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Abstract

Background: Artificial intelligence approaches can integrate complex features and can be used to predict a patient’s risk of
developing lung cancer, thereby decreasing the need for unnecessary and expensive diagnostic interventions.

Objective: The aim of this study was to use electronic medical records to prescreen patients who are at risk of developing lung
cancer.

Methods: We randomly selected 2 million participants from the Taiwan National Health Insurance Research Database who
received care between 1999 and 2013. We built a predictive lung cancer screening model with neural networks that were trained
and validated using pre-2012 data, and we tested the model prospectively on post-2012 data. An age- and gender-matched subgroup
that was 10 times larger than the original lung cancer group was used to assess the predictive power of the electronic medical
record. Discrimination (area under the receiver operating characteristic curve [AUC]) and calibration analyses were performed.

Results: The analysis included 11,617 patients with lung cancer and 1,423,154 control patients. The model achieved AUCs of
0.90 for the overall population and 0.87 in patients ≥55 years of age. The AUC in the matched subgroup was 0.82. The positive
predictive value was highest (14.3%) among people aged ≥55 years with a pre-existing history of lung disease.

Conclusions: Our model achieved excellent performance in predicting lung cancer within 1 year and has potential to be deployed
for digital patient screening. Convolution neural networks facilitate the effective use of EMRs to identify individuals at high risk
for developing lung cancer.

(J Med Internet Res 2021;23(8):e26256) doi: 10.2196/26256
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Introduction

Lung cancer is a leading cause of cancer death worldwide, and
to reduce its mortality, early detection is crucial. The National
Lung Cancer Screening Trial (NLST) revealed that screening
with low-dose computed tomography (LDCT) can reduce the
mortality associated with lung cancer by 20% [1]. Likewise,
the Dutch-Belgian Randomized Lung Cancer Screening Trial
(NELSON study) recently revealed that screening with LDCT
resulted in a 24% decrease in the 10-year cumulative mortality
for men and a 33% decrease for women [2]. Multiple
organizations have recommended LDCT screening for lung
cancer to be used on target populations [3,4]. Given the potential
harm due to radiation exposure, false-positive results, and costs
associated with LDCT, most organizations only recommend
annual screening that targets high-risk individuals; this group
is largely identified by epidemiological factors, including age
and smoking/cessation history [5]. Furthermore, due to the
potential harm associated with false-positive results, the
cost-effectiveness of implementing annual LDCT screening
remains controversial [6]. Multiple research groups have
attempted to overcome this problem by developing risk
prediction models to identify patients who might benefit from
LDCT screening and to generate criteria that are superior to
those introduced by the NLST and related studies [7-14]. These
models frequently include self-reported information, such as
family history, BMI, socioeconomic status, and
smoking/cessation history, and they use conventional regression
models for the final risk analysis.

In the era of digital medicine, the use of artificial intelligence
has resulted in good performance for predicting image-related
tasks, specifically the use of convolutional neural networks
(CNNs). In lung cancer research, CNNs have been applied to
LDCT and chest radiographic images to facilitate detection and
classification of pulmonary nodules; these models demonstrate
performance that is comparable to that achieved by human
experts [15-19]. The prediction performance is largely based
on high-level feature extraction and nonlinear prediction via
the use of CNNs. Given proper data conversion, using CNN
methodologies to generate predictions using other nonimaging
medical data may be possible. Our group recently described a
risk prediction model for nonmelanoma skin cancer that was
generated using data extracted from electronic medical records
(EMRs) [20].

In predicting lung cancer risk, the EMR should be suited to the
task of identifying high-risk individuals [21]. In this study, our
goal is to develop a risk model for the prediction of lung cancer
using data from EMRs. As such, we applied established CNN
algorithms to the large data set available in EMRs to identify
important patterns associated with the development of lung
cancer. In contrast with methods used for traditional regression
analysis, we attempted to include evolving sequential
information found in EMRs to generate our prediction model.
Our goal was to generate a model that facilitated the prospective
identification of individuals at higher risk for developing lung
cancer; these individuals might then undergo further follow-up
examinations, including LDCT. The use of a predictive model
to identify individuals at high risk could serve to limit
unnecessary radiation exposure and reduce costs associated with
LDCT and related interventions.

