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Abstract

Background: Survival analysis is a cornerstone of medical research, enabling the assessment of clinical outcomes for disease
progression and treatment efficiency. Despite its central importance, no commonly used spreadsheet software can handle survival
analysis and there is no web server available for its computation.

Objective: Here, we introduce a web-based tool capable of performing univariate and multivariate Cox proportional hazards
survival analysis using data generated by genomic, transcriptomic, proteomic, or metabolomic studies.

Methods: We implemented different methods to establish cut-off values for the trichotomization or dichotomization of continuous
data. The false discovery rate is computed to correct for multiple hypothesis testing. A multivariate analysis option enables
comparing omics data with clinical variables.

Results: We established a registration-free web-based survival analysis tool capable of performing univariate and multivariate
survival analysis using any custom-generated data.

Conclusions: This tool fills a gap and will be an invaluable contribution to basic medical and clinical research.

(J Med Internet Res 2021;23(7):e27633) doi: 10.2196/27633
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Introduction

Bioinformatic programs include databases, algorithms, services,
and software tools. These not only span a wide range of utility
but have also gained increased value in scientific research in
recent years; approximately 80% of papers published in biology
and 60% of papers published in medicine report the use of at
least one bioinformatic tool [1]. We recently analyzed the
landscape of web-based bioinformatic services and uncovered
3649 such publications since 1994, 69% of which are actively
maintained [2]. The leading advantages of browser-based
bioinformatic programs include unrestricted availability, the
lack of need for the installation of specific software packages,
optimized allocation of computational resources, the possibility
of constant updates, instant access to the latest versions, and

the opportunity to enable real-time validation of previous
analysis results. A subcohort of these tools enables certain
analyses with user-provided data. A few representative examples
used in these tools in medical research include an online
calculator for receiver operator characteristics [3], a tool to
determine optimal cut-off values for clinical tests [4], and a
sample size calculator for randomized clinical trials [5].

The assessment of survival following the onset of a disease or
of a treatment is a fundamental analysis in medical research. In
an optimal scenario, the differential survival of two cohorts can
be compared by employing a simple Mann-Whitney test.
However, survival times do not follow a normal distribution
and it is common for numerous subjects to lack associated event
data at the end of follow-up. Kaplan and Meier [6] proposed a
simple and elegant solution to these issues by including all cases
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regardless of endpoint status in the analysis. The basic concept
of Kaplan-Meier survival analysis is to assign a “censored”
status to incomplete observations at the end of the follow-up
time. In other words, there are two inputs for each case: the
length of the follow-up time and a binary classifier designating
the case as one with an event or one that is censored. Then,
starting from 100, at each event, the survival line drops in
proportion to the number of samples remaining within the
investigated cohort. If there are multiple survival curves, the
statistical difference between these is most commonly computed
by employing the Cox proportional-hazards regression model
[7].

Despite its widespread use, there is no online tool available for
survival analysis. Therefore, it is necessary to acquire
specialized software packages, as none of the general office
packages (OpenOffice, LibreOffice, MS Office) is suitable for
analyzing follow-up data. We previously established an online
platform capable of linking survival outcome in various cancer
types to mRNA [8] and microRNA [9] expression alterations.
Here, we aimed to establish a freely available, easy-to-use online
platform capable of performing survival analysis and
constructing a Kaplan-Meier plot with any type of user-uploaded
custom data containing any type of genomic or clinical
information.

Methods

Setup of the Web Platform
The website is built on an Apache 2.4 web server and hosted
by a Linux-based server machine. The user interface is written

in PHP 7 and JavaScript using JQuery. The backend side is
written in PHP 7 and R, and the repository layer is built on the
PostgreSQL 12 database. The database temporarily contains
the uploaded data and generated results. The analysis platform
is accessible via any standard browser (Firefox, Edge, Chrome,
Safari).

