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Abstract

Background: Recently, food science has been garnering a lot of attention. There are many open research questions on food
interactions, as one of the main environmental factors, with other health-related entities such as diseases, treatments, and drugs.
In the last 2 decades, a large amount of work has been done in natural language processing and machine learning to enable
biomedical information extraction. However, machine learning in food science domains remains inadequately resourced, which
brings to attention the problem of developing methods for food information extraction. There are only few food semantic resources
and few rule-based methods for food information extraction, which often depend on some external resources. However, an
annotated corpus with food entities along with their normalization was published in 2019 by using several food semantic resources.

Objective: In this study, we investigated how the recently published bidirectional encoder representations from transformers
(BERT) model, which provides state-of-the-art results in information extraction, can be fine-tuned for food information extraction.

Methods: We introduce FoodNER, which is a collection of corpus-based food named-entity recognition methods. It consists
of 15 different models obtained by fine-tuning 3 pretrained BERT models on 5 groups of semantic resources: food versus nonfood
entity, 2 subsets of Hansard food semantic tags, FoodOn semantic tags, and Systematized Nomenclature of Medicine Clinical
Terms food semantic tags.

Results: All BERT models provided very promising results with 93.30% to 94.31% macro F1 scores in the task of distinguishing
food versus nonfood entity, which represents the new state-of-the-art technology in food information extraction. Considering the
tasks where semantic tags are predicted, all BERT models obtained very promising results once again, with their macro F1 scores
ranging from 73.39% to 78.96%.

Conclusions: FoodNER can be used to extract and annotate food entities in 5 different tasks: food versus nonfood entities and
distinguishing food entities on the level of food groups by using the closest Hansard semantic tags, the parent Hansard semantic
tags, the FoodOn semantic tags, or the Systematized Nomenclature of Medicine Clinical Terms semantic tags.
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Introduction

Food is one of the most important environmental factors that
affects human health [1]. However, even healthy and ecofriendly
foods can cause health problems when consumed together with
specific drugs or while having specific diseases. Comprehensive
dietary assessments are required to understand how food
influences our health, after considering various aspects.
Automating the detection of food entities is important for several
applications such as food-drug interactions and health issues
related to food.

Computer science can greatly contribute to this research topic,
especially in the areas of machine learning, natural language
processing (NLP), and data analysis. Data collected in studies
carry important information, which is not easily extracted when
it has been gathered from different data sources. The main
problem is that these data are presented in different formats:

structured, semistructured, and unstructured. Additionally, the
data consist of entities from different domains such as food and
nutrition, medicine, pharmacy, ecology, and agriculture. The
extraction of this information allows the creation of knowledge
graphs [2], which represent a collection of interlinked
descriptions of entities—objects, events, or concepts—by using
semantic metadata and providing a framework for data
integration, unification, analytics, and sharing.

To create a knowledge graph, first, we should have methods
that can be used for information extraction, which is the task
of automatically extracting structured information from
unstructured textual data. In most cases, information extraction
is performed by using named-entity recognition (NER) methods
(ie, a subtask of information extraction), which deal with
automatically detecting and identifying phrases (ie, one or more
words [tokens]) from the text that represents the domain entities.
Let us assume the following recipe example (Figure 1):

Figure 1. Recipe example.

The phrases in bold (Figure 1) are the named entities that should
be recognized in the process of information extraction, and they
should be linked to their corresponding domain entity tag. In
the simplest case, they may be linked to the generic “Food”
class, but extracting the more specific food class by a level of
food group may be of higher value, because this class may
potentially provide multiple nutrition facts that may allow new
use cases such as ingredient substitution.

Several types of NER methods exist depending on their
underlying methodology: (1) dictionary-based [3], which return
only entities that are mentioned in the dictionary in which they
are based; (2) rule-based [4,5], which use a dictionary in
combination with rules that describe the characteristics of the
entities in the domain of interest; (3) corpus-based [6,7], which
learn a supervised machine learning model by using an annotated
corpus; (4) active learning–based [8], which use semisupervised
learning to train a model that does not require a large annotated
corpus but instead interacts with the user to query for new
annotations that are used for iteratively improving the model;
and (5) deep learning–based [9], which use deep neural
networks to train a model that requires a large amount of
annotated data. Nowadays, fine-tuning the bidirectional encoder
representations from transformers (BERT) [10] provides
state-of-the-art results in NER tasks. However, the task of
fine-tuning the BERT model for NER requires a domain-specific
annotated corpus.