Methods

Study Population
Deidentified EMRs of 2 million patients who received care
between January 01, 1999, and December 31, 2013, were
initially sampled from the Taiwan National Health Insurance
Research Database (NHIRD). These EMRs included the
demographic information, diagnoses, and procedure codes from
the International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) and prescriptions from both
outpatient clinical declaration files and in-hospital declaration
files. This study included participants between the ages of 20
and 90 years who had at least 4 years of medical records on file.
Participants with missing data were excluded. These criteria
yielded 1,628,250 EMRs with over 300 million record entries
for evaluation and analysis. This study was approved by the
Taipei Medical University Institutional Review Board; informed
patient consent was waived, as all data were anonymous and
deidentified before analysis [22].

Data Preprocessing
Previous validation studies that focused on lung cancer using
the NHIRD have shown a positive predictive value (PPV) of
95% [23]. In this study, we provide further validation of the
diagnosis of lung cancer using intervention codes (eg, thoracic
surgery, subsequent radiotherapy, or chemotherapy) and national
catastrophic illness cards (which require definite pathologic
proof of a cancer diagnosis). The inclusion and exclusion criteria
used in this study are indicated in Figure 1.
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Figure 1. Inclusion and exclusion criteria for the study.

The index date for patients with lung cancer was defined as the
date of first diagnosis. For the control patients, the index dates
were randomly selected from their medical history. ICD-9-CM
diagnosis codes and World Health Organization-Anatomical
Therapeutic Chemical (WHO-ATC) prescription codes were
collected from each case for preprocessing; the date 1 year prior
to the index date was used to define the prediction window. The
observation window included the 3 years prior to the date
included in the prediction window. Thus, we used 3 years of
patient medical information to predict the risk of new-onset
lung cancer at or within 1 year later (Figure 2). The ICD-9-CM
and WHO-ATC codes were preprocessed as described in our
previous study [20]. Briefly, the EMRs were classified into

1099 ICD-9-CM code groups and 830 WHO-ATC drug groups.
Together, 1929 features were recorded weekly for 157 weeks.
For each patient, the diagnoses and medications prescribed at
each visit were recorded and converted to an image-like array
that preserved temporal information associated with both
diagnosis and medication history.

The inputs included age, gender, and an image representing the
patient’s 3-year history of diagnosis and medication. The image
was input into Xception, a 126-layer neural network, in which
feature extraction was performed. The final layer of the Xception
network was connected to an average pooling layer and then
connected to a fully connected layer with the patient’s age and
gender.
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Figure 2. Visualization of the hidden layer of the model using t-stochastic neighbor embedding. Avg: average; fc: fully connected layer.

We performed 3 subgroup analyses to investigate the
performance of the model in different populations. According
to the age criteria used in previous trials focused on lung cancer
screening [1], patients above and below 55 years of age were
included among the subgroups. We also examined patients both
with and without previous lung disease [24], including
subgroups of patients diagnosed with asbestosis, bronchiectasis,
chronic bronchitis, chronic obstructive pulmonary disease
(COPD), emphysema, fibrosis, pneumonia, sarcoidosis, silicosis,
and tuberculosis. Finally, to focus on the discriminative power
of the diagnosis and medication without the confounding effects
of age, a subgroup of age- and gender-matched controls was
identified.

Model Construction and Evaluation
All patient data were split into training, validation, and testing
sets based on their respective index dates. Data with index dates
prior to December 31, 2012, were used for training and internal
validation, and data with index dates after that date were used
for prospective testing. The patients’age, gender, and image-like
arrays described above were used as inputs to generate the model
(Figure 2).

Lung cancer risk prediction was treated as a binary classification
task using supervised learning. The model was trained to
determine whether a given patient was likely to develop lung
cancer within 1 year. The Xception architecture [25], which
includes a 126-layer CNN-based neural network with a moderate
number of parameters, was used for feature extraction. The
detailed model structure is shown in Figure 2; the model
construction and hyperparameters are listed in Section S1 in

Multimedia Appendix 1. During training, class weights based
on the population size were set to address data imbalance. To
ensure the robustness of the model, a 5-fold cross validation
was performed on the model. The performance of the model
was assessed by its sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC). Model calibration
was assessed using a reliability curve and the median absolute
error.

