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Abstract

Background: Proactive detection of mental health needs among people with diabetes mellitus could facilitate early intervention,
improve overall health and quality of life, and reduce individual and societal health and economic burdens. Passive sensing and
ecological momentary assessment are relatively newer methods that may be leveraged for such proactive detection.

Objective: The primary aim of this study was to conceptualize, develop, and evaluate a novel machine learning approach for
predicting mental health risk in people with diabetes mellitus.

Methods: A retrospective study was designed to develop and evaluate a machine learning model, utilizing data collected from
142,432 individuals with diabetes enrolled in the Livongo for Diabetes program. First, participants’ mental health statuses were
verified using prescription and medical and pharmacy claims data. Next, four categories of passive sensing signals were extracted
from the participants’ behavior in the program, including demographics and glucometer, coaching, and event data. Data sets were
then assembled to create participant-period instances, and descriptive analyses were conducted to understand the correlation
between mental health status and passive sensing signals. Passive sensing signals were then entered into the model to train and
test its performance. The model was evaluated based on seven measures: sensitivity, specificity, precision, area under the curve,
F1 score, accuracy, and confusion matrix. SHapley Additive exPlanations (SHAP) values were computed to determine the
importance of individual signals.

Results: In the training (and validation) and three subsequent test sets, the model achieved a confidence score greater than 0.5
for sensitivity, specificity, area under the curve, and accuracy. Signals identified as important by SHAP values included
demographics such as race and gender, participant’s emotional state during blood glucose checks, time of day of blood glucose
checks, blood glucose values, and interaction with the Livongo mobile app and web platform.

Conclusions: Results of this study demonstrate the utility of a passively informed mental health risk algorithm and invite further
exploration to identify additional signals and determine when and where such algorithms should be deployed.

(J Med Internet Res 2021;23(8):e27709) doi: 10.2196/27709
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Introduction

In the United States, 34.2 million people are affected by diabetes
mellitus [1]. Approximately 25% of those living with diabetes
experience significant depressive symptoms, and up to 40%

experience generalized anxiety disorder (GAD) [1-3].
Individuals with diabetes and mental health challenges have
been found to be less adherent to diabetes
treatment recommendations, including diet, exercise, medication
use, glucose monitoring, and medical appointments, and they
are at a greater risk for adverse medical outcomes [1]. Health
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care costs for those with comorbid diabetes and mental health
have been estimated to be US $4 billion to $9 billion greater
than for those without these conditions [4]. However, proactive
detection of mental health needs of people with diabetes could
facilitate early intervention, thereby improving their overall
health and quality of life and reducing the health and economic
burdens placed on this population and the health care system
as a whole. 

Despite recommendations by the American Diabetes Association
and the United States Preventive Services Task Force to
routinely evaluate people with diabetes for their mental health
needs, only 25% to 50% of people with diabetes who have
depression receive a mental health diagnosis and intervention
[5,6]. This gap in receiving care is a result of a shortage of
mental health professionals available to offer assessment and
intervention, a lack of mental health knowledge among primary
care providers who most often care for patients with diabetes,
and limited access to mental health screening tools in health
care practices offering services to these patients [6]. Newer
methods such as passive sensing and ecological momentary
assessments (EMAs) provide a more scalable, less effort- and
time-intensive approach to information gathering and
assessment. Passive sensing refers to the capture of data about
a person without any extra effort on their part [7]. EMA refers
to the repeated sampling of an individual’s behavior in real time
within their natural environment [8]. Both methods can be
integrated into or with devices and services that people with
diabetes already utilize in their daily lives, such as blood glucose
meters, smartphones, and health coaching platforms
to enable the collection and processing of data in real time and
to provide context for real-time interventions [7]. 

Although passive sensing and EMA have previously been
examined in the general population, limited studies have focused
on the detection of mental health needs among the diabetes
population outside of using smartphones as data warehouses,
relying on accelerometer, GPS, ambient light sensors, and call
log data [9,10]. Moreover, no known study to date has attempted
to detect mental health concerns in people with diabetes by
using blood glucose meters despite the fact that individuals
living with diabetes are encouraged to engage with these devices
at regular intervals, blood glucose monitoring has been found
to be correlated with psychological effects, and engagement
with these devices and testing blood glucose levels are known
to be associated with mood or stress [11-13]. Further, blood
glucose meter data can be paired with data from other sources
for a robust view of a person’s behavioral and emotional
profile. The primary aim of this study was to conceptualize,
develop, and evaluate a novel approach using passive sensing
for predicting mental health risk in people with diabetes.