In the past 2 decades, a large amount of work has been done to
address this problem in the biomedical domain [11-17]. All of
this work is supported by the existence of diverse biomedical
vocabularies and standards such as the Unified Medical
Language System [18], together with the collection of a large
amount of annotated biomedical data (eg, in the domain of

drugs, diseases, and other treatments) from numerous biomedical
NLP workshops [19-26]. The existence of such resources and
information extraction methods allows the creation of knowledge
graphs that can support the biomedical domain and clinical
practices [27,28].

In contrast to the biomedical domain, the food domain is
relatively inadequately resourced. There are few semantic
models (ie, ontologies) [29], each of which has been developed
for very specific applications. One such example is the Ontology
for Nutritional Epidemiology, which was developed to describe
dietary food assessment [30]. Until recently, there was no
annotated food corpus, which meant that the available food
NERs were rule-based. Hanisch et al [4] presented a rule-based
NER known as drNER for information extraction from
evidence-based dietary recommendations. Food entities are
among the domain entities of interest that are extracted.
However, drNER extracts several food entities as one. This was
improved by developing the rule-based NER Food Information
Extraction [31], where the rules incorporate computational
linguistics information in combination with food semantic
annotations from the Hansard corpus [32]. Another way to
perform food information extraction is to use the NCBO
(National Center for Biomedical Ontology) annotator [33],
which is a web service that annotates text by using food ontology
concepts that are part of the BioPortal software services [34].
It can be combined with the following ontologies: FoodOn [35],
OntoFood, and SNOMED CT (Systematized Nomenclature of
Medicine Clinical Terms) [36]. A comparison of 4 NER methods
(Food Information Extraction, NCBO [SNOMED CT], NCBO
[OntoFood], and NCBO [FoodOn]) is presented by Popovski
et al [37], who showed that Food Information Extraction
provides the best results in distinguishing food from nonfood
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entities. The main weakness of the abovementioned NERs is
that they all depend on other external resources such as
taxonomies, ontologies, or previously developed annotators,
which further can be a problem if some of the resources become
inaccessible. This also opens new directions for future research
regarding the development of more robust food NERs.

At the end of 2019, an annotated food corpus known as
FoodBase [38] was published. The ground truth corpus consists
of 1000 recipes, where for each recipe, the food entities
mentioned in it are first extracted and then annotated using the
hierarchical Hansard food semantic tags (eg, AG.01 [food],
AG.01.h.02 [vegetables], AG.01.h.02.i [herb], AG.01.n.15
[pastry], AE.10 [fish]). The corpus is organized according to
the BioC format, which is a minimalist approach for
interoperability for biomedical text processing [39]. The
availability of the FoodBase corpus allowed the development
of the first food corpus-based NER known as bidirectional long
short-term memory for food named-entity recognition
(BuTTER) [40], where bidirectional long short-term memory
(BiLSTM) in conjunction with conditional random fields (CRFs)
and different representation learning methods have been
explored to develop NER that distinguishes between food versus

nonfood entities. In addition to this, the FoodOntoMap resource
was published [41], where for the same entities found in
FoodBase, the semantic tags from FoodOn, OntoFood, and
SNOMED CT were assigned. With this, the food entities were
normalized to different food semantic resources, which
additionally links the food semantic resources.

Enabled by the availability of several food resources that were
published toward the end of 2019, we introduce a fine-tuned
BERT model that can be used for food information extraction,
called as FoodNER. BERT is known to achieve state-of-the-art
results in NER tasks [42-44], and hence, we utilize it to develop
a more robust model for food information extraction. The
flowchart of FoodNER is presented in Figure 2. It is developed
using a predefined BERT model, which can be the original
BERT or some variation of BioBERT. Using them, fine-tuning
is performed on the FoodBase corpus to address several different
tasks: food or nonfood entity and 4 types of distinguishing food
entities, depending on the semantic resource from where the
semantic tags are taken (ie, Hansard semantic taxonomy [done
twice on different hierarchical levels from the taxonomy],
FoodOn, and SNOMED CT).