To understand the model prediction, occlusion sensitivity
analysis was performed by iteratively masking information from
a single diagnosis or medication followed by evaluating any
changes in the model prediction [26]. In addition, a dimensional
reduction technique, t-distributed stochastic neighbor embedding
(t-SNE), was performed on the fully connected hidden layer
output of the final testing data. We randomly selected 1000 lung
cancer patients and 9000 control patients for visualization. The
model construction, data preprocessing, model training, and
statistical processing were performed using the Python
programming language, version 3.6.

Results

Baseline Demographics
A total of 11,617 lung cancer patients and 1,423,154 control
patients were identified in our data set. The mean age of the
lung cancer group was 66.62 years (SD 14.01); the overall data
set included 856,558 (59.7%) men and 578,213 (40.3%) women.
The baseline demographics of this patient cohort and the
assigned subgroups are summarized in Table 1 and Tables
S1-S10 in Multimedia Appendix 1.
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Table 1. Demographics of the patients with lung cancer and control patients (N=1,434,771).

Mean medication
record count (SD), n

Mean diagnosis
record count (SD), n

Male gender, n (%)Age (years), mean (SD)Patients, n Group

Whole population

202.68 (208.97)121.62 (113.19)6931 (59.7)66.62 (14.01)11,617Lung cancer

105.99 (135.54)66.09 (76.60)683,375 (48.0)44.95 (16.32)1,423,154Control 

Age and gender match (1:10)

202.68 (208.97)121.62 (113.19)6931 (59.7)66.62 (14.01)11,617Lung cancer

190.22 (196.78)117.99 (113.67)69,310 (59.7)66.62 (14.01)116,169Control 

Age ≥55 years

227.81 (218.12)135.12 (116.31)5673 (61.3)71.99 (9.46)9261Lung cancer

184.50 (189.50)114.23 (106.76)56,730 (48.6)66.57 (9.04)385,052Control 

Age <55 years

103.90 (126.71)68.58 (80.42)1258 (53.4)45.50 (7.55)2356Lung cancer

76.87 (93.45)48.23 (51.36)496,256 (47.8)36.93 (9.85)1,038,102Control 

History of lung diseasea

297.56 (245.55)175.12 (134.36)2244 (63.0)70.79 (12.73)3565Lung cancer

204.85 (204.66)125.17 (114.53)85,070(46.7)53.01 (18.09)182,098Control 

No history of lung disease

160.67 (174.80)97.94 (93.08)4687 (58.2)64.77 (14.16)8052Lung cancer

91.48 (115.23)57.42 (64.94)598,305 (48.2)43.77 (15.70)1,270,651Control 

aLung diseases included asbestosis, bronchiectasis, chronic bronchitis, chronic obstructive pulmonary disease, emphysema, fibrosis, pneumonia,
sarcoidosis, silicosis, and tuberculosis. More information is provided in Table S11 in Multimedia Appendix 1.

Model Performance
For all patients, the model revealed an AUC of 0.821 when the
input image-like array included sequential diagnostic
information only. By contrast, the AUC was 0.894 when the
input features included sequential medication information only;
when the sequential diagnostic and medication information was
simplified to binary variables, the model performance decreased
(AUC=0.827). When both sequential diagnostic and medication
information were integrated, the model reached an AUC of
0.902 on prospective testing, with a sensitivity of 0.804 and
specificity of 0.837 (Table S12 in Multimedia Appendix 1).
The calibration of the model showed a median expected error
of 0.125; the reliability curve is shown in Figure S1 in
Multimedia Appendix 1.

The model performance at different age cutoffs was then
investigated. Screening using an age cutoff of 55 years revealed
a superior AUC of 0.871 compared to those obtained when
cutoffs of 50 or 60 years were used (0.866 and 0.863,
respectively) (Table S13, Multimedia Appendix 1).