Methods

Study Design
A multidisciplinary team of experts in data science, machine
learning, and clinical and experimental psychology collaborated
in the development of a machine learning model for detecting
potential mental health risk from passive sensing signals that
was both clinically relevant and statistically rigorous. A

retrospective analysis was performed to evaluate the machine
learning model for detecting potential mental health risk from
passive sensing signals leveraging data collected during
participants’ engagement in the Livongo for Diabetes program
[14].

Livongo for Diabetes
The Livongo for Diabetes program is a digital remote program
for the management of chronic condition focused on
empowering members by providing education and tools to
self-manage their diabetes through mobile technology. The
program offers members (1) a cellular-enabled, two-way
messaging device that measures blood glucose and delivers
personalized insights; (2) free, unlimited blood glucose test
strips; (3) real-time support from diabetes response specialists
available 24 hours a day, 7 days a week, 365 days a year; and
(4) access to certified diabetes care and education specialists
for support and goal setting. Further details on the Livongo for
Diabetes program and its efficacy in improving diabetes-related
outcomes are available in the literature [15-17]. 

Study Participants
Study participants were defined as those individuals enrolled
in the Livongo for Diabetes Program between January 1, 2018,
and February 28, 2020, who used their blood glucose meter at
least once (N=142,432). Approval was granted by the Aspire
Independent Review Board (#520160099). All participants
provided consent to participate, and guidelines outlined in the
Declaration of Helsinki were followed. 

Study Procedure
The mental health status of each participant was verified through
available data from two sources that included data on
medications prescribed to and filled by participants and mental
health–related interventions. Next, passive sensing signals were
extracted from participants’ behaviors as they interacted with
Livongo’s blood glucose meter, mobile app, web portal, and
coaching feature. Then, data sets were assembled by aggregating
these signals per participant over various periods, creating
participant-period instances. Descriptive analyses were
conducted to understand the correlation between the signals and
mental health status. Finally, demographic information and
passive sensing signals were entered into the model, training it
to understand the relationships between these signals and the
participants’ mental health status.

Study Population Identification
Identification of population cases and controls with respect to
mental health conditions—which, in the context of labeling data
for model training, we refer to as ground truth—was performed
utilizing two data sources: (1) claims data and (2) medication
prescription data. Claims data contained information on
medications indicated for mental health conditions that were
prescribed to and filled by participants, as well as mental
health–related assessments and interventions. Based on data
availability and right to use, 6.1% (8633/142,432) of the study
participants had claims data, which provided a diverse way to
identify their mental health needs through diagnoses, procedures,
and prescriptions. Medication prescription data contained only
information on mental health–related medications that were
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prescribed to and filled by participants. Medication prescription
data were available for the entire study population and used to
identify cases for the remaining participants. Participant

demographic characteristics, which were used to evaluate signals
correlated with mental health in the study population, are
summarized in Table 1.

Table 1. Participant demographics and characteristics at the time of enrollment (N=142,432).

ValueCharacteristic

54.8 (12.4)Age in years, mean (SD)

Gender, n (%)

68,968 (48.4)Female

73,147 (51.6)Male

317 (0.22)Other

Ethnicity, n (%)

12,809 (9.0)Hispanic

86,116 (60.5)Non-Hispanic

43,507 (30.6)Unknown

Race, n (%)

66,551 (46.7)Caucasian

14,702 (10.3)Black or African American

8199 (5.76)Asian

468 (0.33)Pacific Islander

725 (0.51)American Indian

6,588 (4.63)Other

45,199 (31.7)Unknown

Diabetes type, n (%)

14,360 (10.1)Type 1

126,369 (88.7)Type 2

1603 (1.2)Unknown

8.27 (8.1)Years since diagnosis, mean (SD)

7.51 (1.7)First reported A1c, mean (SD)

Insulin use, n (%)

39,153 (27.5)Yes

102,622 (72.1)No

657 (0.5)Unknown

Passive Sensing Signals
All data utilized in the study were collected in the course of
how participants naturally engaged with the Livongo for
Diabetes Program. That is, no data were collected solely for
study purposes. We identified various data sources potentially
useful to detect mental health risk behaviors. From these data
sources, we extracted 83 individual signals that can be broadly
classified into the following four categories. Note that individual
signal names are withheld to protect proprietary information.

