provide both routinely collected
and self-reported health data [32]. The aim of this study was to
collect samples from 50,000 individuals for full genome
sequencing. The Sax Institute has a partnership with the Garvan
Institute of Medical Research [50], which acts as a genome
sequencing facility and makes data available for research subject
to approval. The Garvan Institute retains all the genomic data,
but with data linkage to the Sax Institute.

Data Governance Access Models

Overview
We surveyed the data access models and information governance
systems of genomic and routine data sources identified by our
literature search and interviews. From the additional information
given to us by our interview participants, we were able to
categorize data access models as follows: (1) publicly available
on the web, (2) released to researchers, or accessed via a (3)
data safe haven.

Publicly Available on the Web
There are a wealth of free, genomic data sources on the web,
made available because of individual projects or from the pooled
results of a variety of different projects. These data are either
downloadable or viewable on the web. For this type of resource,
data tend to be at the gene or variant level (eg, GIANT
Consortium [51]; GWAS Catalog [52]), but some do hold
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individual-level data, eg, Database of Genomic Variants [53].
The Personal Genome Project, described above, is the only data
source that provides identifiable, individual-level genomic data
[43]. All other data were deidentified.

Released to Researchers
Currently, the most common way for genomic data to be
accessed for research is through secure electronic file transfer
to the researcher. This generally occurs after successful
application to an internal review board (IRB) and signed data
use agreement (DUA). All of the published research studies
identified by our literature search used this model, unless the
genomic data were generated specifically for that particular
project. For instance, Cronin et al [24] received genomic data
regarding 54 SNPs, and also demographic, vital sign, and billing
data derived linked EHRs by the eMERGE network. Other
biobanks using this model include Mayo Genome Consortia
[23], China Kadoorie Biobank [21], UK Biobank [17,26], BioVu
[24], and Generation Scotland [17], although access to BioVu
data is only granted to Vanderbilt faculty members [54]. In
addition to IRB and DUA procedures, the use of individual-level
EHR data supplied by Generation Scotland also requires an
application to the NHS Research Ethics Committee [55].

Data Safe Havens
The use of large-scale population data in health research has
become increasingly popular in the last few decades, and this
has seen the evolution of data safe havens as a way to ensure
its safe and secure use. Lea et al [56] defined data safe havens
as a system that invokes procedural, technical, and physical
controls, including access to data within a secure environment
(rather than data release), in order to safeguard the identities of
people providing the data. Despite there being a greater tendency
in the literature for releasing data to researchers, we have seen
from our work with interview participants, a trend toward using
a data safe haven system for both younger and more
well-established organizations.

The PsyCymru study [18] and the Swansea Neurology Biobank
[19] have deposited polygenic risk scores and SNPs,
respectively, into the SAIL Databank [44], a data safe haven
based at Swansea University. The SAIL Databank provides
remote access to many linkable anonymized data sets, and both
of these studies have used SAIL to link their genetic data and
other phenotypic data to EHRs and other routinely collected
data. These data are available only for project access, and
currently cannot be shared. However, their intention is to make
linked genetic and routinely collected data available for research
in the near future [57,58].

The Sax Institute operates in a similar way to the SAIL Databank
in that it provides access to genomic and health data via a virtual
lab by remote access anywhere in the world. Data access
requires approval by two data access committees: one at the
Garvan Institute and one at the Sax Institute. The BC
Generations Project said, “should the researcher access the
project’s data via PopDataBC then they would only be allowed
to use the data on within the secured research environment”
(Participant 5, BC Generations Project).

For the UK Biobank, the current modus operandi releases
anonymized data externally to researchers. However, they stated
that this is unlikely to be sustainable because genomic data files
are too large. The UK Biobank will likely be changing to a
remote access model in the near future. The eMERGE Network
also confirmed that they are experimenting with remote access
into a data safe haven. One of our participants who used IC/ES
data explained that “as the data are considered highly sensitive,
access is only by an ICES analyst, with results provided to the
project lead” (Participant 4, IC/ES).

Challenges
Combining genomic and routine data does not come without
its challenges. Our participants, who are currently working with
these data, spoke to us about these different challenges during
their interviews, and their experiences are summarized below.

