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Abstract

Background: Computerized adaptive testing (CAT) has been shown to deliver short, accurate, and personalized versions of
the CLEFT-Q patient-reported outcome measure for children and young adults born with a cleft lip and/or palate. Decision trees
may integrate clinician-reported data (eg, age, gender, cleft type, and planned treatments) to make these assessments even shorter
and more accurate.

Objective: We aimed to create decision tree models incorporating clinician-reported data into adaptive CLEFT-Q assessments
and compare their accuracy to traditional CAT models.

Methods: We used relevant clinician-reported data and patient-reported item responses from the CLEFT-Q field test to train
and test decision tree models using recursive partitioning. We compared the prediction accuracy of decision trees to CAT
assessments of similar length. Participant scores from the full-length questionnaire were used as ground truth. Accuracy was
assessed through Pearson’s correlation coefficient of predicted and ground truth scores, mean absolute error, root mean squared
error, and a two-tailed Wilcoxon signed-rank test comparing squared error.

Results: Decision trees demonstrated poorer accuracy than CAT comparators and generally made data splits based on item
responses rather than clinician-reported data.

Conclusions: When predicting CLEFT-Q scores, individual item responses are generally more informative than clinician-reported
data. Decision trees that make binary splits are at risk of underfitting polytomous patient-reported outcome measure data and
demonstrated poorer performance than CATs in this study.
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Introduction

Computerized Adaptive Testing
Computerized adaptive testing (CAT) describes the use of
algorithms to shorten and personalize questionnaires by
selectively administering only the most relevant items to an
individual based on the responses they have already given during
that assessment [1]. The item that is expected to be most relevant
(ie, most informative) in a general population is picked first
[2,3]. Once the individual has responded, an algorithm predicts
the person’s score and selects the most relevant item to ask next,
based on the predicted score and an item selection criterion.
This continues iteratively until a stopping rule is met.

There are some limitations in this approach to personalized
assessments. Firstly, this method is only possible in
patient-reported outcome measures (PROMs) that fit item
response theory (IRT) or Rasch models, and not those that only
meet the structural requirements of classical test theory [1,4].
Secondly, an individual’s score must be calculated after each
response to select the next item, which can be computationally
demanding in situations where the assessment has many
different items to choose from (ie, item-banking) and may cause
a time delay between each item. Thirdly, CAT assessments do
not directly incorporate clinician-reported variables. These
variables, which can be automatically captured from a person’s
electronic health record, may be very informative and can
potentially improve the efficiency and accuracy of personalized
assessments.

Recursive Partitioning
Recursive partitioning is a form of machine learning that
involves iteratively splitting labeled data sets into subgroups to
minimize the within-subgroup variance of an outcome, such as
a PROM score [5]. Recent studies have explored the use of
personalized health assessments based on decision trees
constructed with similar techniques [6-8]. These trees split
respondents into subgroups based on their responses to
individual items.

The use of decision trees in personalized health assessment may
be appealing because they are not restricted by IRT model
requirements, and trees are developed a priori (ie, they do not
need to calculate a person’s score between each item),
attenuating potential lag time [9]. It may also be possible to use
recursive partitioning to split data based on clinical variables
other than item responses, meaning that, unlike traditional CAT
assessments, decision trees could automatically incorporate
clinical information known to predict a person’s score. For
example, the frequency of inhaler prescriptions could guide
item selection in an asthma assessment, and step count could
be incorporated into an assessment of mobility. However, many
PROMs comprise polytomous response options, which may not
be handled well by binary decision nodes.

To our knowledge, the potential for recursive partitioning to
improve the accuracy and efficiency of CAT by incorporating
clinician-reported variables into patient-reported assessments
has not been explored prior to this study.

The CLEFT-Q
A cleft lip and/or palate (a split in the upper lip, gum, and/or
roof of the mouth) is one of the most common birth anomalies.
It affects 1 in 700 births and can impact various health domains,
including appearance, speech, and psychosocial development
[10].