Demographics
Demographic factors such as age, gender, ethnicity, and race
have been shown to be related to mental health [18]. Therefore,
we included participants’ demographic data into the model.

Glucometer Data
The Livongo blood glucose meter is the most frequent
interaction point for participants of the Livongo for Diabetes
Program. Low rates of blood glucose monitoring [2] and poorer
blood glucose control [19] have been linked to depression among
those with diabetes; and depression, anxiety, and stress
symptoms are greater among people with diabetes than those
without [20]. Differences in device usage is particularly
informative of conditions such as depression when examining
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usage time of day [10] and weekday [21]. Therefore, the key
metrics derived from glucometer usage included the number of
times blood glucose was checked; blood glucose levels; and
variations, responses to questions to assess context such as
current emotional state, and time of the day and day of week
when the reading was taken. 

Coaching Data
In the Livongo for Diabetes Program, Livongo coaches contact
individuals under certain conditions. Numerous studies have
affirmed relationships between sociability and mental health.
Fewer calls and fewer incoming texts have been linked to
depression [22], whereas frequency and duration of
conversations have been shown to be useful in evaluation of
bipolar disorder [23]. Coaching data can serve as a proxy for
sociability, for which successful or failed contacts and time
spent interacting can be used to glean valuable insights.

Event Data
In addition to the blood glucose meter, individuals enrolled in
the Livongo for Diabetes Program interact with multiple
platforms during program participation, including the Livongo
mobile app and web portal. In following the motivations behind
utilizing glucometer and coaching data, we collected frequency,
duration, interactivity, and consistency of interaction sessions,
as well as the time of day and day of week information
associated with the use of the mobile app and web portal. In
addition, we tracked voluntary report sharing with friends and
family as well as interactions with pop-up reminders.

Statistical Analyses
We conducted correlation analyses using Pearson r to
preliminarily gauge the strength of the relationship between
each extracted signal and the presence of mental health
conditions. Among the most highly correlated signals,
demographics were well represented, including gender (male:
r=–0.156, P<.001; female: r=0.155, P<.001), race (Asian:
r=–0.104, P<.001; White: r=0.101, P<.001; Black: r=–0.041,
P<001), BMI (r=0.086, P<.001), and smoking status (active
smoker: r=0.047, P<.001). With regard to glucometer, coaching,
and event data, responses on current emotional state from
participants during blood glucose checks indicating wellness
(r=–0.108, P<.001) or unwellness (r=0.121, P<.001) were most
strongly correlated. Greater frequency and consistency of
interactions with services were negatively associated with mental
health conditions. In addition, we found that greater variation
in blood glucose values, as measured by SD, were positively
correlated with mental health conditions (r=0.041, P<.001).

Outcome Data
When quantifying the performance of a prospective model for
identifying mental health risk, it is important to consider a
variety of perspectives. Metrics such as total accuracy are
inadequate if used alone because they can hide model
deficiencies on imbalanced data. Consider these three questions,
which cannot be answered with total accuracy alone but are of
particular importance in a diagnostic setting: 

1. How often are those with mental health needs (cases)
correctly identified?

2. How often are those without mental health needs (controls)
correctly identified? 

3. How often are those with predicted mental health needs
truly cases?

The following seven measures commonly used in machine
learning model evaluation [24] were selected to address the
above questions and beyond, enabling a holistic view of model
performance:

1. Sensitivity or recall, which addresses question 1
2. Specificity, which addresses question 2
3. Precision, which addresses question 3
4. Area under the curve (AUC), defined as the area under the

receiver operating characteristic curve—an important
measure quantifying the model’s capacity to differentiate
cases and controls (1=ideal performance, 0.5=random
prediction)

5. F1 score, defined as the harmonic mean of the precision and
recall

6. Accuracy, defined as the proportion of instances correctly
classified

7. The confusion matrix, which depicts the number of correctly
and incorrectly identified cases and controls

Model Development
To develop our machine learning model, we then had to divide
the study population into two segments. The first segment,
termed the training and validation set, enabled the model to
learn. The second segment, termed the test sets, was held
separate from model training and used to evaluate the model’s
ability to generalize to unseen data. For training, we used a
time-interval slice of the population consisting of 124,322
participants (ie, 87% of the study population) who had activated
their blood glucose meters in 2018 or 2019, with passive sensing
signal data collected in that timeframe. For testing, we defined
three distinct test sets designed to comprehensively evaluate
model performance. The first two test sets used medication
prescription or refill data as their sources of ground truth,
whereas the third test set used medical and pharmacy claims
data as its source of ground truth.