Figure 2. Food named-entity recognition flowchart. BERT: bidirectional encoder representations from transformers; NER: named-entity recognition;
SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.

The main contributions of this study are as follows:

1. We fine-tuned different BERT models on different semantic
resources from which the food semantic tags are taken. All
BERT models have very promising results, obtaining around
73.39%-78.96% macro F1 score. All in all, it represents the
new state-of-the-art in food information extraction.

2. In comparison with the already existing food rule–based
(Food Information Extraction) and corpus-based (BuTTER)
NER methods regarding the task of distinguish between
food or nonfood entity, FoodNER provides similar results.

However, it is more robust than the rule-based approaches
since it does not require the continuous availability of
additional external resources, which can be a problem
regarding sustainability. Additionally, comparing it to the
corpus-based method BuTTER, it is the first model that can
predict food groups instead of just distinguishing between
food versus nonfood entities.

3. The source code used for fine-tuning the different FoodNER
models is publicly available. All models are also included
in FoodViz [45], which is a new tool for the visualization
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of food annotations in text. The users can additionally select
which model they want to use and annotate their data.

In this study, we used the FoodBase ground truth corpus for
building and evaluating FoodNER models for distinguishing
food versus nonfood entity as well as for distinguishing food
entities concerning the Hansard semantic tags. The BuTTER
approach is used as baseline for comparing the performance of
the FoodNER models. The FoodOntoMap extension of the
FoodBase ground truth corpus is also used for training and
evaluating the FoodNER models concerning the SNOMED CT
and FoodOn semantic tags.

Methods

FoodBase Data Corpus
The FoodBase data corpus is a recently published corpus with
food annotations [38]. It consists of 2 versions: curated and
uncurated. The curated version consists of 1000 recipes that are
annotated using a rule-based NER and then manually checked
by subject matter experts who removed the false positives and
added the false negatives to create a ground truth standard. It
consists of 200 recipes for each of the following recipe
categories: appetizers and snacks, breakfast and lunch, dessert,
dinner, and drinks. The uncurated version consists of
approximately 22,000 recipes, which are only annotated with
the rule-based NER, without being checked by subject matter
experts. The semantic tags used for annotations are taken from
the Hansard corpus [32,45]. To the best of our knowledge, this
is the first corpus with such annotated food entities.

Food Semantic Resources

Hansard Corpus
The Hansard corpus [32] is part of the SAMUELS (Semantic
Annotation and Mark-Up for Enhancing Lexical Searches)
project, where semantic tags are organized in a hierarchy with
37 higher-level semantic groups. One of these groups is the
Food and Drink, which is then split into 3 subcategories, that
is, food, production of food, farming, and acquisition of animals
for food, hunting. These have 125, 36, and 13 top-level semantic
tags, respectively.

FoodOn Ontology
FoodOn is a farm-to-fork ontology about food, which supports
food traceability [35]. It consists of information about food
products, their sources, and information about preservation
processes, packaging, etc. It is built to represent food-related
entities and to provide vocabulary for nutrition, diet, and plant
and animal agricultural rearing research. FoodOn interoperates
with the Open Biological and Biomedical Ontology Library and
imports material from several ontologies covering anatomy,
taxonomy, geography, and cultural heritage. The ontology aims
to cover gaps in the representation of food-related products and
processes and is being applied to research and clinical data sets
in the academia and government.

SNOMED CT Ontology
SNOMED CT is the most comprehensive multilingual clinical
health care terminology [36]. It is a machine-readable collection

of medical terms, where synonyms and clinical definitions are
available for each of the codes. It consists of information about
drugs, disorders, symptoms, diagnoses, procedures, body
structures, food, and other concepts that are related to health
care.

FoodOntoMap
FoodOntoMap is a recently published resource that is developed
by using the FoodBase corpus [38]. It provides data
normalization of the food entities according to different semantic
resources. Specifically, for each extracted entity presented in
the FoodBase corpus, the semantic tags from Hansard, FoodOn,
OntoFood, and SNOMED CT are available. It is important to
note that the semantic tags from resources other than Hansard
are not available for some of the extracted food entities since
they do not exist in the respective food ontologies themselves.
The food entity coverage per semantic resource is presented by
Popovski et al [37].