Survival Analysis
Multiple R packages are used for the statistical computations
and for generating the output graphs. The survival package [10]
is used for univariate Kaplan-Meier analysis and the multivariate
analysis. The survival curve and the beeswarm plot are generated
by the survplot [11] and beeswarm [12] packages, respectively.
The XML and rjson R packages are used to load the
configuration files, the RODBC package is used to communicate
with the database, and the ggplot2 package [13] is used to
visualize the results.

When comparing two cohorts, the significance is computed
using the Cox-Mantel (log rank) test [7]. The difference between
the cohorts is numerically characterized by the hazard rate (HR),
which is based on the differential descent rate of the two cohorts
(Figure 1A). Of note, since the hazard rate is by definition a
comparison to the baseline, a relative two-fold drop in one
cohort is equal to a half-fold drop in the other cohorts. Basically,
depending on the context, an HR of 2 equals an HR of 0.5. As
it is easier to understand an HR value above 1 in most cases,
we implemented an option to invert all HR values below 1.

Figure 1. Kaplan-Meier curves showing main concepts used in survival analysis, including the (A) hazard rate (high/low) and (B) median survival.
The green arrow shows the visually determined median survival and the blue arrow shows the survival probability at 50 months.

The generated results also include the median survival time,
which is the time at which the probability of 0.5 is reached in
one of the cohorts. The median time can also be determined
visually by drawing a vertical line from the selected probability

to the X axis. Of note, performing the steps backward can
determine the cumulative probability of survival at a given time
point (Figure 1B).
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Assigning the Samples into Two Cohorts
To enable visualization in the Kaplan-Meier plot, it is necessary
to establish a cut-off value and assign the samples to one of two
cohorts. We implemented three different options for this task:
using a predefined quantile (including the median, upper, and
lower quartiles), trichotomizing the data (eg, assign the data
into three cohorts and then omit the middle cohort), and using
the best available cut-off value.

To find the best cutoff, we iterate over the input variable values
from the lower quartile to the upper quartile and compute the
Cox regression [7] for each setting. The most significant cut-off
value is used as the best cutoff to separate the input data into
two groups. We implemented a simple visual representation of
this analysis by showing the achieved P values in relation to
the used cut-off values (Figure 2A). In case the generated cut-off
values are ambiguous (eg, multiple cut-off values deliver very
low P values), the cut-off value corresponding to the highest
HR is used (see Figure 2B).

Figure 2. A cut-off plot can be used to visualize the correlation between the used cut-off values and the achieved P values (A) and hazard rate (HR)
(B). The red circle identifies the best cutoff. The computation of false discovery rate across all P values provides correction for multiple hypothesis
testing.

Quality Control
During the computation of multiple cut-off values, multiple
hypotheses are generated. Therefore, the false discovery rate
(FDR) is computed by default in this setting using the
Benjamini-Hochberg method [14] to correct for multiple
hypothesis testing. The FDR results are normally shown in the
“Results” page.

A requirement for Cox regression is that the hazard is
independent of time. To fulfill this requirement, the censoring
should be independent of the prognosis, samples entering at
different time points in the analysis should have the same
prognosis, and the time should be measured as a continuous
variable (not in bins). We employed the coxph function of the
survival package [10] for performing the proportional hazard
assumption test.

In some cases, one might want to compare clinical and genomic
variables. To enable this, clinical data can be selected not only
as filters but also as variables to be included in the multivariate
analysis. In these analyses, the “Results” page displays the P
values and HR values for each variable included in the
multivariate analysis in a table format.

Using Multiple Variables
We implemented multiple options to simultaneously use and
combine multiple variables. Each of these settings uses the
original variable values as input and basic mathematical
functions to calculate the new joint values.

The simplest option is to select multiple variables and then use
each variable separately. In this case, the same analysis is
performed for each selected marker using the exact same
filtering settings. This option is identical to running the analysis
for each variable consecutively.

In the second feature, one can use the mean expression of a
panel of variables; in this case, any variable can be inverted and
a weight can be added to each. Using the mean expression of a
set of genes can be termed a “signature analysis,” as the
expression of each included variable will influence the value
of the final “composite variable.” This feature can also be used
to validate previously published gene expression signatures
utilizing a preselected panel of genes.