1. The first test set (test set 1) consisted of the same participant
subset as the training data, but with signal data collected in
the first two months of 2020. This data subset evaluated
model prediction capability on previously seen participants
(93,155/142,432, 65.4%). 

2. The second test set (test set 2) consisted of participants
activated in the first two months of 2020 and the associated
signal data. This test set evaluated model prediction
capability on new, unseen participants (9477/142,432,
6.7%).

3. The third test set (test set 3) utilized the claims data by
identifying participants activated in 2018, 2019, or the first
two months of 2020. This final data subset evaluated
prediction capability with regard to unseen participants,
with mental health needs identified through more diverse
sources beyond prescriptions only (8633/142,432, 6.1%).

A visual summary of the data subsets is presented in Figure 1,
and the specific numeric breakdowns are described in Table 2.
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Furthermore, the demographic information for each subset is
detailed in Multimedia Appendix 1.

To increase the model utility, passive signals were aggregated
during a certain period (participant-period) and presented to the
model for prediction of mental health risk. We defined the
participant-period as an instance. In this study, an aggregation
window of 4 weeks was selected to optimize data availability.
Furthermore, two additional conditions were applied to filter
out ineligible participant-period instances: (1) instances before
a participant had participated in the Livongo Program and (2)
instances of extended inactivity, defined as 30 or more days
without any interaction with the Livongo for Diabetes Program.

The rationale for the first criterion is trivial. The second
eligibility condition reflects the reasoning that a model for
identifying mental health needs from passive signals should
only be employed when a signal is present, specifically signals
where missingness cannot be assumed to be zero (eg, blood
glucose values). Thus, our model should only be trained and
evaluated on complete instances. Table 3 demonstrates the
distribution of eligible instances among the data subsets. Note
the class imbalance, with control instances represented at
roughly a 2:1 ratio over case instances in each data subset.

Figure 1. Source and date ranges of data subsets defined in this study.

Table 2. Number of participant cases and controls for each data subset.

Subset total, nControls, n (%)Cases, n (%)Data subset

124,32281,841 (65.8)42,481 (34.2)Training or validation set

93,15561,904 (66.5)31,251 (33.5)Test set 1

94776558 (69.2)2919 (30.8)Test set 2

86335275 (61.1)3358 (38.9)Test set 3

142,43293,674 (65.8)48,758 (34.2)Total unique

Table 3. Number of participant-period cases and controls for each data subset.

Subset total, nControls, n (%)Cases, n (%)Data subset

836,494549,183 (65.7)287,311 (34.3)Training and validation set

164,259109,550 (66.7)54,709 (33.3)Test set 1

95936640 (69.2)2953 (30.8)Test set 2

85,34051,150 (59.9)34,190 (40.1)Test set 3

1,095,686716,523 (65.4)379,163 (34.6)Total

A machine learning model was enlisted to capture the
relationship between input activity features and exhibited mental
health needs. The core component of our approach was the
training of LightGBM [25] gradient tree boosting models on
random subsets of the training data. This approach addressed
the class imbalance; we undersampled the training control
instances by random undersampling, thus reducing the number
of control instances to equal the number of case instances.
Because this technique reduced the number of control instances
by roughly half, we saw the opportunity to train multiple models
on multiple random subsets. This strategy enabled us to fully
utilize the entire training data set, with each model training on

a differing perspective of the data. We utilized soft voting to
obtain an output prediction for a given instance, meaning the
outputs of each constituent model—a value from 0 to 1
interpretable as the confidence that an instance is a case—were
averaged to obtain a single aggregate confidence score. 

Our final devised model consists of an ensemble of 10
LightGBM models. During our model selection process, we
evaluated multiple other classes of machine learning models,
including logistic regression, random forests, and neural
networks. We also experimented with other flavors of gradient
boosting, including XGBoost and CatBoost, and overall,
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LightGBM yielded the highest performance for our training
task. To tune each constituent model, we used automated
hyperparameter tuning enabled by the hyperopt [26] Python
library with 5-fold cross-validation on the training set. Following
this training procedure, we evaluated the model on the three
held-out test sets to assess model performance.

