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Abstract

Background: Kidney transplantation is the optimal treatment for patients with end-stage renal disease. Short- and long-term
kidney graft survival isinfluenced by a number of donor and recipient factors. Predicting the success of kidney transplantation
isimportant for optimizing kidney allocation.

Objective: The aim of this study was to predict the risk of kidney graft failure across three temporal cohorts (within 1 year,
within 5 years, and after 5 years following a transplant) based on donor and recipient characteristics. We analyzed a large data
set comprising over 50,000 kidney transplants covering an approximate 20-year period.

Methods: We applied machine learning—based classification algorithmsto devel op prediction modelsfor therisk of graft failure
for three different temporal cohorts. Deep learning—based autoencoders were applied for data dimensionality reduction, which
improved the prediction performance. The influence of features on graft survival for each cohort was studied by investigating a
new nonoverlapping patient stratification approach.

Results. Our models predicted graft survival with area under the curve scores of 82% within 1 year, 69% within 5 years, and
81% within 17 years. The featureimportance analysis elucidated the varying influence of clinical features on graft survival across
the three different temporal cohorts.

Conclusions: In this study, we applied machine learning to develop risk prediction models for graft failure that demonstrated
a high level of prediction performance. Acknowledging that these models performed better than those reported in the literature
for existing risk prediction tools, future studies will focus on how best to incorporate these prediction models into clinical care
algorithms to optimize the long-term health of kidney recipients.
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Introduction

Background

Kidneys are vital for the health of an individual, as they filter
waste products from the blood and produce hormonesand urine
[1]. Petients are considered to have end-stage renal diseasewhen
their kidney function falls below aspecific threshold [2]. A lack
of timely measuresto prevent kidney failure resultsin premature
death [3,4].

Kidney transplantation [5,6] and dialysis are the two main
treatments for kidney failure [7]. Kidney transplantation offers
a survival advantage compared with other forms of kidney
replacement therapy; however, the rate of graft loss following
transplant is still undesirably high [8]. Kidneys are a limited
resource, and optimizing the match between donors and
recipients is crucia for improving outcomes after
transplantation. Kidney transplant allocation is, in part, based
on a number of donor-recipient—related factors that influence
graft survival. Various clinical studies have been conducted on
the influence of these factors on graft survival; however, given
the complex interactions between these factors, there remains
much to belearned in thisarea. Existing risk prediction models
only have a limited ability to predict outcomes for kidney
transplant recipientswith receiver operating characteristic scores
of 0.6-0.7 [9-11].

Prediction modeling using machine learning (ML) algorithms
has gained attention in recent years [12] for predicting the
success of clinical or surgical procedures (such as kidney
transplant). ML algorithms autonomously learn the underlying
associations between preprocedure clinical features and
postprocedural outcomesto predict the outcome of the procedure
for a given clinica case. In kidney transplant, ML-based
prediction models, based on donor-recipient information,
autonomously learn the underlying rel ationships between donor
and recipient factors to predict transplant outcomes. Multiple
studies have been conducted using ML methods to predict the
kidney graft outcome [13-16]; however, the standard approach
innearly all the reviewed studies has been to select one or more
arbitrary period starting from the date of transplant and applying
classification algorithms for prediction. There is a clear need
for further exploration of data stratification approaches and
other ML methods with respect to feature engineering and
prediction modeling.

Objectives

In this study, the intent is to investigate kidney transplant
allograft survival, that is, estimating the time-to-event and the
evolving influence of clinical features leading to an
event—within three temporal cohorts of 1 year, >1-5 years, and
>5 years of a kidney transplant. We predicted the outcome of
graft failure after kidney transplant based on the analysis of
donor and recipient features. We applied ML methods to (1)
predict the graft status over different temporal periods and (2)
analyzethe changing effect of donor-recipient—rel ated predictors
across different periods. To devel op the prediction models, we
analyzed a large data set of over 50,000 transplants covering
approximately a 20-year period of kidney transplants in the
United States. To generate the clinically meaningful temporal
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cohorts, we experimented with two patient stratification
approaches: (1) a novel nonoverlapping patient stratification
approach, whereby a patient’s graft failure was recorded only
inthetemporal cohort when it actually happened, that is, agraft
failure event in the preceding cohort was not included and (2)
the traditional overlapping patient stratification approach that
provides an accumulative count of graft outcomes until aspecific
time point. To develop the prediction models, we investigated
multiple ML algorithms using both patient stratification
approaches. Nonoverlapping temporal cohortswere considered
to investigate the influence of clinical features on predicting
graft survival over time, asthetemporal partitioning of the data
allowed for the establishment of feature influence across distinct
temporal windows. We applied the feature importance method
based on the mean decrease in impurity (Gini).

The contributions of this research are asfollows: (1) ML-based
prediction models that are trained on a large data set, offering
improved prediction performance compared with previous
studies (previous graft prediction studies are based on asmaller
number of transplants over a shorter period); (2) data
dimensionality reduction based on a deep learning framework
to handle the high-dimensional and complex kidney transplant
data set; (3) a novel nonoverlapping patient stratification
approach to provide fine-grained feature importance within a
specific period while avoiding bias from preceding cohorts; (4)
explaining theinfluence of the different clinical features, during
different periods, toward the prediction performance of ML
prediction models. Thisfinding allowsthe sel ection of the most
important features to predict graft outcomes within a specific
temporal window; and (5) a comparison between the two
stratification approaches with respect to the performance of the
prediction models. The future practical outcome of this study
isthe provision of a data-driven decision support tool to assist
nephrologists in the kidney allocation process by identifying
the best donor and recipient pair that will lead to the highest
likelihood of graft survival for a given recipient.

Prior Work

Patients can receive a kidney from either deceased donors or
living donors. The donor-recipient matching process becomes
relatively more complex with deceased donors because of the
need to account for additional clinical factors (ie, prolonged
cold ischemiatime, prolonged wait times, and generally lower
quality organs) [17]. Given the fact that kidney organs are a
limited resource, it isimportant to have an efficient and effective
donor-recipient matching process to ensure long-term graft
survival [18].

Data-driven methods are now being used for organ matching;
these methods are used to establish clinical compatibility beyond
the blood group and tissue type. Conventional data-driven
prediction methods use statistical techniques such as Cox
proportional hazard models and Kaplan-Meier estimates to
perform time-to-event analyses [19]. Significant research has
been conducted with Cox-based modelsin the survival analysis
of different organ transplants; however, these methods
eventually lose predictive accuracy asthefeature spaceincreases
[13,14].
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ML-based data analysis to develop prediction models for
predicting outcomes is usually performed using classification
methods, whereas regression methods are used for time-to-event
analysis. There aretwo prominent approachesto predict kidney
allograft outcomes using ML -based classification methods. The
first approach isto predict graft survival over time by dividing
alongitudinal data set into different time cohorts based on the
occurrence of a given adverse event or the last follow-up date
from the date of transplant. Each time cohort hasabinary target
variable, that is, success or failure of the graft, which isused to
train the classification model to predict graft survival [15,16].
The second approach isto predict the risk acuity associated with
agraft within aperiod. Topuz et al [15] used this approach and
divided the data set into three graft failure risk groups (high,
medium, and low) across three different periods to predict the
risk of graft failure within a specific time using classification
methods. Li et a [20] used Bayesnet to classify graft risk levels
and predict graft survival.

Due to the high dimensionality of existing data sets for organ
transplantation, feature selection is applied to filter out redundant
features. A stacked autoencoder, which isan unsupervised neural
network, isan efficient dimensionality reduction technique with
promising performancefor deep representation of medical data
[21] that reconstructs its own inputs by first encoding them to
asmaller size and then decoding back to the original inputs. A
comparative study by Sadati et al [22] highlighted the efficacy
of different types of autoencoders for data sets based on
electronic health records.