BERT
BERT is a word representation model that achieves
state-of-the-art results in many NLP tasks [10]. The main idea
of BERT is the bidirectional training of the transformer, which
is different from previously published models that were trained
using just a text sequence either from left to right or from right
to left. Many models predict the next word in a sequence, while
BERT uses a masked model, which predicts words masked in
random order. It is used for bidirectional representation learning.
BERT follows the idea and value of transfer learning [46,47],
starting with pretraining a representation language model and
then performing fine-tuning of the model for a new learning
task (eg, NER, Question Answering). The same architectures
are used in the pretraining and the fine-tuning step. The only
difference is in the output layers. The parameters from the
pretrained model are used as initial parameters, which are further
fine-tuned concerning the learning task that is being solved in
the fine-tuning.

Pretraining of BERT
In this phase, we did not pretrain a BERT model on our corpus.
Instead, we used 3 previously pretrained and publicly available
BERT models to fine-tune them for the food NER task.
Specifically, the 3 BERT models that were used were the
original pretrained BERT model [10], the pretrained BioBERT
standard model [15], and the BioBERT large model [15]. The
original BERT model was trained on the BookCorpus with
around 800 million words [48] and the English Wikipedia with
around 2500 million words, from which only the texts were
used, ignoring the headers, tables, and lists.

The BioBERT was trained to improve the model for tasks in
the biomedical domain since the domain consists of a large
number of domain-specific proper nouns and terms, which do
not appear in normal texts. Different combinations of corpora
were experimentally used for pretraining BioBERT. The
combinations involved the following corpora: the BookCorpus
and the English Wikipedia (same as the BERT model), PubMed
abstracts with around 4500 million words, and PubMed Central
full-text articles with around 13,500 million words. Finally, the
model pretrained on the combination using the BookCorpus,
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the English Wikipedia, and PubMed abstracts using the
BERT-base cased code provided by Google is known as the
BioBERT language representation model (ie, BioBERT
Standard). The same combination trained using the BERT-large
cased code provided by Google is known as BioBERT large.

Fine-Tuning BERT
To perform food NER, we fine-tuned the original BERT and
the 2 versions of the BioBERT model. In all the cases, for each
class, we used the IOB (inside, outside, and beginning) tagging
[49] prediction, which is a common tagging format in
computational linguistics. In this process, we used the FoodBase
corpus as the ground truth. However, this corpus may contain
multiple Hansard tags for each food phrase, and we used a few
methods for selecting the most representative tag for each
phrase.

The fine-tuning was performed for the following tasks:

1. Food classification: This was performed for distinguishing
food versus nonfood entity. In this task, we labeled all food
phrases annotated in FoodBase with the tag FOOD and
used this data set for training and validation.

2. Hansard parent: This was performed for distinguishing 48
classes from the Hansard corpus. In this task, we selected
parent semantic tags from the Hansard hierarchy that
correspond to the food phrases in FoodBase. In cases with
multiple different parent tags present for the food phrase,
we selected the first occurring parent.

3. Hansard closest: This was performed for distinguishing 92
classes from the Hansard hierarchy. In this task, for each

food phrase in FoodBase, we chose the closest Hansard tag
to the food phrase being annotated. The closest tag was
selected using the minimum cosine distance between the
BERT embedding of the food phrase and the BERT
embeddings of the Hansard tag labels.

4. FoodOn: This was performed for distinguishing 205 classes,
where the classes are semantic tags from the FoodOn
ontology. For each food phrase in FoodBase, we selected
the corresponding FoodOn class based on the FoodOntoMap
mappings [40].

5. SNOMED CT: This was performed for distinguishing 207
classes, where the classes are semantic tags from the
SNOMED CT ontology. In this task, we also used
FoodOntoMap [40] to obtain the SNOMED CT class for
the food phrase.