Subgroup Analysis
Analyses of the subgroups included one that was both age-
and-gender-matched, those at ages above and below 55 years,
and those with or without lung disease were performed. For this
analysis, we identified an age- and gender-matched control

subgroup that was 10 times larger than the original lung cancer
subgroup. This model revealed an AUC of 0.818 (SD 0.005)
with a sensitivity of 0.647 (SD 0.017) and a specificity of 0.873
(0.023 SD), as shown in Table 2 and in Table S14 in Multimedia
Appendix 1. For patients above 55 years of age, the model
revealed an AUC of 0.869 (SD 0.005) with a sensitivity of 0.784
(SD 0.011) and a specificity of 0.785 (SD 0.016). The PPV in
this subgroup was 0.081% (SD 0.005%), and the negative
predictive value was 0.993% (SD 0.000%). The performance
of the model was inferior in patients below the age of 55 years;
however, it still achieved an AUC of 0.815 (SD 0.007). The
discriminatory powers of these models were both excellent
among patients with and without a history of lung disease; the
AUCs for these subgroups were 0.914 (SD 0.003) and 0.887
(SD 0.002), respectively. Among all the subgroups, the model
had the weakest performance in patients below 55 years of age
who had no history of lung disease; the AUC for this subgroup
was only 0.797 (SD 0.008) for the one-year prospective
prediction. By contrast, the model provided the strongest
performance for individuals above the age of 55 years with a
history of lung disease, which revealed the highest PPV of
14.3% (SD 2.3%). The model exhibited the lowest PPV of 1.0%
(SD 0.2%) for individuals less than 55 years of age with no
history of lung disease (Table 2). The receiver operating
characteristic curves associated with each of these subgroups
are summarized in sections S2.1-S2.9 in Multimedia Appendix
1.
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Table 2. Discrimination performance (testing set) of the model in the subgroups.

NPVc

(SD), %
PPVb

(SD), %

Testing specificity
(SD)

Testing sensitivity
(SD)

Testing AUCa

(SD)

Control, nLung cancer
group, n

Subgroup

99.8 (0)4.2 (0.3)0.825 (0.018)0.805 (0.015)0.898 (0.002)138,6401304Whole population

96.0 (0.1)34.6 (0.4)0.873 (0.023)0.647 (0.017)0.818 (0.005)13,0401304Matching age and gender

99.3 (0)8.1 (0.5)0.785 (0.016)0.784 (0.011)0.869 (0.002)43,3281046Age ≥55 years

99.9 (0)1.1 (0.2)0.838 (0.054)0.620 (0.080)0.815 (0.007)95,312258Age <55 years

0.995
(0.1)

9.0 (0.8)0.816 (0.021)0.829 (0.021)0.914 (0.003)d16,596361History of lung disease

99.8 (0.0)3.4 (0.5)0.827 (0.026)0.781 (0.025)0.887 (0.002)122,044943No history of lung disease

98.9 (0.2)14.3 (2.3)0.819 (0.044)0.755 (0.047)0.875 (0.005)8184318Age ≥55 years with history

of lung disease

99.4 (0.0)7.0 (0.4)0.786 (0.018)0.775 (0.019)0.865 (0.003)35,144728Age ≥55 years with no history

of lung disease

99.9 (0.0)3.8 (1.0)0.891 (0.036)0.777 (0.054)0.909 (0.006)8,41243Age <55 years with history

of lung disease

99.9 (0.0)1.0 (0.2)0.865 (0.026)0.533 (0.048)0.797 (0.008)86,900215Age <55 years with no history

of lung disease

aAUC: area under the curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dItalic text indicates the best performance for the parameter.

Table 3 summarizes the age, gender, diagnosis, and medications
associated with both the correctly and incorrectly classified
groups from the testing data set. The mean age of the
true-positive group was similar to that of the false-positive group
and somewhat greater than that of the false-negative group. This
tendency was also observed in other subgroups; overall, our
results suggest that age and sex are important predictive factors.
This is consistent with the t-SNE analysis, in which patients
with lung cancer and control patients over 55 years of age were
clustered centrally, as compared to the other patients, who were
located at the periphery (Figure 3).

The model’s hidden layer outputs of 1000 patients with cancer
(red dots) and 9000 control patients (green dots) were visualized
using t-SNE (Figure 3). Dark green and red represent old age
control patients and patients with cancer, respectively. As shown
in the left image, most patients with cancer can be clustered
away from the control patients. Some dark red dots are mixed

with dark green dots in the upper area. These are the patients
that were wrongly predicted to be controls by the model. The
center images shows that patients aged ≥55 years were clustered
in the center of the graph, with the patients with cancer were
successfully clustered in the tip area. The right image shows
that patients aged <55 years were clustered at the periphery of
the graph. Some patients with cancer were also clustered in the
tip area, whereas the others were scattered with the control
patients.