Data Collection
A challenge described by several participants concerned data
collection. Conducting long-term follow-up over long periods
and at regular intervals means that participants need to be invited
and reconsented to provide more blood and other health
information. In addition, poor quality sequence alignment could
render the samples useless, and with repeated use by researchers,
blood samples will eventually become exhausted. Each of these
issues necessitates a lengthy and expensive process of
resampling thousands of individuals and imposes a burden on
participants. A possible solution to this, as one participant
suggested, is to “join up with others biobanks in order to work
towards epidemiologically valid sample sizes” (Participant 1,
45 and Up Study)

Data Storage and Costs
Genomic data are huge, approximately 90 GB for the raw data
of 1 whole genome, and this is often the source of technical
issues surrounding its use [59]. One participant told us that their
main challenge was data storage capacity and that “it may no
longer be cost or space efficient for organisations to hold
multiple datasets” (Participant 2, UK Biobank). They go on to
explain that there is certainly a case to be made for storing
genomic data as VCF files only, which keep record only of gene
sequence variations and are much smaller and easier to work
with. However, this restricts the type of analyses possible,
particularly in the advent of new discoveries about the anatomy
of the genome. There may be a need to find solutions regarding
storage space for raw genomic data and for specialist platforms
required to conduct analyses.

Technical and/or Software Issues
Many of the challenges faced by participants working with these
data are technical in nature. Participant 3 (eMERGE) described
creating a sequencing platform from the ground up, which was
much longer than initially projected. Furthermore, they described
that multiple sequencing centers needed harmonization, as well
as the needs across sites and projects for network-wide data
collection. Another participant found difficulties surrounding
analysis software and analyst capacity, since this is a very
specialized skill (Participant 4, IC/ES). Researchers often
conduct genetic data analysis using publicly available,
downloadable software applications, which are subject to
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frequent updates for improvements. This is a challenge to
incorporate this software and keep it up to date. Several other
participants spoke of similar software issues. Potential solutions
discussed during our interviews were to upscale and have
dedicated servers for genomic data, as well as to install specialist
toolsets within the secure research environment.

Data Privacy and Data Protection Laws
Given the possibility of identifying individuals from genomic
data [60], privacy is of primary concern. We were told that, for
one research project using IC/ES data (Participant 4), the privacy
approval group was concerned about identifiability due to the
genomic data being unique, particularly where there are rare
variants. This means that the genomic data contained in variant
call files have been brought into the databank to show the
feasibility of transfer but has to be integrated into the analytical
platform.

The General Data Protection Regulation [61] in the United
Kingdom states that if researchers are to rely on the lawful basis
of consent to process medical genomic data, the reasons for
doing so must be described in an explicit and transparent way.
The rapid decrease in the cost of whole genome sequencing in
the last few decades has opened many new avenues for genetic
research, but this means that it is impossible to predict what this
research will actually look like in the future [55]. One participant
felt that this means they would need to seek consent from the
participant for each new research proposal [62], rather than just
once when their sample was taken. They expressed concerns
that “continued and lengthy re-contact with participants was
not only costly and difficult, it may also be invasive and
burdensome” (Participant 11, Swansea Neurology Biobank).
Also mentioned was Canada’s antidiscrimination laws (Bill
S-201: Genetic Nondiscrimination Act) to avoid prejudice on
the grounds of genetics (including insurance and employability)
[63] (Participant 5, BC Generations Project). Several participants
believed that the public acceptability of their work was
important, but they “weren’t sure how to go about ensuring it”
(Participant 7, Dementia Platform UK).

Discussion

Principal Findings
Using genomic and routinely collected data holds great potential
for health research. The genomic data we identified in our
literature review included SNPs, polygenic risk scores, and gene
activity scores. Routine data primarily consisted of EHRs, but
we did find other routine data types including registry data and
deprivation indices that had been combined with genomic data.
This paper shows how genomic research has progressed in recent
years—from basic GWA and PheWA studies—to more complex
methodologies in which health records are linked to genomic
data at the individual level. Associations between genetic
variants and phenotypes, identification of drug targets,
knowledge about drug toxicity, and effectiveness can all be
studied from the combination of genomic and routine data and
leveraged for public benefit.

The EHRs created during routinely collected care provide the
large sample sizes needed for GWAS analysis without the need

for costly and time-consuming prospective data collection.
These larger samples allow for greater validity, generalizability,
and yield adequate statistical power, while also minimizing
participant burden and reducing attrition during follow-up [64].
In addition, these data sets are not limited to a circumscribed
number of phenotypes in the way that a traditional research
study might be [40]. This richness and diversity of EHR data
means that the large number of phenotypes used in PheWAS
can be very clearly defined (referred to as deep phenotyping),
which enhances the accuracy of phenotype-genotype
associations [40].