In cases of food versus nonfood entity task and the task of
distinguishing food entities with regard to the Hansard semantic
tags, we have a ground truth corpus—the curated part of
FoodBase. However, in case of FoodOn and SNOMED CT, we
fine-tuned BERT and BioBERT only for entities that had
semantic tags provided by the FoodOntoMap resource (ie, not
all food entities are presented in these 2 resources as was
previously explained). All semantic tags (ie, Hansard parent,
Hansard closest, FoodOn, and SNOMED CT) for each food
entity available in the FoodBase corpus are presented by the
FoodViz tool (see Figure 3). Finally, we ended up with 15
different fine-tuned models, 3 per task depending on the
pretrained model that was used (BERT, BioBERT Standard, or
BioBERT large).

Figure 3. An example of food entities available from one recipe that are present in the training data set. The entities are annotated using Hansard parent,
Hansard closest, FoodOn, Systematized Nomenclature of Medicine Clinical Terms, and OntoFood (not studied in this paper) semantic tags.

A Baseline for Comparison: BuTTER
To compare the results, the Bidirectional Long Short-Term
Memory (LSTM) model for sequence tagging with a CRF layer
(BiLSTM-CRF) [50] was used as a baseline, which has already
been shown to achieve state-of-the-art results in several NLP
tasks such as part-of-speech tagging, chunking, and NER tasks.
Additionally, the BiLSTM-CRF model has been used to train
food NER (food versus nonfood entity) utilizing the food
annotations available in the FoodBase corpus [38], resulting in

BuTTER models. BuTTER consists of 2 different BiLSTM-CRF
architectures, each one evaluated with 3-word embedding
methods (ie, GloVe [51], Word2Vec [52], and FastText [53])
and once using the word tokens for representing the textual data
used by the input layer. The difference between the 2 BuTTER
architectures is that the first one is a BiLSTM-CRF model
without character embeddings, while the second one has an
additional stacked input and embedding layer to generate
character embeddings (Char-BiLSTM-CRF). When representing
the textual data using the predefined vocabularies of Word2Vec,
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GloVe, and FastText, some of the words are absent; therefore,
out-of-vocabulary word preprocessing techniques can be applied
to handle them. In the case when word tokens are used, the
impact of lemmatization on the model performance was
investigated. All in all, results from 16 different BuTTER
models were obtained, that is, 2 architectures × 4 textual
representations (ie, 3-word embeddings + word tokens × 2
scenarios, that is, preprocessing applied or not). More details
about them can be found in the study of Comeau et al [39].

Results

Experiments
In this section, the experimental setups for fine-tuning the BERT
and BioBERT models in each classification task are explained,
followed by the experimental results obtained by the evaluation.
We performed 2 experiments: (1) comparison of the BERT
models with the corpus-based BuTTER models presented in a
previous study [40] on the food versus nonfood entity task, and

(2) presenting results for BERT models that can distinguish
between different food semantic tags.

Experimental Design
The experiments were performed using the Colab platform [54].
To fine-tune the pretrained BERT and BioBERT models,
HuggingFace’s transformers [55] library was used with its
BertForTokenClassification class for token level prediction.
This class wraps the BertModel class and adds a token-level
classifier on top of it, which is a linear layer that takes the last
hidden layer of the wrapped model as input. During the training
of the fine-tuning, the AdamW optimizer was used with a
weight_decay_rate of 0.01. The model was trained until its
validation loss did not improve in 5 consecutive epochs, with
a maximum of 100 epochs and with a scheduler to linearly
reduce the learning rate throughout the epochs. Figure 4 presents
the train and validation loss per fine-tuning epoch for the
BioBERT large model on the Hansard parent data set. The same
pattern holds for the other models, and therefore, we present
the learning curve only for this particular model [56].

Figure 4. Training and validation loss per fine-tuning epoch for the bio bidirectional encoder representations from transformers large model on the
Hansard parent data set.

For the BiLSTM-CRF model architecture or the BuTTER
models, we used the default parameters presented in the study
of Comeau et al [39], which are also presented here:

1. The maximum sequence length (ie, sentence length) is 50
since the longest sentence in the data set consists of 45
tokens.

2. The batch size is 256.
3. Architecture: input layer with 50 units, embedding layer

with 300 units, BiLSTM layer with 50 units (total of 100
parameters), dense (TimeDistributed) layer with 50 units,
CRF output layer where the final output dimension is the
number of classes + 1 (ie, one for padding).