Occlusion sensitivity analysis further revealed that the specific
diagnosis and medication factors were associated with an
increased risk of developing lung cancer. Interestingly, “other
noninfectious gastroenteritis and colitis” and “other agents for
local oral treatment” were associated with the highest risks of
developing lung cancer with respect to patient diagnosis and
medication, respectively. The top 20 factors identified in the
analysis are summarized in Table 4.
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Table 3. Prediction analysis of the prospective testing data set (N=139,944).

Mean medication

count (SD), n

Mean diagnosis

count (SD), n

Male gender,

n (%)

Age (years),

mean (SD)

Patients, nGroup

All patients

210.7 (186.32)141.75 (113.31)617 (58.65)69.91 (11.58)1052True positive

159.14 (171.74)114.96 (111.04)12,641 (55.87)69.19 (12.48)22,624False positive

81.46 (101.84)63.08 (67.53)53,671 (46.26)41.94 (13.14)116,016True negative

104.03 (139.98)81.37 (95.67)134 (53.17)50.96 (10.79)252False negative

Patients aged ≥55 years

217.88 (181.04)146.32 (110.84)510 (59.93)72.86 (9.25)851True positive

170.8 (179.15)124.11 (119.27)6640 (60.42)74.88 (9.66)10,989False positive

152.69 (154.96)110.24 (97.26)13,871 (42.89)63.28 (6.58)32,339True negative

185.08 (216.55)125.98 (132.09)106 (54.36)64.62 (6.63)195False negative

Patients aged <55 years

106.48 (128.64)83.3 (87.98)113 (54.07)47.87 (6.07)209True positive

74.38 (92.27)59.4 (63.22)18,422 (56.22)46.78 (6.58)32,765False positive

60.74 (71.36)48.67 (48.88)27,379 (43.77)32.45 (7.43)62,547True negative

83.88 (115.66)63.98 (63.75)22 (44.90)36.22 (5.82)49False negative

Patients with a history of lung disease

278.71 (194.81)184.91 (118.07)182 (60.67)72.86 (11.18)300True positive

253.68 (214.05)180.66 (140.56)1750 (62.70)75.41 (11.97)2791False positive

162.24 (162.85)119.33 (102.8)5876 (42.56)49.34 (15.6)13,805True negative

246.79 (226.86)171.72 (155.81)34(55.74)61.41 (12.11)61False negative

Patients with no history of lung disease

177.03 (172.5)120.97 (104.28)442 (58.39)68.45 (11.4)757True positive

130.24 (146.34)95.23 (94.24)12,881 (55.22)66.54 (12.25)23,328False positive

71.56 (88.63)56.19 (59.51)45,805 (46.40)40.39 (12.27)98,716True negative

81.69 (101.83)65.08 (66.98)93 (50.00)48.19 (10.32)186False negative

Patients aged ≥55 years with a history of lung disease

284.4 (193.99)188.33 (119.58)160 (62.75)74.89 (9.03)255True positive

263 (215.97)188.16 (142.99)1205 (67.77)78.53 (9.16)1778False positive

239.26 (195.71)169.82 (121.41)2669 (41.66)66.38 (7.88)6406True negative

308.17 (221.29)203.87 (148.87)35 (55.56)70.44 (7.81)63False negative

Patients aged ≥55 years with no history of lung disease

185.01 (166.72)126.04 (102.89)347(59.11)71.76 (9.24)587True positive

142.56 (154.72)104.85 (103.3)5,281(58.95)73.86 (9.69)8958False positive

135.09 (139.76)98.04 (87.47)11,356(43.37)62.73 (6.27)26,186True negative

148.73 (195.18)100.89 (103.77)74(52.48)63.47 (6.25)141False negative

Patients aged <55 years with lung diseases

157.62 (173.25)120.46 (100.27)18 (48.65)48.89 (6.08)37True positive

109.78 (108.74)85.56 (72.24)653 (60.46)46.56 (7.56)1080False positive

113.06 (116.51)86.84 (75.16)3099 (42.27)37.7 (9.58)7332True negative

149.83 (152.85)103.67 (98.36)3 (50.00)43.33 (9.24)6False negative

Patients aged <55 years with no history of lung disease
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Mean medication

count (SD), n

Mean diagnosis

count (SD), n

Male gender,

n (%)

Age (years),

mean (SD)

Patients, nGroup

94.44 (114.72)74.94 (83.33)95(55.23)47.55 (6.07)172True positive

68.47 (84.96)55.1 (58.63)17,478(56.41)46.56 (6.56)30,982False positive

56.64 (65.81)45.68 (45.68)24,571(43.94)32.06 (7.25)55,918True negative

78.84 (108.63)59.88 (56.98)19(44.19)35.65 (5.54)43False negative

Figure 3. Visualization of the hidden layer of the model using t-stochastic neighbor embedding.