Right-censored data are acommon problem for survival anaysis,
asit represents cases for which the adverse event isnot available
or recorded because of either the subject having been lost to
follow-up or not experiencing the event during the study period.
Multiple approaches have been adopted in previous studies to
addressthis problem. The study on kidney transplants by Topuz
et al [15] discarded all the right-censored data before 7 years
from the time of transplant and included the remaining
transplants that took place after that time point in the low-risk
group. In astudy predicting heart transplant outcomes, the data
set was divided into three different time cohorts (1, 5, and 9
years) to predict the status of the graft. Patients who did not
have graft failure during aparticular time cohort were censored,
and all the patients beyond that time cohort were considered to
have successful transplants [23].
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Theinfluence of clinical features(or clinical predictors) on graft
survival tends to vary over time [16], as shown using a heat
map [24]. Dag et a [23] analyzed the changing significance of
features for three overlapping time cohorts (1, 5, and 9 years).
They deduced that certain types of features perform well in the
long term compared with the short and medium terms. For
instance, socioeconomic factors were more influential in their
9-year time cohort asthey covered major variationsin the data.
It is important to note here that feature significance over time
can only be substantiated if the analysis is performed with
nonoverlapping cohorts to avoid any bias introduced by the
cumulative effect of data before the analysis period.

In previous studies [16,20-22,25], predicting graft failure has
been pursued by taking an overlapping patient stratification
approach, which means that each subsequent time cohort
includes data from the previous cohort. This introduces a
cumulative effect that isuseful for predicting graft failure across
a staggered time period. However, the overlapping patient
stratification approach isineffective in determining theinfluence
of clinical features during a specific time period. Hence, the
nonoverlapped cohort approach offers a novel mechanism to
investigate the influence of clinical featureswithin specific time
windows. To the best of our knowledge, nonoverl apping cohorts
have not been studied in the literature to develop prediction
models or analyze the temporal influence of clinical features
on kidney transplant outcomes.

This study is organized into five major sections: Methods
presents the study’s methodology; Results presents the results
of the prediction; and Discussion discusses the significance of
clinical features toward graft status prediction across different
time cohorts and offers a conclusion and future research
directions.

Methods

Overview

To predict graft survival over time and to analyze the influence
of clinical features on graft survival, our data analytics
methodology (Figure 1) comprised data preparation, feature
engineering, prediction modeling, model evaluation, and analysis
of changing relevance of features.
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Figure 1. Overview of our data anaytics methodology. AUC: area under the curve; SMOTE: synthetic minority oversampling technique; UNOS:

united network of organ sharing.
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Data Description

This study used data from the Scientific Registry of Transplant
Recipients (SRTR). The SRTR data system includes dataon al
donors, wait-listed candidates, and transplant recipients in the
United States, submitted by the members of the Organ
Procurement and Transplantation Network. The Health
Resources and Services Administration and the US Department
of Health and Human Services provided an overview of the
activities of the Organ Procurement and Transplantation
Network and SRTR contractors.
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The data set provided pretransplant clinical features and
outcomes of 277,316 kidney transplants between 2000 and 2017.
Survival was reported in terms of graft outcome and patient
status. For the purposes of this study, graft failure was defined
as (1) graft loss or (2) death with afunctioning graft.

We analyzed the data and used only complete cases (ie, no
missing feature values), which comprised a total of 52,827
kidney transplants. Table 1 providesalist of theincluded clinical
features and their descriptions used in our experiments.
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Feature description Datatype Abbreviation
Peak panel reactive antibody Continuous PKPRA

Type of transplant Categorical REC_TX_PROCEDURE
Any previous kidney transplant Categorical PREVKI
Donor age Continuous DAGE

Donor height Continuous DHT100
Recipient height Continuous RHT2100
Donor weight Continuous DWT
Recipient weight Continuous RWT2

Donor creatinine level Continuous DONCREAT
Expanded criteria donor Categorical ECD
Donation after cardiac death Categorical DCD

Donor hypertension Categorical DHTN2
Recipient hypertension Categorical RHTN
Recipient BMI Continuous RBMI2
Donor BMI Continuous DBMI

Cold ischemiatime Continuous CIT

Recipient age Continuous RAGETX
Number of HLA antigen mismatches (paired) Categorical HLAMM
Functional status of the recipient Categorical FUNCTSTAT
Donor-recipient sex (paired) Categorical DRSEX
Donor-recipient race (paired) Categorical DRRACE
Donor-recipient age (paired) Categorical DRAGE
Recipient cardiovascular disease Categorical RCVD

Donor hepatitis C virus Categorical DHCV
Recipient peripheral vascular disease Categorical RPVD

Donor race Categorical DRACESIMP
Recipient race Categorical RRACESIMP
Recipient malignancy Categorical RMALIG
Years on dialysis pretransplant Continuous VINTAGE
Donor diabetes Categorical DDM
Preemptive transplant Categorical PREEMPTIVE
Recipient diabetes Categorical RDM2
Recipient coronary artery disease Categorical RCAD
Simplified ESRD? diagnosis Categorical ESRDDXSIMP
Donor-recipient CMV® (paired) Categorical DRCMV
Donor-recipient height difference Categorical AHD1
Donor-recipient weight difference Categorical DRWT

3ESRD: end-stage rena disease.
bemy: cytomegalovirus.

https://www.jmir.org/2021/8/e26843

RenderX

JMed Internet Res 2021 | vol. 23 | iss. 826843 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Data Preparation

Data preparation for learning the M L-based prediction models
consisted of data cleaning, partitioning the data set into temporal
cohorts, and addressing class imbalances.

Data Cleaning

Data cleaning involved removing (1) all patient identifying
features (such astransplant 1D, donor 1D, and patient I1D) [23],
(2) post- and intraoperative features (such as delayed graft
function and warm ischemia time) as we focused on
pretransplant featuresto predict outcomes[23], (3) living donors
[15,26], (4) recipients below the age of 18 years[14,27,28], and

Figure 2. Derivation of the overlapped cohorts.

Nagvi et al

(5) al sequential and en bloc transplants, both of which are
atypical procedures that would not broadly apply to most
deceased donor situations. These exclusion criteria were
suggested by domain experts and also noted in prior studies
[9,28].

Data Partitioning I nto Temporal Cohorts

Given the longitudinal data set, we generated two distinct data
setsusing traditional overlapping and our novel nonoverlapping
patient stratification approaches to partition the data set into
three temporal cohorts representing graft status at 1 year, >1-5
years, and 5-17 years (Figures 2 and 3).

Overlapped cohorts
Cohort 3

(0-17 years)

Cohort 2
(0-5 years)

37,939 Grafts failed 14,888 Grafts survived

Cohort 1
(0-1 years)

7554 Grafts failed
15,273 Grafts survived

23,475 Grafts failed 29,352 Grafts survived

Figure 3. Derivation of the nonoverlapped cohorts.

Time

Nonoverlapped cohorts

Cohort 1
(0-1 years)

Cohort 2
(2-5 years)

Cohort 3
(6-17 years)

I I

7554 Grafts failed I 15,921 Grafts failed I 14,464 Grafts failedl
45,273 Grafts survived 29,352 Grafts survived 14,888 Grafts survived

Time

The overlapping patient stratification approach (used in previous
graft status prediction studies) provides a cumulative analysis
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of graft outcomes up to a specific time point. In our study, the
overlapping data stratification resulted in the following three
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cohorts: cohort 1, spanning from year, to year,;, which reported
graft outcomes (ie, graft failure or survival) during this period;
cohort 2, which reported graft status from year, to years and
overlapped with cohort 1 such that it included the patients in
cohort 1; and cohort 3, which reported graft status from year,
to year,q,, thus overlapping with both earlier cohorts. As per

the overlapping approach, agraft failurein the preceding cohort
was also counted in the proceeding cohort.

Our nonoverlapping patient stratification approach yielded three
cohorts: cohort 1, spanning year, to year; reporting graft
outcomes in this period; cohort 2, spanning year; to years and
reporting graft outcomes only in this period, resulting in the
exclusion of graft failuresreported in cohort 1 and only reporting
the graft outcomes of patientswho survived cohort 1; and cohort
3, spanning years to year,q,, reporting the graft outcomes of
patients who survived cohort 2. In a nonoverlapping cohort
approach, there was no looking back beyond the cohort’s starting
point, as such a graft failure in the preceding cohort was not
counted in the proceeding cohort.