Results

The results of our model’s performance on each of the
previously described data subsets are presented in Table 4. In
addition, the associated confusion matrices are shown in Figure
2, with both counts and percentages (normalized by class support
size) depicted. Across all three test sets, the vast majority of
metrics exceeded 0.5. Notably, we achieved an AUC of nearly
0.7 on the first test set and exceeded 0.65 across all three sets.
The metrics for which the model fell short of the 0.5 mark were
precision in the first and second test sets and the F1 score for

the second test set. However, it is important to note that owing
to class imbalance, 0.5 would not be the theoretical precision
or the F1 score yielded by random prediction. Rather, the
precision obtained by random prediction would be the proportion
of cases, with the F1 score affected commensurately. In our
case, baseline precision would be approximately 0.3331 for the
first test set and 0.3078 for the second, both of which were well
outperformed by the reported precisions of 0.4702 and 0.4164.
Likewise, the baseline theoretical F1 score of 0.3810 was greatly
outperformed by the reported 0.4953 on the second test set.
Concerning improvement over random prediction overall, our
model produced an approximately 14-point gain in precision
for the first test set and an approximately 10-point gain for the
second and third sets, whereas recall improved by 14 and 12
points and AUC improved by 20 and 16 points, respectively.
These results demonstrate a respectable, generalizable
performance and are an encouraging advancement towards
practical passive mental health risk assessment at scale.

Table 4. Performance metrics for each data subset.

AccuracyF1 ScoreAUCaPrecisionSpecificitySensitivityData subset

0.6740.5920.7450.5190.6670.688Training and validation set

0.6400.5420.6960.4700.6400.639Test set 1

0.6100.4950.6580.4120.6050.621Test set 2

0.6080.5610.6560.5080.5960.625Test set 3

aAUC: area under the curve.
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Figure 2. Confusion matrices for each data subset.

Our model results also provided the opportunity to gain further
insight into the utility of the passive sensing signals. For this
purpose, we used the SHapley Additive exPlanations (SHAP)
method [27] to compute feature importance, allowing us to
quantify the average contribution of each signal to the model.
These values are presented in Table 5. Our findings closely
mirrored the insights from our correlation analysis.
Demographics ranked highly among signals, with gender and
race identified as the two most relevant factors. Among passive

sensing signals, responses indicating an emotional state of
wellness or unwellness during blood glucose checks were
deemed the most important. Interaction frequency and
consistency were also considered valuable according to SHAP.
The model took into particular consideration blood glucose
checks based on the times of day and the proportion of days
they were performed. Mean and SD values of blood glucose
levels also appeared in the top quartile of signals.
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Table 5. Feature importance as measured by mean absolute SHapley Additive exPlanations (SHAP) values, interpreted as the average impact on model
output (log-odds) magnitude. Note that aliases based on the signal category are depicted in lieu of the signals to protect proprietary information.

Mean absolute SHAP valuePassive signal

0.152Demographics 1

0.089Demographics 2

0.078Glucometer data 1

0.040Demographics 3

0.039Glucometer data 2

0.037Demographics 4

0.037Demographics 5

0.022Event data 1

0.018Demographics 6

0.017Event data 2

0.014Glucometer data 3

0.013Glucometer data 4

0.012Glucometer data 5

0.012Glucometer data 6

0.011Glucometer data 7

0.011Demographics 7

0.011Glucometer data 8

0.010Glucometer data 9

0.008Glucometer data 10

0.008Glucometer data 11

0.008Glucometer data 12

0.007Glucometer data 13

0.006Event data 3

0.006Event data 4

0.006Glucometer data 14

0.006Glucometer data 15

0.006Event data 5

0.005Event data 6

0.005Glucometer data 16

0.005Event data 7

0.004Event data 8

0.004Event data 9

0.004Event data 10

0.004Glucometer data 17

0.003Event data 11

0.003Glucometer data 18

0.003Coaching data 1

0.002Glucometer data 19

0.002Event data 12

0.002Event data 13

0.002Coaching data 2
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Mean absolute SHAP valuePassive signal