Table 4. Top 20 factors related to lung cancer learned by the model.

Lung cancer risk increase (%), mean (SD)FactorRank

1.85 (1.01)Other noninfectious gastroenteritis and colitis1

1.84 (2.21)Other congenital anomalies of the circulatory system2

1.76 (1.02)Other agents for local oral treatment3

1.69 (1.55)Antidotes4

1.69 (1.43)Postinflammatory pulmonary fibrosis5

1.69 (1.29)Metronidazole6

1.65 (1.73)Acariasis7

1.57 (1.03)Antiviral drugs8

1.57 (1.48)Orchitis and epididymitis9

1.52 (0.93)Pneumococcal pneumonia10

1.44 (1.76)Buflomedil 11

1.42 (1.41)Danazol 12

1.42 (1.29)Calcineurin inhibitors13

1.37 (1.34)Other disorders of the urethra and urinary tract14

1.35 (1.44)Angina pectoris15

1.35 (1.99)Other nonorganic psychoses16

1.33 (1.33)Respiratory conditions due to other and unspecified external agents17

1.33 (2.46)Open wound of back18

1.31 (1.57)Hydrazinophthalazine derivatives19

1.30 (1.51)Insulin20
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Discussion

Principal Findings
In this study, we explored the possibility of predicting lung
cancer using a CNN with diagnosis and medication history
extracted from EMRs as a data source. Unlike other proposed
lung cancer risk models, our model does not rely on self-reported
parameters such as smoking/cessation history, family history,
socioeconomic status, or BMI. This model could be readily
deployed as a means to evaluate centralized health care
databases and perform efficient population-based screening.
Such an approach has potential to improve the accuracy of
current screening methods, as it can identify those most likely
to benefit from interventions [21]. In addition, we attempted to
include time-related sequential information as reflected in the
medical histories as a means to evaluate lung cancer risk. This
approach is different from those used in traditional regression
analysis, in which personal history is often simplified and
limited to binary or categorical variables. We found that the
integration of temporal aspects resulted in improvements in the
model performance (Table S12 in Multimedia Appendix 1).
The capacity for complex integration of multiple variables is
one of the strengths of deep neural networks. To generate this
model, we used an established computer vision model
(Xception) to extract high-level features from the array
representing individual clinical case histories; this ensured that
the high-level features associated with the clinical information
were effectively extracted for risk prediction.

Related Work
Lung cancer prediction models are under investigation with the
goal of identifying high-risk populations that might benefit from
LDCT screening. A variety of parameters have been used for
prediction, including epidemiologic factors (eg, socioeconomic
status, BMI, and smoking history), clinical history (eg, family
history and individual history of lung disease history), and
results of clinical examinations (eg, blood tests, genetic analysis,
and imaging results). The PLCOm2012 model is the most widely
validated, with AUCs of 0.78 to 0.82 [27-30]. Likewise, the
Bach model exhibited AUCs of 0.66 to 0.75 on external
validation [5,31]. Other models include the Haggart model,
which exhibited AUCs of 0.71 to 0.84 [5,9], the Liverpool Lung
Project model, with AUCs of 0.67 to 0.82 [32], and the Lung
Cancer Risk Assessment Tool, which achieved AUCs of 0.77
to 0.78 [5,33]. Some models used information extracted from
patient EMRs. The model proposed by Iyen-Omofoman et al
[10] used lung-associated clinical symptoms and
social-epidemiologic factors from a general practice database,
and they achieved an AUC of 0.88; likewise, Wang et al [13]
included 33,788 clinical features from clinical histories and
laboratory tests evaluated in an extreme gradient boosting
(XGBoost) model to achieve an AUC of 0.88. With these
previous studies in mind, our model featured a deep learning
approach and achieved a prospective prediction AUC of 0.87
in patients older than 55 years and 0.90 for the entire patient
cohort. It is possible to test other machine learning models (eg,
support vector machine or random forest) on our data set.
However, this study serves as a proof of concept of using CNN
with nonimaging medical records. Comparing the performance

of this model to that of different machine learning models of
practical interest would be an interesting approach for future
studies.