When partitioning the data into cohorts, we accounted for the
presence of censored data, that is, thelack of information about
the occurrence of an adverse event for asurviving patient. There
is no concrete method to determine survivors when confronted
with censored data. We initially assumed that those patients
who did not fail in a certain cohort could be presumed as
survivors. However, this assumption led to two problems: (1)
it included censored patients who might have experienced graft
failure during the study, and (2) it led to asevere classimbalance
between the graft failure and surviving patients. To overcome
these problems, we took a two-phase heuristic approach to

Nagvi et al

remove the censored observations to identify survivorsin each
cohort. First, we removed all the censored observations from
the cohort being analyzed and label ed all the remaining instances
as survived. For instance, the censored data that were removed
for cohort 2 were all instances with a missing outcome by the
end of cohort 2. The remaining instances were considered to
have survived. The first phase of our approach reduced the
number of censored observations, but the surviving observations
were still relatively high compared with the graft failure cases
in each cohort. In the second phase, we applied the approach
of Topuz et a [15] to further refine our surviving class by
removing all the instances that were deemed as surviving for
less than 8 years from the date of transplant. This two-phase
approach to account for censored datais summarized in Equation
1 below, where we estimated the number of survivors in each
cohort.

{Yes if (days = i * 365 & graf't status == failed)
S; =

+(days = 2920 & graft status ! = failed) )
No otherwise

The first part of this equation illustrates the first phase of the
proposed approach. Thei in the equation is the ending year of
our defined cohorts, that is, 1, 5, and 17. The equation first
calculates the total number of graft failures that occurred after
the end of the cohort. Thisfraction of instances was considered
as confirmed survivorsfor the cohort under analysis. The second
part of the equation deal swith the second phase of the approach.
It attemptsto identify the potential survivorsfrom the censored
data by removing al the observations that did not have a graft
failurewithin 8 years (2920 days) following atransplant. Table
2 shows the patient distribution across the three time cohorts.

Table 2. Number of failed and survived transplants in overlapped and nonoverlapped cohorts.

Cohort Overlapping Nonoverlapping

Count, n Failed, n (%) Survived, n (%) Count, n Failed, n (%) Survived, n (%)
1 52,827 7554 (14.3) 45,273 (85.7) 52,827 7554 (14.3) 45,273 (85.7)
2 52,827 23,475 (44.44) 29,352 (55.56) 45273 15,921 (35.17) 29,352 (64.83)
3 52,827 37,939 (71.82) 14,888 (28.18) 29,352 14,464 (49.28) 14,888 (50.72)

Addressing Class | mbalance

Our data set had two outcomes: the presence or absence of graft
faillure. There was a significant class imbalance whereby the
graft failure had a significantly lower number of instances
compared with graft survival. Techniques such as Synthetic
Minority Oversampling Technique (SMOTE) and random
undersampling have been widely used in the literature [18,29]
for class imbalance. We applied SMOTE for Nominal and
Continuous features [30], which is a variant of SMOTE
specifically developed to handle a mix of categorica and
numerical data, on all cohorts to achieve a reasonable class
balance. To balance the minority class (ie, mostly graft failure),
we would need to generate 600% additional synthetic samples
(at least for cohort 1), which would have led to overfitting.
Therefore, we doubled our minority classto achieve aworkable
class balance to prevent the overfitting of the classification
models. As cohort 2 of overlapped stratification and cohort 3

https://www.jmir.org/2021/8/e26843

of nonoverlapped stratification had a class balance, they were
not considered for oversampling.

Feature Engineering

Thisstep involved both the removal and construction of features
with theintent to reduce the dimensionality of the feature space.

Paired Features

A set of paired features was constructed by combining the
related features. Typically, graft predictions use discrete
individual donor and recipient features. We examined the
underlying correlation between the donor and recipient features
and paired the highly related features to generate new paired
features. The following four donor and recipient features were
generated: sex, age, CMV (cytomegalovirus), and race. In
addition, three types of HLA Antigen Mismatch features—ie,
HLA Antigen Mismatch at the A Locus, HLA Antigen
Mismatch at the B Locus, and HLA Antigen Mismatch at the
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DR Locus were also combined into a single HLA Antigen
Mismatch feature.

One-Hot Encoding

We transformed the categorical features into multiple dummy
featuresto make them compatible with the stacked autoencoders,
which cannot process categorical features. In addition, it was
also a necessary operation because of the functional constraint
of the scikit-learn library [31].

Stacked Autoencoders

Finally, we used 86 transformed categorical features as inputs
to the stacked autoencodersfor feature reduction to subsequently
train the ML prediction models. Continuous features were also
initially considered as a part of the input vector to stacked
autoencoders (Table S1 in Multimedia Appendix 1), but
preliminary model training returned better results with pristine
continuous features; hence, no modification was performed for
them while training the prediction models. It should be noted
that the resultant features from the stacked autoencoders were
only used for training the prediction models and not for the
analysis of the changing relevance of features over time.

After testing with different configuration settings provided in
the Keras framework [32], the stacked autoencoders were set
up as a 13-layer architecture consisting of 12 dense layers and
one dropout layer set at the very beginning of the network with
a dropout rate of 0.05. The sigmoid activation function was
used throughout the dense layers, with Adam as the optimizer

https://www.jmir.org/2021/8/e26843
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and binary cross entropy as the loss function with 500 epochs
and 700-900 batch sizes. The middle layer of the autoencoder
was finally trained with 12 neurons and 30 neurons for cohort
1 and the remaining cohorts, respectively. The feature space
was reduced by more than 50 dummy features.

L earning Classification-Based Graft Survival
Prediction Models

Overview

Prediction was pursued asabinary classification problem, where
the prediction output represents the graft outcome for a given
patient in terms of the class |abel, graft failure or survived. We
investigated four different ML-based classification models for
each time cohort (ie, cohorts 1-3). Given that logistic regression
(LR) has been widely used in prior studies to develop graft
prediction models[29,33], wetrained an LR model asabaseline
to compare the predictive performance of our ML prediction
models.

All classification modelsweretrained using a 10-fold stratified
cross-validation training approach. The stratification ensured
that outcome classratio in each fold is maintained to avoid any
sampling bias that may affect the classification results. We
mainly used the scikit-learn library [31] to train the
below-mentioned classification models with the parameter
settings listed in Table 3. Hyperparameters were optimized
using arandom search. Thedifferent parametersthat were tested
during the random search are provided in Table S2 in
Multimedia Appendix 1.
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Table 3. Algorithmic settings for the classifiers.
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Method, Hyperparameter Values
RF?
Number of estimators 200
Class weight Balanced
Criterion Gini
Maximum depth 9

Minimum samples split
Maximum features
Support vector machine
Cb
Gamma
Decision function shape
Kernel
Artificial neural network
Solver
Learning rate
Activation
Alpha
Hidden layers
Adaptive boosting
Base learner
Number of estimators
Learning rate
Algorithm
Logistic regression
Penalty
C
Class weight
Max iteration

Solver

2 for cohort 1; 3 for therest
14

50

Auto, scale
One versus rest
Radial

Adam

Adaptive

Logistic

le-2,1e-6

4: 70, 35, 30, 15; 5: 60, 30, 30, 15, 10

RF
401

Samme.R

10

Balanced
1000

3RF: random forest.
be: regularization parameter.

Random Forest

Random forest (RF) was used as both a standalone classifier
and a base learner for the adaptive boosting (AdaBoost)
algorithm. It has been widely used to predict survival data
[26,27].

AdaBoost

The AdaBoost algorithm was applied to two weak |earners, RF
and LR. The study by Thongkam et al [34] used this algorithm
on a breast cancer data set, where it outperformed all single
classifiers. In our experiments, LR did not perform well;
therefore, we did not pursue it. RF, with the optimized

https://www.jmir.org/2021/8/e26843

hyperparameters, was used to train the boosting classifier with
anumber of estimators and learning rates.

Artificial Neural Network

A backpropagation agorithm was used to train a neura
network—based binary classifier. Generdly, artificial neural
networks (ANNS) perform well on survival data sets [30,35].

Support Vector Machines

Classification models using support vector machines (SVMs)
have been applied to predict survival data[29,31,32]. To train
the SVM, we experimented with different kernels, that is, linear,
radial, sigmoid, and polynomial kernels. Thelinear and sigmoid
kernels provided the lowest prediction scores; therefore, wedid
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not use them further. A polynomial kernel with degree 2 yielded
suboptimal results, and the SYM model could not converge for
degree 3. The radia basis kernel was the most effective for
learning the classification model.