A third option is utilization of the ratio of two genes; in this
case, one variable is used as the numerator, the other variable
is used as the denominator, and a new value is computed for
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each sample. This setting is useful when one wants to compare
the expression values to a reference gene such as GAPDH.

The fourth option enables the stratification of all patients based
on the median expression level of a selected variable and then
use another variable in the high or low cohort only. This enables
the investigation of a selected variable in an already stratified
cohort and ultimately the setup of a decision tree–like
classification for the investigated cohort.

In each of the settings where multiple variables are combined,
a new value based on the equation is generated for each sample,
which is then used when performing the survival analysis,
including the cut-off selection. Of note, one might want to
directly compare two or more selected continuous variables to
each other. For this purpose, we implemented an option to
compute Spearman and Pearson correlation coefficients between
the variables using the cor.test function from the basic R
distribution.

Results

We established an online survival analysis platform that grabs
a user-generated tab-separated or semicolon-separated file as
input. The table headers can include case-insensitive letters of
the English alphabet, numbers, spaces, underscores, colons,

round brackets, and exclamation marks as characters. The
content within the table cells can be numeric or text values.
Some columns can be used as filters and a maximum of three
filters are allowed. Table 1 provides a quick guide for the setup
of an input file. The file can be a comma-separated value or a
tab-separated table, and different types of data are allowed in
each column. Table 2 shows a sample input file using this guide;
the maximal dimensions of the table are 100 columns and 8000
rows. Note that a gene can be in the form of text when used as
a group. Using this data table, the system is capable of
performing univariate and multivariate survival analysis by
using one or multiple variables and clinical data. In addition to
drawing a Kaplan-Meier plot, the P values and HR values with
95% CIs are also computed. A separate plot visualizes the
correlation between the P values and HR values and the
employed cut-off values. Median survival values are computed
for cohorts reaching a cumulative probability of 0.5, and
upper-quartile survival is computed for the remaining cases. Of
note, when performing multivariate analysis, only patient
samples for which all variables of interest are concurrently
available can be included. The platform includes multiple
quality-control steps, including validation of the proportional
hazard assumption and computation of the FDR for cases where
multiple analyses are run simultaneously. The web service is
freely available without requiring registration [15].

Table 1. Quick start guide for setting up an input file.

GeneFilterSurvival eventSurvival timeSample IDHeader name

NoYesYesYesYesAutomatically recognized

No limit102 (0 or 1)No limitNo limitMaximal number of different values

NoYesNoNoYesCan be text

YesYesYesNoNoCan be binary

YesNoNoYesCan be continuous

Table 2. Sample input file.

DE45ABC123Gene_1Filter_CFilter_BFilter_ASurvival eventSurvival timeSample ID

1.1344741441322195Sample 1

2.3954213064333066Sample 2

1.36329742529113070Sample 3

4.818334619313126Sample 4

2.05812443573321013Sample 5

4.4319622977232067Sample 6

2.01543672777333196Sample 7

1.0541904606133067Sample 8

1.98039301209213195Sample 9

4.0734897189423211Sample 10

Discussion

Currently, genomics, transcriptomics, proteomics, and
metabolomics enable the simultaneous investigation of multiple
markers related to patient prognosis in experimental and clinical

studies. Multiple online tools make survival analysis possible
using previously published datasets such as those employing
data from The Cancer Genome Atlas [9,16]. Despite the almost
ubiquitous use of Cox regression to correlate different marker
levels to prognosis, there is no available software to perform
survival analysis for user-generated custom datasets. We
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established a wide-ranging online tool capable of performing
Cox regression and constructing Kaplan-Meier plots for
user-generated data. A comprehensive and practical review of
the Kaplan-Meier curves has been published previously [17].