We recognize that direct comparisons between models may not
be fully appropriate, as the target populations and predicted
outcomes can vary. Previous reports suggested that the
performance of models is inflated when nonsmokers and
younger subjects (<55 years of age) are included in the study
groups [34]. Our findings confirm this point, as can be observed
from the higher AUCs associated with the younger age cutoffs
(Table S3, Multimedia Appendix 1). Although our data set did
not directly include reports of smoking history or cessation, we
did include a history of lung diseases (eg, chronic bronchitis,
COPD, and emphysema) among our parameters; these could
easily be considered as surrogate factors for smoking history.
Further analysis of this patient subgroup may help us understand
and mitigate the possibility of performance inflation.

In the original NLST trial, the PPV for the LDCT was
determined to be 3.4% [1]. The high false-positive rate
associated with this intervention remains a major concern with
respect to LDCT screening. In this study, the highest PPV
(14.5%) was observed in patients ≥55 years of age with a history
of lung disease. As noted above, an increase in cancer diagnoses
might be expected in this patient subgroup, as a history of lung
disease may be a direct consequence of smoking. As such, this
finding suggested that individuals in this subgroup are suitable
candidates for model prescreening in an effort to avoid
unnecessary radiation exposure and costs associated with LDCT.
In addition, we found that the 55-year age cutoff selected in the
original NLST trial was also appropriate for our model, as the
predictive performance was higher with this age cutoff compared
to that observed at cutoffs at age 50 or 60 years (Table S3,
Multimedia Appendix 1).

Predictive Factor Analysis
The inclusion of an age- and gender-matched subgroup was
necessary to explore the roles of clinical diagnosis and
medication history in the predictions generated by our model;
evaluation of this subgroup prevented the confounding effects
of age and its correlations to clinical history (eg, older people
are typically prescribed more chronic disease-related
medications). With this consideration, our model achieved an
AUC of 0.818. These findings can be compared to the model
proposed by Spitz et al [12], which included gender-, age-, and
smoking status–matched patients and achieved an AUC of 0.63
in former smokers. Although the models generated from
matched populations tended to display weaker performance
than those from nonmatched populations and may not be
clinically useful, this result provided us with a more clear-cut
evaluation of the specific parameters included in this model.
Taken together, our findings suggest that our model is capable
of identifying factors that are useful for predicting lung cancer
using clinical information available 1 year before the clinical
diagnosis is made.

Our model demonstrated the worst performance in young
patients without pre-existing lung diseases. This finding suggests
that identifying high-risk patients among young and
asymptomatic patients is still the most challenging task. Further
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studies are required to assess the performance of the model in
patients with different staging. One of the major concerns with
respect to the use of lung cancer prediction models is that they
tend to select individuals who are older and who have multiple
comorbidities [35], thus reducing the overall benefit gained
from the screening process [36]. This tendency was also
observed in our model. This phenomenon cannot be fully
avoided, as it simply reflects the high percentage of older
patients in the population who are diagnosed with lung cancer.
However, when focused on patients younger than 55 years of
age, our model maintained excellent discriminative power (the
AUC was 0.82, with a mean age of true positives of 47.8 years).
With the current model, the inclusion of younger individuals
remains possible; multiple age-stratified thresholds for lung
cancer risk could further optimize the clinical benefits of the
predictions from this model.