Most importantly, with regard to EHRs, perhaps, is the
additional information that routinely collected data provide
about an individual’s environment. This can include lifestyle
factors, education, work history, pollution, and even traumatic
events. Genetic determinism has long been rejected, and we
now widely accept the powerful influence that lifestyle and the
environment have on the way that our genes are expressed
[65-67]. Precision medicine requires novel correlations not only
between genotype and phenotype to be made but also with an
individual’s environment to inform new methods for diagnosing,
treating, and preventing disease in a way that is tailored to that
individual. Linking genomic data to routine data promises to
elucidate important findings for precision medicine research,
which will enable researchers to understand the relationship
between an individual’s genome and their complete life course
[68]. More of these types of studies are needed for precision
medicine to reach its full potential, to make the intricate
genotype-phenotype associations needed to advance the
understanding and treatment of disease.

From our interviews, we identified 3 main ways that researchers
can access genomic and routine data: publicly available on the
web, released to researchers, and via a data safe haven. We also
observed that biobanks and databanks seem to be moving toward
renouncing a data release model and instead favoring a data
safe haven approach. Aside from potentially solving data storage
issues, this will also help assuage privacy and governance
concerns. Reidentification and disclosure from genomic data is
possible [69,70] and can lead to many undesirable consequences:
discrimination by health or life insurance companies, societal
stigma, and the discovery of a genetic predisposition to a
condition when one does not want to be told. This is complicated
further because of the familial nature of genes, and disclosure
could cause some devastating effects for biological relatives as
well [71-73].

Despite this, we must keep in mind that simply because genomic
data are unique, this in itself does not render it identifiable.
Rather, the reidentification risk of genomic data depends on the
way they are accessed, the type of analyses that are conducted,
and the format in which the results are finally published [70].
This means that decisions to use certain data access models
based on practicality and decreased costs are not sufficient.
Genomic research relies heavily on human participation, and
the public should be consulted to inform the way in which their
data are accessed [74]. There is a plethora of activity taking
place to consult the public about health research in general, and
the success and acceptability of large-scale data research is
owed, in part, to the extensive public engagement activities that
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have been taking place [75,76]. Organizations such as the Global
Alliance for Genomics and Health [77] are engaging with the
public on the use of genomic data in research, but there is still
more work to be done regarding the use of genomic and
routinely collected data [78].

Limitations
This review was not intended to be exhaustive or systematic;
therefore, it does not include all health research studies that
have used genomic and routinely collected data. We also
excluded biobanks and databanks that do not house routine data;
therefore, we only include examples here. This may have
resulted in inadvertently excluding some countries and
institutions where this research takes place and the types of
genomic and routinely collected data that have been used. Not
implementing systematic methods in study selection may have
introduced bias in this review’s conclusions; however, the
pragmatic approach used here was deemed sufficient to meet
our objectives.

We included 19 studies in this review, only one of these
involved data and research from a non-Western country (China)
[21]. We did not come across any research that had taken place
in low- to middle-income countries, although as this review was
not conducted systematically, we may have unintentionally
overlooked these. However, the absence of any studies from
such countries may be, as Tekola-Ayele and Rotimi [79] explain,
a result of having a limited number of well-trained genomic

scientists and poor research infrastructure, and due to a less
well-established routine data collection infrastructure and
procedures such as EHRs [80].

Qualitative interviews may be subject to recruitment bias, which
means that some viewpoints and experiences were excluded.
In addition, there is limited information about participants;
however, as this is a relatively small field of research, it was
deemed necessary to maintain participants’ privacy.

Conclusions
Given the projected increase in the availability of genomic data,
the potential to be obtained from its combination with routine
health data is vast. This review has shown examples of what
has been done in this field so far with, for example, GWAS and
PheWAS plus other study designs. For fields such as
pharmacogenomics, these methodologies need to be used further,
where using routinely collected data will simplify the process
of tracking longer-term outcomes of personalized medical
treatments, and elucidate new findings on the effects of the
environment on drug-gene interactions. Our take away from
this study is that there are several challenges involved in using
these data, particularly surrounding privacy. Therefore, it is
imperative that appropriate data governance be documented and
that public engagement activities take place to ensure socially
acceptable practices. Overcoming these barriers will ensure that
the use of these data to progress health research can be exploited
to its full potential.
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POND: Province of Ontario Neurodevelopmental Disorders
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