A major advantage of our platform is the inclusion of multiple
choices to select a cut-off value to be used in the analysis. To
generate a Kaplan-Meier plot, one must first determine a cutoff;
a convenient and widespread option for this task is the median
expression value [18,19]. However, the cutoff should be based
on the intention of the study. In most medical studies, there is
no biological reason that a certain predetermined quantile cutoff
should discriminate two cohorts [20]. When a researcher aims
to uncover any potential correlation between a variable and
outcome, then all possible cut-off values can be checked. Of
course, in such cases, the chance of false-positive results also
increases; therefore, we have implemented the
Benjamini-Hochberg method [14] to calculate the FDR to
correct for multiple hypothesis testing. Our approach is rather
conservative as the different analyses are not truly independent
in such a scenario, as only a few samples can switch cohorts
between successive analyses. Of note, independent of the used
cutoff, a single-variable analysis is almost never sufficient to
prove a direct correlation and thus multivariate analysis should
not be omitted.

The analysis automatically checks the proportional hazards
assumption to evaluate the independence from time. This can
also be achieved by a simple visual inspection of the graph: in
case there seems to be a significant difference between the two
cohorts but the lines cross at multiple time points, then the
hazard is clearly not independent of time [21]. Of note, a
common question is whether or not crossing at the right end of
the plot violates the proportional hazards assumption. In most
cases, at the end of the follow-up time, only few patients remain
in both cohorts. Thus, because the drop in the line for each event
is proportional to all samples remaining in the analysis, even
an event for a single patient can result in crossing of the two
lines. However, this will not affect the significance of the entire
analysis.

When interpreting the results, one has to be aware of some
common caveats of survival analysis. First, the P value should
be interpreted with respect to the sample size. The Cox model
is not suitable for small sample sizes (N<40), and in these cases
the generalized log-rank method is a better choice [22]. Higher
sample numbers will lead to better significance, even in cases
where the HR values are lower. A representative example of

this bias is the ill-fated FLEX phase III trial [23]. By
investigating the effect of cetuximab in patients with advanced
nonsmall cell lung cancer, the authors observed a difference in
survival of 10.1 months vs 11.3 months in the untreated and
treated cohort, respectively. Although this difference was
initially considered to be sufficient to gain approval by the US
Food and Drug Administration, the European Medicines Agency
rejected approval of the drug. Their main problem with the trial
was the minimal overall survival benefit of only 12% and that
only the exceptionally high sample number (N=1125) helped
to reach a minimally significant P value of .04 [23].

A second important deception is the proportion of recorded
events within a study. As only the actual events contribute to
the drops in survival curves, it is not possible to perform a
meaningful survival analysis when the number of events is very
low. This not only prevents the computation of median (or upper
quartile) survival, but the accidental concentration of all events
into one of the cohorts can lead to an infinite HR. For example,
The Cancer Genome Atlas Network published a breast cancer
dataset with approximately 1000 patient samples [24]. The
authors had to note that because of the very short follow-up,
only 11% of the samples had survival events, which prevented
utilization of the dataset for survival analyses [24].

We also have to discuss some limitations of the software. The
input file has to be carefully formatted, and a maximum of 100
columns and 8000 rows are allowed. Only full columns are
acceptable as variables, a maximum of three filters can be
defined, and the survival event can only be coded “0” or “1.”
Although these restrictions can make the setup of the analysis
challenging, when a correctly formatted table is uploaded, the
system can automatically recognize columns representing a
survival event or survival time. A second limitation is the
exclusive use of the Cox proportional-hazards model to compute
significance, and other tests such as the
Cochran-Mantel-Haenszel test [25,26] or the
Gehan-Breslow-Wilcoxon test [27,28] are not implemented.
The reason for our restriction is the almost exclusive use of the
Cox test in the current medical literature.

In summary, we established an online survival analysis tool
capable of performing univariate and multivariate survival
analysis using any custom-generated data. We believe that this
registration-free online platform simultaneously integrating
multiple different analysis and quality-control options will be
a valuable tool for biomedical researchers.
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