Although deep learning is often considered a “black box,” and
it is often challenging to explain the reasoning behind the
outcomes, our study used t-SNE and occlusion sensitivity
analysis to identify the most critical of the contributing
parameters. Our occlusion sensitivity analysis revealed that
many of the important factors were those associated with a
history of preexisting lung conditions (eg, postinflammatory
pulmonary fibrosis and pneumococcal pneumonia) and
medications used to treat smoking-related diseases (eg,
buflomedil for peripheral arterial disease and angina pectoris,
and insulin for insulin resistance of diabetes mellitus) with
increased cancer risk (eg, congenital anomalies of the circulatory
system [37] and periodontal conditions [38]), and paraneoplastic
phenomena (eg, noninfectious gastroenteritis and colitis [39]).
This information must be interpreted carefully, as these findings
do not imply a causal relationship. For example, the model may
predict an increased likelihood of future lung cancer in patients
with pre-existing lung disease simply because these patients
receive frequent medical attention; thus, there is a higher
likelihood that cancer will be detected incidentally. In addition,
the sensitivity analysis in this study is only capable of evaluating
one factor at a time; this is a major limitation of the
explainability of the model, given the fact that our model was
designed to integrate complex, high-level features. Finally, we
could not explain some of the predictive features identified by
this model, such as the associations with terms including
antidote, orchitis, and epididymitis. More studies will be
required to decode the findings from the CNN and to elucidate
the interactions between age, sex, previous diagnoses, and
medications.

Although our model achieved excellent discriminative
performance, poor calibration was noted, together with the fact
that direct numeric output would overestimate the actual risk.
This is a known phenomenon associated with modern neural
networks [40]. Unlike the traditional logistic regression models,
which perform well in calibration because they directly
minimize the loss of calibration, modern neural networks tend
to perform suboptimally in this regard. This is likely due to the
regularization methods (eg, dropout and batch normalization)
and the multiple deep layers applied as components of the model
architecture [40]. In our study, poor calibration did not limit the
use of the model, as individuals were selected based on a

predefined threshold identified in the validation data set rather
than on the numerical output of the model. As a result, the
increased rates reported in Table 4 do not represent the actual
cancer risk.

Our model used nonimaging medical information from EMRs;
however, we still used CNN as the model backbone. The study
design and aims are different from other lung cancer studies
that used CNN to analyze computed tomography (CT) scans
and determine if a pulmonary nodule is malignant. Their models
were used to automatically identify suspicious nodules from
CT scans, which were already present, whereas our model
attempted to identify patients with high risk of developing lung
cancer in the future.

Limitations
There are several limitations to this study. First, the data
collection was limited to the NHIRD database of Taiwan; the
patient records do not include tissue histology or lung cancer
staging data. Patients with small cell lung cancer and
mutation-rich non–small cell lung cancer (eg, epidermal growth
factor receptor, anaplastic lymphoma kinase, ROS-1) could not
be separated. These specific types may have different disease
courses and risk factors; therefore, they were usually not
included in the traditional screening, and the benefit of receiving
screening is undetermined. Our subgroup analysis did include
only patients with pre-existing lung diseases, but this did not
mitigate the issue entirely. Similarly, the NHIRD database does
not include information on patients’ lifestyles or any genetic or
laboratory data. A subgroup analysis of patients with lung cancer
based on tissue histology and staging might help to develop a
prediction model that was tailored to different risk groups.
Second, the data set did not contain any information on smoking
status, which is clearly an important risk factor associated with
lung cancer development. This limitation restricted the external
validation and the comparisons that could be made between our
model and those described in earlier published studies. The
authors believe that self-reported information, such as family
history, smoking/cessation history, and duration of symptoms,
are valuable pieces of information for lung cancer prediction
that are very important and can further improve prediction
accuracy. In our study, a history of lung diseases (eg, COPD
and emphysema) was used as a proxy for a smoking history;
our model performed with excellent discriminative power with
respect to this subgroup. Finally, the NHIRD includes primarily
Taiwanese people; as such, the target population was fairly
homogeneous, with limited ethnic diversity. The identified risk
factors may not apply to other populations with other ethnicities.
Nonetheless, the methodology used here could be easily applied
to other medical databases with more diverse patient
populations.

Conclusion
Our CNN model exhibited robust performance with respect to
the 1-year prospective prediction of the risk of developing lung
cancer. As our model included sequential data on clinical
diagnoses and medication history, it was capable of capturing
features associated with evolving clinical conditions and as such
was able to identify patients at higher risk of developing lung
cancer. With appropriate ethical regulation, this model may be
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deployed as a means to analyze medical databases, thus paving
the way for efficient population-based screening and digital
precision medicine. A future randomized controlled trial will

be required to explore the clinical benefit of this model in
diverse populations.
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