The aforementioned architecture refers to the complete
architecture of the BuTTER BiLSTM-CRF model, that is, the

model without character embeddings. The BuTTER
Char-BiLSTM-CRF model contains an additional stack of input
and embedding layers for generating the character embeddings
and a concatenation layer for concatenating the word
embeddings with the character embeddings. The additional
input layer contains 18 units, while the additional embedding
layer contains 20 units. Each of the BuTTER models was trained
until the improvement in validation loss of 5 consecutive epochs

did not surpass 5*10-3, to a maximum of 1000 epochs, whichever
comes first.

The data sets used for training and testing are from the curated
version of FoodBase [38] transformed in IOB tagging [49]
format [57]. The train portion contains 81,347 tokens, while we
report the results with the remaining 25,828 tokens, that is,
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approximately 75% of the data is used for training and the rest
is for testing of the model. The curated version of FoodBase
contains 1000 recipes, with 5 categories that contain 200 recipes
each. We use 150 recipes with alphabetically smaller identifiers
of each category for training and the rest of the recipes from
the category for testing. The statistics about the number of
tokens and their classes among the different data sets are shown
in Table 1. The “Number of different inside, outside, and
beginning annotations” row in this table describes the classes
that our model tries to predict. Since we are predicting food

phrases, for each different food phrase class, we may have
annotations that start with B- for the first token in the phrase,
and I- for all the rest of the tokens. Therefore, the number of
different IOB annotations is approximately twice as large
comparing it to the number of phrase classes. Additionally, the
data sets are not balanced since the majority of the tokens are
not part of the food phrase, that is, they are outside tokens. The
Hansard parent data set is smaller than the others since there
were 4 recipes with problematic parents and we omitted them
in the evaluation.

Table 1. Data set statistics.

SNOMED CTaFoodOnHansard closestHansard parentFood classificationAnnotations

8151873017,86411,75917,937Annotated tokens (beginning and inside)

99,02498,44588,95695,41695,416Outside tokens

318342163633Number of different inside, outside, and

beginning annotations

19619791341Number of food phrase classes

107,175107,175106,820107,176107,175Total number of tokens

aSNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.

The evaluation of the proposed models was done using stratified
five-fold cross-validation. Stratified sampling was used to
generate the folds since the FoodBase corpus consists of 5
different categories of recipes. For each recipe category, 10%
of the training set of each fold was taken sequentially out and
used for validation.

Experimental Results
Next, the results for both experiments are presented, starting
with the comparison of the BERT models with the BuTTER
models on the food versus nonfood task, followed by presenting
the BERT models trained for distinguishing between different
food semantic tags. We present the results for the macro F1
score. The macro averaging scheme computes each metric for
each class independently and then calculates the mean. The
rationale behind using macro averaging is that it conveys more
meaningful information when considering especially a task that
consists of more than two semantic tags that should be predicted
with heavily unbalanced data. Conversely, simple micro
averaging provides insufficient information in tasks where more
than two semantic tags (ie, classes) are used, as it conflates the
true positives, false positives, true negatives, and false negatives
into one confusion matrix and then computes the evaluation
metrics. Similarly, weighted averaging is biased in favor of the
class most represented in the data, as the weight while
computing the average depends on the relative frequency of the
class label in the data set.

Comparison With the BuTTER Approach
Figure 5 [39] presents the results obtained from evaluating the
fine-tuned BERT (ie, FoodNER) by using the original pretrained
BERT model and 2 BioBERT models in the food versus nonfood
task described in Methods and comparing them with the
BuTTER results obtained for the same task. From the table, it
follows that the best FoodNER model is obtained by fine-tuning