Calculating Feature Importance Over Time

The nonoverlapped time cohorts were used to calculate the
featureimportance scoresto understand the changing rel evance
of features over time. We cal culated these scores by training an
RF classifier on the complete data set. The scores were
calculated using Gini. Feature influence scores were used to
understand the effect of features over the three cohorts.

Results

Overview

Below, we present the prediction performance of the four ML
classifiers using both overlapped and nonoverlapped cohorts.
As LR has been extensively used to predict time-to-event in
organ transplant studies [16,29], it is used as a comparator
classifier to the ML-based classifiers. The prediction
performance of each of the best-trained classifiers (SVM, RF,

https://www.jmir.org/2021/8/e26843
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AdaBoost, ANN, and LR), covering the three different
time-to-event periods for both the original and reduced feature
sets, were evaluated using 10-fold stratified crossvalidation for
both overlapped and nonoverlapped cohorts. Theresults of each
classifier were examined using the area under the curve (AUC)
and F1 scores. The AUC score was used as the main
performance eval uation metric to select the best model in each
cohort and to make comparisons with similar studies. For our
purpose, the ideal prediction model provides the best accuracy
for graft failure. Therefore, to further substantiate the selection
of the best model, we also evaluated the F1 score for graft
failures. In cases where the AUC score was the same for
different models, preference was given to the model with the
highest F1 score.

Analysis of Feature Engineering

Table 4 presents the results of feature engineering, whereby the
prediction scores of all classifiers were obtained using both the
original feature set and the reduced set. The reduced set consists
of original continuous features and latent features returned by
the stacked autoencoders. Cohort 1 for overlapped and
nonoverlapped cohorts was the same; hence, the results were
presented only once to avoid unnecessary duplication.
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Table 4. Areaunder the curve comparison—all features with auto-encoded features.

Cohort Overlapped Nonoverlapped
All features (%) Continuous+auto-en-  All features (%) Continuous+auto-en-
coded features (%) coded features (%)
Cohort 1
sVM?@ 80 82 N/AP N/A
AdaBoost® 76 78 N/A N/A
RFY 68 70 N/A N/A
ANNE 62 61 N/A N/A
LR 62 62 N/A N/A
Cohort 2
SVM 63 66 53 53
AdaBoost 67 69 64 60
RF 62 65 65 67
ANN 62 62 62 62
LR 62 62 64 61
Cohort 3
SVM 73 80 68 65
AdaBoost 76 81 68 64
RF 72 75 68 66
ANN 73 72 68 65
LR 69 69 62 64

83V M: support vector machine.
BNI/A: not applicable.
CAdaBoost: adaptive boosting.
9RF: random forest.

€ANN: artificial neural network.
LR: logistic regression.

The AUC scores (Table 4) show that prediction models for
overlapped cohortstrained with auto-encoded featuresimproved
the prediction performance as compared with the prediction
models trained using the original feature set. However, it was
the opposite for nonoverlapped cohorts. Interestingly, the
traditional approach of overlapped cohorts performed better
with both the original and reduced feature sets compared with
the nonoverlapped cohorts. Except for RF in cohort 2 of
nonoverlapped cohorts, which showed dlightly better
performance (67%) when compared with its overlapped
counterpart (65%), al other prediction models had better AUC
scores with the traditional overlapping cohort approach.

https://www.jmir.org/2021/8/e26843

Therefore, for further analysis, we proceeded with overlapping
cohorts only.

Although ANN and LR (the baseline model) showed no
significant improvement across all three cohorts, the results
confirmed the effectiveness of our deep learning architecture
of stacked autoencodersfor feature selection. For the subsequent
prediction modeling analysis, we used the reduced feature set.

Analysis of Prediction Performance of ML Models

Table 5 presents the prediction performance of the classifiers
for each cohort interms of AUC, F1 scores, recall, and precision,
with SD for the 10-fold classification.
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Table5. Prediction performance of the machine learning classifiers across three different temporal cohorts using the overlapped patient stratification®,

Cohort Auto-encoded feature set
AuCP (%), mean (SD) F1 (%), mean (SD) Recall (%), mean (SD) Precision (%), mean (SD)
Cohort 1
SUM © 82(0.01) 61 (0.01) 49 (0.01) 90 (0.01)
AdaBoost 78 (0.01) 56 (0.01) 95 (0.01) 35(0.01)
RES 70 (0.009) 45 (0.001) 47 (0.01) 41 (0.01)
ANN' 61 (0.01) 5 (0.001) 42 (0.01) 6 (0.004)
LRY 62 (0.008) 39 (0.009) 58 (0.01) 29 (0.04)
Cohort 2
SVM 66 (0.006) 53 (0.01) 55 (0.01) 60 (0.01)
AdaBoost 69 (0.01) 63 (0.01) 64 (0.003) 63 (0.004)
RF 65 (0.009) 62 (0.01) 62 (0.01) 61 (0.01)
ANN 63 (0.007) 60 (0.04) 55 (0.09) 60 (0.01)
LR 62 (0.008) 59 (0.009) 58 (0.01) 60 (0.004)
Cohort 3
SVM 80 (0.005) 83 (0.003) 76 (0.003) 96 (0.003)
AdaBoost 81(0.01) 81 (0.004) 76 (0.003) 86 (0.01)
RF 75 (0.008) 75 (0.006) 75 (0.01) 73(0.01)
ANN 72 (0.007) 68 (0.005) 81 (0.03) 69 (0.01)
LR 69 (0.001) 77 (0.009) 70 (0.01) 70 (0.001)

talics show the classifiers with the highest performance among the three cohorts.
PAUC: areaunder the curve.
€SVM: support vector machine.
dAdaBoost: adaptive boosting.

®RF: random forest.

FANN: artificial neural network.
9LR: logistic regression.

The classifiers performed differently across the three
cohorts—SVM offered the highest prediction performance for
short-term predictions, that is, for cohort 1, whereas AdaBoost

offered the highest performance for the remaining cohorts. The

SD across the different folds was nominal, confirming the
stability of the classifiers. Figure 4 showsthe receiver operating
characteristic curves for the best models from each cohort.

Figure4. Receiver operating characteristic curvesfor support vector machine, adaptive boosting, and adaptive boosting for the three cohorts, respectively
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To further investigate the prediction efficacy of the ML-based
classifiers, we evaluated the prediction performance of the
best-performing classifier for al three cohorts by testing the
prediction of graft failure events by a classifier trained for a
specific cohort with data from other cohorts, that is, testing the
classifier for cohort 2 with randomly selected datafrom cohorts
1 and 3. The underlying assumption isthat the classifier should
not produce good prediction resultsfor datafrom other cohorts.
As this evaluation considers survivors across progressive
cohorts, we used the F1 score to measure prediction
performance. A sound prediction model for cohort 2 will give

Nagvi et al

a high graft failure prediction score for data from cohort 1 but
alow prediction scorefor datafrom cohort 3, therationale being
that the overlapping cohort 2 classifier istrained on graft failure
cases in both cohorts 1 and 2. Therefore, the prediction model
for cohort 2 should give a high prediction score for predicting
graft failures from year, to years, but when applied to cohort 3,
the cohort 2 prediction model would be unable to predict graft
failure as it has not been trained on cohort 3 data. Table 6
provides the cross-cohort prediction scores for the best
classifiers for each cohort.

Table 6. Prediction performance (F1 scores) for cross-cohort predictions using overlapped cohorts.

Model Cohort 1 Cohort 2 Cohort 3
SVM?(cohort 1) 0.6 0.42 0.29
AdaBoost” (cohort 2) 0.79 0.87 0.58
AdaBoost (cohort 3) 0.72 0.75 0.87

83V M: support vector machine.
bAdaBoost: adaptive boosting.

Results of Wilcoxon Signed-Rank Test

To determineif the prediction differences between the different
models were statistically significant, we used the Wilcoxon
signed-rank test to compare the scores between different models.
Because the best scores in each cohort were usually produced
by SVM and AdaBoost models, the Wilcoxon signed-rank test

Table 7. The resultsfor Wilcoxon signed-rank test (F1).

was conducted with each combination of these modelswith the
other models.

Table 7 showsthe results based on the F1 score, and the P values
between the model swere quite small and |essthan the threshold
value of P=.05, confirming that the performance differenceis
statistically significant.