0.002Event data 14

0.002Event data 15

0.002Glucometer data 20

0.002Event data 16

0.001Coaching data 3

0.001Event data 17

0.001Event data 18

0.001Coaching data 4

0.001Event data 19

<0.001Event data 20

<0.001Event data 21

<0.001Event data 22

<0.001Event data 23

<0.001Coaching data 5

<0.001Event data 24

<0.001Event data 25

<0.001Event data 26

<0.001Event data 27

<0.001Event data 28

<0.001Coaching data 6

<0.001Coaching data 7

<0.001Event data 29

<0.001Event data 30

<0.001Event data 31

<0.001Event data 32

<0.001Event data 33

<0.001Event data 34

<0.0001Event data 35

<0.0001Event data 36

<0.0001Event data 37

<0.0001Event data 38

<0.0001Event data 39

<0.0001Event data 40

<0.0001Event data 41

<0.0001Event data 42

<0.0001Event data 43

<0.0001Event data 44

<0.0001Coaching data 8

0Coaching data 9

0Coaching data 10

0Coaching data 11

0Event data 45
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Discussion

In this study, we found that a machine learning approach using
passive sensing signals that included data on participant
demographics, blood glucose meter use, interaction with diabetes
coaches as a proxy for sociability, and engagement with the
Livongo for Diabetes Program demonstrated utility in predicting
mental health risk among people with diabetes.

The results of our approach invite further exploration and
expansion. It is well understood that smartphones can be viewed
as vehicles for passive data collection and help identify digital
phenotypes of mental health disorders, as shown previously
[28]. However, it is time to move beyond focusing on
smartphones as the only devices that enable passive sensing
and EMA and view other devices and services that people with
diabetes must use for their self-management as robust data
warehouses. In this particular study, participants who enrolled
in the Livongo for Diabetes Program had access to a
Bluetooth-enabled blood glucose meter for measuring their
blood glucose levels, the Livongo mobile app and web platform
for tracking food intake and physical activity as well as receiving
health reminders, and Livongo coaches for coaching for diabetes
self-management. Each device and service offered valuable data
to input in our model. The blood glucose meters provided access
to the participants’ behavioral, emotional, and physiological
data, such as how they were feeling at the time of measuring
their blood glucose level and the reading itself. The Livongo
mobile app and web platform enabled us to understand when
participants were awake, using their smartphones, and engaged
in a health-related activity. Coaching allowed us to understand
whether participants were actively communicating with others.
Together, these different data sources enabled us to create a
data set that combined behavioral, emotional, and physiological
factors into a holistic predictive algorithm. Although these
particular devices and services are unique to Livongo members,
there are ways to obtain similar data in the real world. For
example, several commercially available wireless and
Bluetooth-enabled blood glucose meters connect to mobile apps
that enable people with diabetes mellitus to track and receive

feedback on their blood glucose levels and share data with
others. Such meters and associated apps host behavioral,
communication, and physiological data similar to what we used
in our model. There is also a plethora of health-related apps that
enable individuals to track their food intake, physical activity,
mood, sleep, and other health signals. These apps host additional
behavioral and emotional data similar to what we used in our
model.

Identifying potential mental health risk from passively collected
signals is undoubtedly not a simple task, and our study has some
limitations. First, because we limited our extracted signals to
interactions with Livongo devices and applications, we did not
have access to certain passive signals shown to be predictive in
previous studies, such as mobile device accelerometer, ambient
light sensor, or GPS data. As a result, our model was given a
somewhat restricted view of a member’s activity and sociability
patterns. Second, we had access to a limited volume of medical
and pharmacy claims data, which made it difficult to utilize the
data on their own. However, both limitations could also be seen
as strengths of our study. Our inability to access previously
studied passive signals afforded us an opportunity to examine
new signals from devices and services that are unique to people
with diabetes. It may also be more acceptable from a privacy
perspective. Furthermore, we had limited claims data;
nevertheless, the data enabled us to confidently label participants
as cases versus controls. Finally, a major strength of our study
was the fact that, by design, no data were collected with active
participant input for the express purpose of detecting mental
health risk. In that regard, our proposed approach makes
real-world deployment more readily feasible, in contrast to other
studies of passive sensing and EMA for mental health, which
required active participant participation and extensive sensor
infrastructure.

In sum, our model is a bold step toward detecting potential
mental health risk passively and autonomously. In its nascent
stage, we recommend integrating such a model with existing
systems and services, while continuing to improve the quality
and completeness of care that can be offered to those dealing
with mental health needs.
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AUC: area under the curve
EMA: ecological momentary assessment
GAD: generalized anxiety disorder
SHAP: SHapley Additive exPlanations
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