the original pretrained BERT, resulting in a macro F1 score of
94.31%. Additionally, comparing it with the other FoodNER
models obtained by fine-tuning BioBERT large and BioBERT
standard, the absolute empirical differences are very small,
amounting to only 0.05% and 0.12%, respectively. Comparing
the FoodNER models with both BuTTER architectures
(BiLSTM-CRF and Char-BiLSTM-CRF) when word
embeddings are used to represent the textual data for the input
layer (ie, GloVe, Word2Vec, and FastText), it follows that all
FoodNER models have better macro F1 scores by using the
stratified 5-fold cross-validation. However, we should point
that the differences here are in the range from 1.74% to 4.36%.
Comparing FoodNER models with both BuTTER architectures
when word tokens are used for the input layer, the BiLSTM-CRF
with lemmatization of the word tokens outperforms the
FoodNER models by 0.32% and the Char-BiLSTM-CRF without
lemmatization of the word tokens by 0.28%. We can conclude
here that these differences are not crucial from a practical point
of view; therefore, we can assume that all models perform
similarly. Further, we also fine-tuned BERT by using the
BiLSTM-CRF architecture for food classification, which results
in a similar performance of a macro F1 score of 93.30%. To
explore the robustness of the models, Figure 6 presents boxplots
of the macro F1 score distributions obtained by evaluating each
fold for each model separately. From the figure, it follows that
all models perform well since all of them provide a macro F1
score greater than 87.00% for each fold. The most robust models
are FoodNER BioBERT standard model and the BuTTER
BiLSTM-CRF model with Word2Vec when out-of-vocabulary
preprocessing is applied. However, comparing the results
between both models, the FoodNER BioBERT standard provides
a better macro F1 score. The other models also provide robust
results, where the macro F1 scores obtained from different folds
do no vary with large deviations. It is interesting to note that
the best macro F1 score is obtained when BERT is fine-tuned

J Med Internet Res 2021 | vol. 23 | iss. 8 | e28229 | p. 7https://www.jmir.org/2021/8/e28229
(page number not for citation purposes)

Stojanov et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


with BiLST-CRF for one of the five folds; however, using the
values from the other folds, the macro F1 score of this model
can vary between different folds. Thus, we can conclude that
the FoodNER models, which are fine-tuned BERT, BioBERT

standard, and BioBERT large models, provide very robust
results. These results also show that by using BERT,
state-of-the-art results for food classification can be achieved.

Figure 5. Macro F1 scores for all considered models for the food versus nonfood entity task. Each macro F1 score is obtained by using stratified k-fold
cross-validation (k=5). Underlined values are best per subtable, while the bold value is the best from the whole table. BERT: bidirectional encoder
representations from transformers; BiLSTM-CRF: bidirectional long short-term memory conditional random field; BuTTER: bidirectional long short-term
memory for food named-entity recognition; NER: named-entity recognition.

Figure 6. Boxplots of macro F1 scores obtained by using stratified five-fold cross-validation for all considered models for the binary food classification
task. BERT: bidirectional encoder representations from transformers; BiLSTM-CRF: bidirectional long short-term memory conditional random field.
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BERT Models for Recognizing Between Different Food
Semantic Tags
In this experiment, we present the results of fine-tuning the
BERT, BioBERT large, and BioBERT standard models in the
tasks of distinguishing food entities concerning different
semantic models (ie, FoodOn, Hansard closest, Hansard parent,
and SNOMED CT). We have decided to focus only on the
BERT models since it provides state-of-the-art results in already
all NLP NER tasks. Additionally, in Table 1, the number of
annotated tokens and the number of classes for each task are
presented.

Table 2 provides the macro F1 scores for the 3 FoodNER models
(BERT, BioBERT large, and BioBERT standard) for
distinguishing food entities concerning different semantic
models (ie, FoodOn, Hansard closest, Hansard parent, and
SNOMED CT). The column “epochs” provides information

for the number of epochs needed to fine-tune the model. From
the table, it is evident that all models achieved a macro F1 score
between 73.39% and 78.96%. The best models for each semantic
tag set achieved the following macro F1 scores: (1) FoodOn,
78.13%; (2) Hansard closest, 78.96%; (3) Hansard parent,
76.26%; and (4) SNOMED CT, 76.01%.

Keeping in mind the number of classes we are predicting for
each task, we can conclude that these are really promising
results. Additionally, the FoodNER models trained in the tasks
of distinguish food entities concerning semantic tags on the
level of food groups are the first corpus-based NERs that can
distinguish between different food semantic tags (ie, food
groups). Once more, we should emphasize that in the cases of
FoodOn and SNOMED CT, the BERT and BioBERT models
are tuned only on the entities that have semantic tags provided
by the FoodOntoMap resource, in which not all food entities
from the semantic resources are present.