Cohort P value (F1)
SVM&AdaBoost®®  SVM-ANNY€ SVM-RF"9 AdaBoost-RF" AdaBoost-ANN!
Cohort 1 .003 .003 .003 .003 .003
Cohort 2 003 .003 .003 .003 .03
Cohort 3 <.001 <.001 <.001 <.001 <.001

83V M: support vector machine.
bAdaBoost: adaptive boosting.

®Ho (null hypothesis): SVM=AdaBoost; H, (alternative hypothesis): SVM#zAdaBoost.

9ANN: artificial neural network.

®Ho: SVM=EANN; Hz; SVM#£EANN.

"RF: random forest.

9H,: SYM=RF; Hy; SYM#RF.

PH,: AdaBoost=RF; H,; AdaBoostzRF.
'Ho: AdaBoost=ANN; Hy AdaBoostzANN.

Analysis of the Influence of Clinical Features Over
Time Toward Graft Status Prediction

Overview

The second objective of thisresearchisto analyzetheinfluence
of clinical features on the prediction of graft survival over
different periods. The intent was to understand the factors
responsiblefor graft survival at different periods after transplant.
The nonoverlapped cohorts (0-1 years, >1-5 years, and >5-17

https://www.jmir.org/2021/8/e26843

yearsfollowing atransplant) were used to ensure that there was
no cascading influence of the features over time. For comparison
purposes, we aso examined the feature importance for
overlapping cohorts. The feature importance scores represent
the relative importance of the feature among all features, that
is, the total of all the features' importance scores add up to
100%; hence, if one feature gains a higher importance score, it
will be at the expense of theimportance score of other features.
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Figures 5 and 6 illustrate the individual feature importance respectively.
scores across all the nonoverlapped and overlapped cohorts,
Figure 5. Changing relevance of features based on nonoverlapped time cohorts.
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In genera, the top 10% of the important features remained
consistent in both the nonoverlapped and overlapped cohorts;
however, we note that the nonoverlapped cohorts identified a
larger group of important features. For instance, peak panel
reactive antibody (Pkpra) and pre-emptive recipient status

hittps://www.j mir.org/2021/8/e26843
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(Preemptive) had negligible importance in overlapping cohorts
but were important during the 2-5 years and 6-17 yearsin the
nonoverlapping cohorts. Table 8 shows the feature importance
across the three cohorts.
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Table 8. Ranking of the top-10 features across the time cohorts with feature importance scores.

Nagvi et al

Rank Cohort 1, feature, relative  Cohort 2 Cohort 3
score (%)
Feature, relative score (%) Importance (%), rank Feature, relative score Importance (%), rank
change (%) change
1 HLAMMP (13) ESRDDXSIMP (18) +100, +2 RAGETXY (16) +77,+3
2 VINTAGE® (12) VINTAGE (11) -8,0 RDM2' (16) >+100, >+10
3 ESRDDXSIMP (9) HLAMM (10) 23,2 ESRDDXSIMP (13) 27,2
4 DRCMVY (8) RAGETX (9) +78, +6 FUNCTSTAT" (12) >+100, +3
5 DRRACE' (8) DAGE (6) 50, +2 DAGE (5) -16,0
6 FUNCTSTAT (7) DRRACE (4) ~100, -1 DRRACE (3) -25,0
7 DAGE (4) FUNCTSTAT (4) —75,-1 ECDX (3) >+100, >+3
8 RCAD' (4) PKPRA™ (3) +50, >+3 VINTAGE (2) >-100, -6
9 RDM2 (3) PREEMPTIVE" (3) +50,>+1 PREEMPTIVE (2) -33,0
10 RAGETX (2) DRCMV (2) —75,-6 RWT2 (2) 0,0
Rest Rest (31) Rest (30) Rest (30) Rest (26) Rest (26)

% mportance (%) and rank changeis shown in italics.
PHLAMM: HLA antigen mismatch.

CESRDDXSIMP: simplified end-stage renal disease diagnosis.
dRAGETX: reci pient age.

SINTAGE: number of years on dialysis before transplant.
'RDM2: recipient diabetes status.

9DRCMV: donor-recipient cytomegal ovirus.
PFUNCTSTAT: functional status of the reci pient.
'DRRACE: donor-reci pient race.

IDAGE: donor age.

KecD: expanded criteriadonor.

IRCAD: reci pient coronary artery disease.

MPK PRA: peak panel reactive antibody.

"PREEMPTIVE: pre-emptive transplant.

ORWT2: recipient weight.

Below, we analyze the importance of features in each cohort
and show the influence of features over time using
nonoverlapping cohorts.

Feature mportance for Cohort 1

According to the top features shown in Table 8, HLAMMs and
the number of years on dialysis before transplant (VINTAGE)
were the most important features with a relative importance of
over 10%. This observation has been confirmed in other studies
[32,36]. Donor-recipient CMV status, donor-recipient race,
end-stage renal disease diagnosis (ESRDDXSIMP), and
functional status of the recipient were ranked as having medium
importance with a relative score between 5% and 10%.
Donor-recipient race pairs and donor-recipient CMV pairswere
noted to have more predictive influence in cohort 1 than in the
other two cohorts.

Feature mportance for Cohort 2

Both HLAMMSs and VINTAGE remained highly important in
cohort 2. In addition, ESRDDXSIMP was noted as a highly

https://www.jmir.org/2021/8/e26843

important feature. Interestingly, we note that few features, such
as donor age and recipient age, were rather insignificant in
cohort 1 but were noted to be significant in both cohort 2 and
further in cohort 3.

Feature mportance for Cohort 3

ESRDDXSIMP showed a relative downward trend; however,
it remained a highly significant feature. Unlike earlier cohorts,
HLAMMSs and VINTAGE were noted to not maintain their
importance in the long term, whereas the recipient’s status of
diabetes was noted to be the most important feature, along with
recipient age and their functional status. Donor age was noted
to maintain a medium importance score between 5% and 10%.

Figure 7 presents aheat map of theimportance scoretoillustrate
the changing influence of the top 25 features across the three
cohorts. In addition to the top 10 features (Table 8), the heat
map detailsthe contribution of relatively lessimportant features.
It wasinteresting to see that few features (such as donor weight,
recipient weight, and donor hypertension) had static importance
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across the three cohorts. This indicates that although these acertain value for the prediction models.
features were not deterministic for the cohorts, they possessed

Figure 7. Changing relevance of top 25 features over the three cohorts. AHD1: donor-recipient height difference; CIT: cold ischemia time; DAGE:
donor age; DHT100: donor height; DHTN2: donor hypertension; DONCREAT: donor creatininelevel; DRACESIMP: donor race; DRCMV: donor-recipient
cytomegalovirus, DRRACE: donor-recipient race; DRWT: donor-recipient weight difference; DWT: donor weight; ECD: expanded criteria donor;
ESRDDXSIMP: simplified end-stage renal disease diagnosis; FUNCTSTAT: functional status of the recipient; HLAMM: number of HLA mismatches;
PKPRA: peak panel reactive antibody; PREEMPTIVE: preemptive transplant; RAGETX: recipient age; RCAD: recipient coronary artery disease;
RDM?2: recipient diabetes; RHT2100: recipient height; RHTN: recipient hypertension; RRACESIMP: recipient race; RWT2: recipient weight; VINTAGE:
number of years on diaysis before transplantation.
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Analysis of the values of categorical features provided novel map of the importance of the value of the categorical features
insightsinto the influence of afeature. Figure 8 presentsaheat  generated after transforming them into dummy features.
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Figure8. Changing relevance of top 25 features (including dummy features) over the three cohorts. CIT: cold ischemiatime; DAGE: donor age; DBMI:
donor BMI; DHT100: donor height; DONCREAT: donor creatinine level; DRCMV_2: Donor positive recipient positive; DRRACE_1: Donor white
recipient white; DWT: donor weight; ECD_0: Expanded criteria donor: no; ECD_1: Expanded criteria donor: yes, ESRDDXSIMP_2: End stage rena
disease: diabetes mellitus, ESRDDXSIMP_3: End stagerenal disease: polycystic kidney disease; ESRDDXSIMP_4: End stage renal disease: hypertension;
FUNCTSTAT _1: Functional status of recipient: 100% no complaints; HLAMM _5: Number of human leukocyte antigen mismatches: 5; PKPRA: peak
panel reactive antibody; PREEMPTIVE_1: Preemptivetransplant: yes, PREEMPTIVE_2: Preemptive transplant: no; RAGETX: recipient age; RBM|2:
recipient BMI; RDM2_0: Recipient diabetes: no; RDM2_1: Recipient diabetes: yes; RHT2100: recipient height; RWT2: recipient weight; VINTAGE:
number of years on diaysis before transplantation.
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Discussion

Principal Findings

The cross-cohort prediction results (Table 6) confirm the
efficacy of the classifiers—the prediction model for cohort 3
(ie, AdaBoost) correctly offers ahigh prediction score for data
from cohort 1 (72%) and cohort 2 (75%). The prediction model
for cohort 2 offers a high prediction score for cohort 1 data
(79%) but alow prediction score for cohort 3 (58%) data. The
classifier for cohort 1 (ie, SVM) gave low prediction scoresfor
datafrom cohort 2 (42%) and cohort 3 (29%). Interestingly, the
highest prediction score by a cohort-specific classifier was

Table 9. Prediction scores of similar studies.

Nagvi et al

always achieved for data from its respective cohort. The
prediction modeling results confirmed that the prediction models
were highly sensitive to their respective cohorts.

Comparing Prediction PerformanceWith Prior Studies

We compared the prediction performance of our ML-based
predi ction model s with comparabl e organ transplant studi esthat
involved similar-sized observations and temporal windows.
Table 9 summarizes the findings of the two studies for each
cohort. There have been severa other studies
[19,31,32,35,37,38] to predict the short-term graft status of
different organ transplants, but because of their small data set,
these do not serve as a meaningful comparison.

Time Study Model Size Data set Metric Score (%) Our score (%)
1year Linetal [16] ANNZand LRP 46414 ynos® Auc? & 82
1year Dag et a [23] LR 15,580 UNOS AUC 63 82
5years Tiong et a [39] Nomogram 20,085 UNOS C-index® 71 69
5years Linet a [16] ANN 17,856 UNOS AUC 77 69
7 years Linetal [16] ANN 10,250 UNOS AUC 82 81
14 years Luck et al [40] ANN 46,098 SRTR' C-index 65 81

3ANN: artificial neural network.

bLR: logistic regression.

CUNOS: United Network of Organ Sharing.

4AUC: area under the curve.

€C-index: concordance index.

fSRTR: Scientific Registry of Transplant Recipients.

When comparing our results with prior studies, it is noted that
although our cohort 2 prediction performance (ie, graft status
prediction over a 5-year period) is lower than that of Lin et &
[16], it was based on a much smaller data set that included
10,641 survivasand 7215 failures, whereaswe analyzed 23,475
failures and 29,352 survivals. Similarly, Tiong et a [39]
analyzed a smaller sample of 20,085 living donor transplant
recipients to achieve a concordance index of 71%. Our cohort
3 prediction performance is marginally lower compared with
Lin et al [16], who predicted a 7-year graft survival with an
82% AUC score, whereas our cohort 3 prediction model covers
a much longer (17 years) temporal window and achieves a
comparable prediction score. Using a similar number of
transplants, Luck et al [40] achieved amuch lower concordance
index between 63% and 66% for 14-years graft survival.

Limitations and Future Work

A limitation of our research lies in the removal of censored
instances. We removed all successful cases that were censored
before 8 years following transplant. Although this type of
approach has previously been used, including censored cases
isapotential consideration for future analyses.

Conclusions

Understanding the impact of donor and recipient factors that
predict short- and long-term kidney transplant allograft survival

https://www.jmir.org/2021/8/e26843

isimportant for patients and providers. Kidney transplantation
is the optimal form of kidney replacement therapy, but kidney
allografts are a limited resource. In addition, the alternative to
kidney transplantation (ie, dialysis) is considerably costlier.

In this study, we present an ML -based framework to predict the
status of kidney allografts, based on donor-recipient features,
over aperiod of 17 years. We applied ML-based data analysis
methods for feature engineering to reduce data dimensionality,
develop prediction models for three distinct temporal cohorts,
and investigate the changing relevance of clinical features across
different temporal cohorts. We introduced the concept of
nonoverlapped cohorts to analyze the changing relevance of
features in three defined periods. In conclusion, our results
emphasizethat ML can be effectivein predicting graft survival
using donor and recipient factors that are routinely collected as
part of patient care. As a next step, we plan to incorporate the
prediction models into clinical care at the time of allocation;
models that best predict short- and long-term kidney graft
survival may be used as a pragmatic prognostic tool to aid
clinicians in maximizing the best possible matching of donors
and recipients while preserving existing allocation rules that
are used to promote equity [41].

JMed Internet Res 2021 | vol. 23 | iss. 8 | €26843 | p. 18
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Nagvi et a

Acknowledgments

The data reported here have been supplied by the Hennepin Healthcare Research I nstitute as the contractor for the SRTR. The
interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy
of or interpretation by the SRTR or the US Government.

Authors Contributions

SAAN and SSRA were responsible for the overall data analysis methodology, data analysis using ML algorithms, evaluation of
the dataanalysisresults, and writing of the manuscript. KT and AV provided clinical expertisein defining the problem, interpretation
of the data, preprocessing of the data and interpretation of the results, providing the data from the data source, and editing the
manuscript for clinical clarity and purpose. PCR facilitated the setting up and conducting of dataanalysis experiments. All authors
critically reviewed the manuscript for scientific content and approved the final manuscript for publication.

Conflictsof Interest
None declared.

Multimedia Appendix 1

Supplementary tables.
[DOC File, 24 KB-Multimedia Appendix 1]

References

1. Sullivan CE. Kidney Transplantation. Transplantation 1968;6(5):753. [doi: 10.1097/00007890-196808000-00031]

2. Hal YN, Chertow GM. End stage renal disease. BMJ Clin Evid 2007 Oct 17;2007:1048-1059 [FREE Full text] [Medline:
19450356]

3.  GOAS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic Kidney Disease and the Risks of Death, Cardiovascular
Events, and Hospitalization. N Engl J Med 2004 Sep 23;351(13):1296-1305. [doi: 10.1056/nejmoa041031]

4.  Rashidi Khazaee P, Bagherzadeh J, Niazkhani Z, Pirngjad H. A dynamic model for predicting graft function in kidney
recipients upcoming follow up visits: A clinical application of artificial neural network. Int JMed Inform 2018
Nov;119:125-133 [FREE Full text] [doi: 10.1016/j.ijmedinf.2018.09.012] [Medline: 30342680]

5. Schold J, Segev DL. Increasing the pool of deceased donor organs for kidney transplantation. Nat Rev Nephrol 2012 Mar
27,8(6):325-331 [FREE Full text] [doi: 10.1038/nrneph.2012.60] [Medline: 22450438]

6.  Conservative Care - The Kidney Foundation of Canada | La Fondation canadienne du rein. URL: https.//www.kidney.ca/
conservative-care [accessed 2019-11-15]

7. About Chronic Kidney Disease | National Kidney Foundation. URL : https.//www.kidney.org/atoz/content/
about-chronic-kidney-disease [accessed 2019-11-15]

8.  Perl J. Kidney transplant failure: failing kidneys, failing care? Clin J Am Soc Nephrol 2014 Jul;9(7):1153-1155 [FREE
Full text] [doi: 10.2215/CJIN.04670514] [Medline: 24903388]

9.  Vinson A, Kiberd B, Davis R, Tennankore K. Nonimmunologic Donor-Recipient Pairing, HLA Matching, and Graft Loss
in Deceased Donor Kidney Transplantation. Transplantation Direct 2019 Jan;5(1):e414 [FREE Full text] [doi:
10.1097/txd.0000000000000856]

10. Rao P, Schaubel D, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, et al. A comprehensive risk quantification score
for deceased donor kidneys: the kidney donor risk index. Transplantation 2009 Jul 27;88(2):231-236. [doi:
10.1097/TP.0b013e3181ac620b] [Medline: 19623019]