Table 2. Macro F1 scores for the 3 food named-entity recognition models for the tasks concerning different semantic models.

Macro F1 score (%)EpochsaModel, semantic model

BERTb

78.13100FoodOn

75.8785Hansard closest

75.04100Hansard parent

76.0191SNOMED CTc

BioBERT-large

75.5893FoodOn

78.96100Hansard closest

76.26100Hansard parent

74.5195SNOMED CT

BioBERT-standard

74.81100FoodOn

74.18100Hansard closest

74.9489Hansard parent

73.3989SNOMED CT

aThis provides information on the number of epochs needed to fine-tune the model.
bBERT: bidirectional encoder representations from transformers.
cSNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.

Discussion

Principal Findings
The models are trained on FoodBase [38], in which recipes that
are collected from the biggest social media networks for sharing
and discovering recipes, are annotated. Since this is a specific
type of text, there are some weaknesses when it comes to
applications on texts of a different nature (eg, medical texts).
To address this in our future work, we plan to further retrain
the models on various types of documents such as dietary
recommendations and PubMed articles. Regardless of this, the
presented BERT models are robust for extracting food concepts

while simultaneously normalizing them to some semantic
resource, which allows further interlinking of the entities with
other domains (eg, health and environmental sciences). This
will help to improve the quality of health and clinical practices.
The semantic tags were selected based on the food annotations
that exist from the FoodBase and FoodOntoMap resources.
However, in future, the FoodNER methodology may be applied
on any other annotated corpus from this domain. To bring our
work closer to subject matter experts from the food domain, the
FoodNER models have been integrated in the FoodViz platform
[45]. Figure 7 shows the interface where subject matter experts
can place an arbitrary recipe, select a model, and preview the
annotated food entities. We provide highlighting of the phrases
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in the text, as well as the tabular display of the food phrases and
their annotations. Figure 7 is an example where a short
description from a recipe “Heat rapeseed oil in a large Dutch
oven over high heat. Sear cubes of beef a few at a time, until
well browned on all sides, about 4 minutes per batch. Reserve
browned beef in a bowl. Reduce heat to medium and add onion
and garlic. Cook until soft and just beginning to brown, about
10 minutes.” is annotated using the model fine-tuned with
BioBERT large in the Hansard closest task. From the
annotations provided, it is obvious that the model can recognize

all food entities that are mentioned in the text (ie, grapeseed
oil, beef, browned beef, onion, and garlic) annotated by Hansard
semantic tags. This interface radically simplifies the usage of
the state-of-the-art models for subject matter experts in the food
domain, without their knowledge of the underlying details, such
as machine learning or IOB format understanding. Additionally,
the current architecture of the FoodViz application allows
integration of new prediction models only with their upload at
the corresponding location in the server.

Figure 7. Food named-entity recognition integration in FoodViz.

Conclusion
We present a corpus-based NER method for food information
extraction, known as FoodNER. It is developed by fine-tuning
the BERT model by using 3 previously published predefined
BERT representation language models (ie, the original BERT
and 2 BioBERTs; standard and large). FoodNER can be used
to extract and annotate food entities in 5 different tasks:
distinguishing between food versus nonfood entities and
distinguishing food entities on the level of food groups by using
the closest Hansard semantic tags, the parent Hansard semantic
tags, the FoodOn semantic tags, or the SNOMED CT semantic
tags. All in all, the models provide very promising results
achieving around 93.30%-94.31% macro F1 scores in the food

versus nonfood entity task and around 73.39%-78.96% macro
F1 scores in the tasks where more semantic tags are recognized.
Additionally, the models are included in the FoodViz
framework, which allows users to select which FoodNER model
they want to use for the annotation of their texts with food
entities and additionally provides a visualization of the annotated
data with an opportunity to correct the false positive and false
negative annotations. Having such a robust state-of-the-art food
information extraction method such as FoodNER will allow
further research in investigating food-drug and food-disease
interactions, thereby providing an opportunity to start building
a food knowledge graph, including relations with health-related
entities.
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