11. Young A, Knoll GA, McArthur E, Dixon SN, Garg AX, Lok CE, et al. Isthe Kidney Donor Risk Index a Useful Tool in
Non-US Patients? Can JKidney Health Dis 2018;5:2054358118791148 [FREE Full text] [doi: 10.1177/2054358118791148]
[Medline: 30083367]

12. Senanayake S, White N, GravesN, Healy H, Baboolal K, Kularatna S. Machinelearning in predicting graft failure following
kidney transplantation: A systematic review of published predictive models. Int JMed Inform 2019 Oct;130:103957 [FREE
Full text] [doi: 10.1016/].ijmedinf.2019.103957] [Medline: 31472443]

13. RaoV, BeharaR, Agrawa A. Predictive modeling for organ transplantation outcomes. 2014 Nov 10 Presented at: Proc -
|EEE 14th Int Conf Bioinforma Bioeng BIBE 405?408; 2014; Boca Raton, FL, USA URL.: https.//ieeexplore.ieee.org/
document/7033613/ [doi: 10.1109/BIBE.2014.58]

14. BrownT, Elster E, Stevens K, Graybill JC, Gillern S, Phinney S, et al. Bayesian modeling of pretransplant variables
accurately predicts kidney graft survival. Am J Nephrol 2012;36(6):561-569 [ FREE Full text] [doi: 10.1159/000345552]
[Medline: 23221105]

15. Topuz K, Zengul F, Dag A, Almehmi A, Yildirim M. Predicting graft survival among kidney transplant recipients: A
Bayesian decision support model. Decision Support Systems 2018 Feb;106:97-109 [FREE Full text] [doi:
10.1016/j.dss.2017.12.004]

https://www.jmir.org/2021/8/e26843 JMed Internet Res 2021 | vol. 23 | iss. 8 | €26843 | p. 19
(page number not for citation purposes)

RenderX


https://jmir.org/api/download?alt_name=jmir_v23i8e26843_app1.doc&filename=b051208b8327cc9319d588039af2b4ef.doc
https://jmir.org/api/download?alt_name=jmir_v23i8e26843_app1.doc&filename=b051208b8327cc9319d588039af2b4ef.doc
http://dx.doi.org/10.1097/00007890-196808000-00031
http://europepmc.org/abstract/MED/19450356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19450356&dopt=Abstract
http://dx.doi.org/10.1056/nejmoa041031
https://doi.org/10.1016/j.ijmedinf.2018.09.012
http://dx.doi.org/10.1016/j.ijmedinf.2018.09.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30342680&dopt=Abstract
https://doi.org/10.1038/nrneph.2012.60
http://dx.doi.org/10.1038/nrneph.2012.60
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22450438&dopt=Abstract
https://www.kidney.ca/conservative-care
https://www.kidney.ca/conservative-care
https://www.kidney.org/atoz/content/about-chronic-kidney-disease
https://www.kidney.org/atoz/content/about-chronic-kidney-disease
https://cjasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=24903388
https://cjasn.asnjournals.org/cgi/pmidlookup?view=long&pmid=24903388
http://dx.doi.org/10.2215/CJN.04670514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24903388&dopt=Abstract
https://doi.org/10.1097/TXD.0000000000000856
http://dx.doi.org/10.1097/txd.0000000000000856
http://dx.doi.org/10.1097/TP.0b013e3181ac620b
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19623019&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/2054358118791148?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2054358118791148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30083367&dopt=Abstract
https://doi.org/10.1016/j.ijmedinf.2019.103957
https://doi.org/10.1016/j.ijmedinf.2019.103957
http://dx.doi.org/10.1016/j.ijmedinf.2019.103957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31472443&dopt=Abstract
https://ieeexplore.ieee.org/document/7033613/
https://ieeexplore.ieee.org/document/7033613/
http://dx.doi.org/10.1109/BIBE.2014.58
https://www.karger.com?DOI=10.1159/000345552
http://dx.doi.org/10.1159/000345552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23221105&dopt=Abstract
https://doi.org/10.1016/j.dss.2017.12.004
http://dx.doi.org/10.1016/j.dss.2017.12.004
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Nagvi et a

16.

17.

18.

19.

20.

21

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.
33.

35.

36.

37.

38.

LinR, Horn S, Hurdle J, Goldfarb-Rumyantzev AS. Single and multiple time-point prediction modelsin kidney transplant
outcomes. JBiomed Inform 2008 Dec;41(6):944-952 [ FREE Full text] [doi: 10.1016/j.jbi.2008.03.005] [Medline: 18442951]
Axelrod D, Schnitzler M, Xiao H, Irish W, Tuttle-Newhall E, Chang SH, et al. An economic assessment of contemporary
kidney transplant practice. Am J Transplant 2018 May;18(5):1168-1176 [ FREE Full text] [doi: 10.1111/ajt.14702] [Medline:
29451350]

Lee D, Kanellis J, Mulley WR. Allocation of deceased donor kidneys: A review of international practices. Nephrology
(Carlton) 2019 Jun;24(6):591-598 [FREE Full text] [doi: 10.1111/nep.13548] [Medline: 30536674]

George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol 2014 Aug;21(4):686-694 [FREE Full
text] [doi: 10.1007/s12350-014-9908-2] [Medline: 24810431]

Li J, Serpen G, Selman S. Bayes net classifiers for prediction of renal graft status and survival period. World Academy of
Science, Engineering and Technology, Open Science Index 39, International Journal of Biomedical and Biological Engineering
2010:88-94. [doi: 10.5281/zenodo.1334844]

Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of Deep Learning in Biomedicine. Mol Pharm 2016 May
02;13(5):1445-1454 [FREE Full text] [doi: 10.1021/acs.mol pharmaceut.5b00982] [Medline: 27007977]

Sadati N, Zafar M, Babu R. Representation Learning with Autoencoders for Electronic Health Records: A Comparative
Study. Computing Research Repository. URL: https://arxiv.org/abs/1908.09174 [accessed 2020-11-20]

Dag A, Oztekin A, Yucel A, Bulur S, Megahed F. Predicting heart transplantation outcomes through data anal ytics. Decision
Support Systems 2017 Feb;94:42-52 [FREE Full text] [doi: 10.1016/j.dss.2016.10.005]

Yoon J, Zame W, Banerjee A, Cadeiras M, Alaa AM, van der Schaar M. Personalized survival predictions via Trees of
Predictors: An application to cardiac transplantation. PLoS One 2018;13(3):€0194985 [FREE Full text] [doi:
10.1371/journal .pone.0194985] [Medline: 29590219]

Van Belle V, Pelckmans K, Van Huffel S, Suykens JAK. Support vector methods for survival analysis: a comparison
between ranking and regression approaches. Artif Intell Med 2011 Oct;53(2):107-118 [FREE Full text] [doi:
10.1016/j.artmed.2011.06.006] [Medline; 21821401]

Dorado-Moreno M, Pérez-Ortiz M, Gutiérrez PA, CiriaR, Bricefio J, Hervas-Martinez C. Dynamically weighted evol utionary
ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med 2017 Mar;77:1-11. [doi:
10.1016/j.artmed.2017.02.004] [Medline: 28545607]

Hong K, Iribarne A, Worku B, TakayamaH, GelijnsAC, Naka Y, et a. Who is the high-risk recipient? Predicting mortality
after heart transplant using pretransplant donor and recipient risk factors. Ann Thorac Surg 2011 Aug;92(2):520-7; discussion
527 [FREE Full text] [doi: 10.1016/j.athoracsur.2011.02.086] [Medline: 21683337]

Lofaro D, Maestripieri S, Greco R, Papalia T, Mancuso D, Conforti D, et a. Prediction of chronic allograft nephropathy
using classification trees. Transplant Proc 2010 May;42(4):1130-1133 [FREE Full text] [doi:
10.1016/j.transproceed.2010.03.062] [Medline: 20534242]

Medved D, Nugues P, Nilsson J. Predicting the outcome for patients in a heart transplantation queue using deep learning.
Annu Int Conf |IEEE Eng Med Biol Soc 2017 Jul;2017:74-77. [doi: 10.1109/EMBC.2017.8036766] [Medline: 29059814]
ChawlaNV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. jair 2002
Jun 01;16:321-357 [FREE Full text] [doi: 10.1613/jair.953]

Varoquaux G, Buitinck L, Louppe G, Grisel O, PedregosaF, Mueller A. Scikit-learn. GetM obile: Mobile Comp. and Comm
2015 Jun;19(1):29-33 [FREE Full text] [doi: 10.1145/2786984.2786995]

Chollet F. Keras. URL: https://github.com/fchollet/keras [accessed 2020-09-15]

Medved D, Nugues P, Nilsson J. Selection of an optimal feature set to predict heart transplantation outcomes. Annu Int
Conf |EEE Eng Med Biol Soc 2016 Aug;2016:3290-3293 [FREE Full text] [doi: 10.1109/EMBC.2016.7591431] [Medline:
28269008]

Thongkam J, Xu G, Zhang Y. AdaBoost algorithm with random forests for predicting breast cancer survivability. 2008
Presented at: IEEE International Joint Conference on Neural Networks; 1-8 June 2008; Hong Kong, China URL: https:/
/doi.org/10.1109/1JCNN.2008.4634231 [doi: 10.1109/JCNN.2008.4634231]

Tennankore K, Kim S, Alwayn I, Kiberd BA. Prolonged warm ischemiatime is associated with graft failure and mortality
after kidney transplantation. Kidney Int 2016 Mar;89(3):648-658 [ FREE Full text] [doi: 10.1016/j.kint.2015.09.002]
[Medline: 26880458]

Piros P, Ferenci T, Fleiner R, Andréka P, FujitaH, F6z6 L, et al. Comparing machine learning and regression models for
mortality prediction based on the Hungarian Myocardial Infarction Registry. Knowledge-Based Systems 2019 Sep;179:1-7
[FREE Full text] [doi: 10.1016/j.knosys.2019.04.027]

Adegoke V, Chen D, Banissi E, Barikzai S. Prediction of breast cancer survivability using ensemble algorithms. 2017 Oct
18 Presented at: International Conference on Smart Systems and Technologies (SST); 2017; Osijek, Croatia URL: https:/
/doi.org/10.1109/SST.2017.8188699 [doi: 10.1109/SST.2017.8188699]

YooK, Noh J,LeeH, KimDK, Lim CS, Kim YH, et al. A Machine Learning Approach Using Survival Statisticsto Predict
Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci Rep 2017 Aug 21;7(1):8904 [FREE Full
text] [doi: 10.1038/s41598-017-08008-8] [Medline: 28827646]

https://www.jmir.org/2021/8/e26843 JMed Internet Res 2021 | vol. 23 | iss. 8 | €26843 | p. 20

(page number not for citation purposes)


https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(08)00043-9
http://dx.doi.org/10.1016/j.jbi.2008.03.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18442951&dopt=Abstract
https://doi.org/10.1111/ajt.14702
http://dx.doi.org/10.1111/ajt.14702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29451350&dopt=Abstract
https://doi.org/10.1111/nep.13548
http://dx.doi.org/10.1111/nep.13548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30536674&dopt=Abstract
http://europepmc.org/abstract/MED/24810431
http://europepmc.org/abstract/MED/24810431
http://dx.doi.org/10.1007/s12350-014-9908-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24810431&dopt=Abstract
http://dx.doi.org/10.5281/zenodo.1334844
https://doi.org/10.1021/acs.molpharmaceut.5b00982
http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27007977&dopt=Abstract
https://arxiv.org/abs/1908.09174
https://doi.org/10.1016/j.dss.2016.10.005
http://dx.doi.org/10.1016/j.dss.2016.10.005
https://dx.plos.org/10.1371/journal.pone.0194985
http://dx.doi.org/10.1371/journal.pone.0194985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29590219&dopt=Abstract
https://doi.org/10.1016/j.artmed.2011.06.006
http://dx.doi.org/10.1016/j.artmed.2011.06.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21821401&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2017.02.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28545607&dopt=Abstract
http://europepmc.org/abstract/MED/21683337
http://dx.doi.org/10.1016/j.athoracsur.2011.02.086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21683337&dopt=Abstract
https://doi.org/10.1016/j.transproceed.2010.03.062
http://dx.doi.org/10.1016/j.transproceed.2010.03.062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20534242&dopt=Abstract
http://dx.doi.org/10.1109/EMBC.2017.8036766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29059814&dopt=Abstract
https://doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
https://doi.org/10.1145/2786984.2786995
http://dx.doi.org/10.1145/2786984.2786995
https://github.com/fchollet/keras
https://doi.org/10.1109/EMBC.2016.7591431
http://dx.doi.org/10.1109/EMBC.2016.7591431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28269008&dopt=Abstract
https://doi.org/10.1109/IJCNN.2008.4634231
https://doi.org/10.1109/IJCNN.2008.4634231
http://dx.doi.org/10.1109/IJCNN.2008.4634231
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)00064-2
http://dx.doi.org/10.1016/j.kint.2015.09.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26880458&dopt=Abstract
https://doi.org/10.1016/j.knosys.2019.04.027
http://dx.doi.org/10.1016/j.knosys.2019.04.027
https://doi.org/10.1109/SST.2017.8188699
https://doi.org/10.1109/SST.2017.8188699
http://dx.doi.org/10.1109/SST.2017.8188699
https://doi.org/10.1038/s41598-017-08008-8
https://doi.org/10.1038/s41598-017-08008-8
http://dx.doi.org/10.1038/s41598-017-08008-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28827646&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Nagvi et a

39. Tiong H, Goldfarb D, Kattan MW, Alster IM, ThuitaL, Yu C, et al. Nomograms for predicting graft function and survival
in living donor kidney transplantation based on the UNOS Registry. J Urol 2009 Mar;181(3):1248-1255 [FREE Full text]
[doi: 10.1016/j.juro.2008.10.164] [Medline: 19167732]

40. Luck M, Sylvain T, Cardinal H. Deep Learning for Patient-Specific Kidney Graft Survival Analysis. ArXiv. 2017. URL:
https://arxiv.org/abs/1705.10245 [accessed 2020-10-24]

41. Loupy A, Aubert O, Orandi BJ, Naesens M, Bouatou Y, Raynaud M, et al. Prediction system for risk of allograft lossin
patients receiving kidney transplants: international derivation and validation study. BMJ 2019 Sep 17;366:14923 [FREE
Full text] [doi: 10.1136/bmj.14923] [Medline: 31530561]

Abbreviations

AdaBoost: adaptive boosting

ANN: artificial neural network

AUC: areaunder the curve

CMV: cytomegalovirus

ESRDDXSIMP: end-stage renal disease diagnosis
LR: logistic regression

ML: machinelearning

RF: random forest

SMOTE: Synthetic Minority Oversampling Technique
SRTR: Scientific Registry of Transplant Recipients
SVM: support vector machine

VINTAGE: number of years on dialysis before transplant

Edited by R Kukafka; submitted 04.01.21; peer-reviewed by P Giabbanelli, E Mahmoudi; comments to author 01.02.21; revised
version received 10.03.21; accepted 06.05.21; published 27.08.21

Please cite as:

Naqvi SAA, Tennankore K, Vinson A, Roy PC, Abidi SSR

Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Devel opment and Feature Sgnificance Analysis
Sudy

J Med Internet Res 2021;23(8):€26843

URL: https://mww.jmir.org/2021/8/€26843

doi: 10.2196/26843

PMID:

©Syed Asil Ali Nagvi, Karthik Tennankore, Amanda Vinson, Patrice C Roy, Syed Sibte Raza Abidi. Originally published in the
Journal of Medical Internet Research (https://www.jmir.org), 27.08.2021. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet
Research, is properly cited. The complete bibliographic information, alink to the original publication on https.//www.jmir.org/,
aswell asthis copyright and license information must be included.

https://www.jmir.org/2021/8/e26843 JMed Internet Res 2021 | vol. 23 | iss. 8 | €26843 | p. 21
(page number not for citation purposes)

RenderX


https://doi.org/10.1016/j.juro.2008.10.164
http://dx.doi.org/10.1016/j.juro.2008.10.164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19167732&dopt=Abstract
https://arxiv.org/abs/1705.10245
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=31530561
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=31530561
http://dx.doi.org/10.1136/bmj.l4923
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31530561&dopt=Abstract
https://www.jmir.org/2021/8/e26843
http://dx.doi.org/10.2196/26843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