In this study, we developed CAT models and decision trees for
scales of the CLEFT-Q. The CLEFT-Q is a PROM intended
for use in children and young adults born with a cleft lip and/or
palate [11]. It includes 12 independent scales that have met
Rasch model requirements, measuring the perceived appearance
of the respondent’s face, nose, nostrils, lips, cleft lip scar, jaw,
and teeth, as part of an “appearance” domain; speech function,
as part of a “facial function” domain; and speech distress,
psychological function, school function, and social function, as
part of a “quality of life” domain. Differences in CLEFT-Q
scale scores have been associated with the overall
patient-reported perception of appearance [11] and several
clinical variables, including cleft type [12], use of psychological
therapy, [11] and clinician-reported plans for future surgery
[13].

Hypothesis
We tested the null hypothesis that adaptive assessments
incorporating clinical variables and item responses (created
using recursive partitioning) would predict CLEFT-Q scale
scores with similar accuracy to CAT assessments of a
comparable length.

Methods

Software
We conducted our analysis using R (version 4.0.0) with the
following packages: dplyr (version 1.0.0), foreign (version
0.8-80), mirt (version 1.32.1), mirtCAT (version 1.9.3), partykit
(version 1.2-8), rpart (version 4.1-15), rpart.plot (version 3.0.8),
stringr (version 1.4.0) and ggplot2 (version 3.3.2).

Study Participants
We used data from the CLEFT-Q field test to construct and test
our models. This prospective study recruited 2434 participants
across 12 countries born with a cleft lip and/or palate, aged 8
to 29 years, from October 2014 to November 2016. Responses
to all items in relevant full-length CLEFT-Q scales were
collected in addition to clinical information. The CLEFT-Q
field test study and its participants have been described in detail
elsewhere [11,14].

These participants’complete response sets were used to develop
and test CAT and decision tree models. Participants with a cleft
palate only were excluded from analyses relating to the lip and
cleft lip scar scales. Patients without a cleft palate were excluded
from analyses relating to the speech function and speech distress
scales. This reflects populations expected to use these
assessments in clinical practice.

Missing Data
Some functions in the mirt package require complete response
sets [15]. Where applicable, we excluded participants with
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incomplete response sets listwise. Otherwise, missing data were
handled with pairwise exclusion. In the CLEFT-Q field test,
only participants aged 12 to 29 years completed the jaw scale,
only participants born with a cleft lip completed the cleft lip
scar scale, and only participants attending school completed the
school scale [11]. There were no other apparent patterns in
missing data. We provide descriptive statistics, including a
summary of missing data in a demographic table (see
Multimedia Appendix 1).

Ground Truth
Rasch models were developed for each scale using all item
response sets from the whole sample. Model parameters were
estimated using a fixed quadrature expectation-maximization
(EM) approach [15]. For each participant, expected a posteriori
(EAP) factor scores were calculated for each scale using
full-length scale responses and the respective Rasch model
parameters. These scores are presented as person-location logits
and represent ground truth in these experiments (Figure 1).

Figure 1. Schematic describing the steps of the CAT vs recursive partitioning experiment. CAT: computerized adaptive test.

Data Splitting
Participants with complete response sets were selected from the
study sample and randomly split into training and test sets in a
2:1 ratio for each scale. Next, training samples were used to
create new Rasch models using the EM algorithm, and CAT
models were generated using the parameters of these training
sample Rasch models. Finally, decision trees were built through
recursive partitioning in 10-fold cross-validations of the same
training samples.

Sample Size
All of our training data sets approached or exceeded a sample
size of 1000 (see Multimedia Appendix 1), which is likely to
be sufficient for accurate regression tree development based on
previous simulation studies [16]. For CAT, sample sizes of 250
or more can provide definitive Rasch model calibrations with
over 99% confidence [17].

Item Responses
The data sets used to train our decision tree models included
responses to all items in each CLEFT-Q scale. Items in the
speech distress and speech function scale had 3 response options,

and all other items had 4 response options. In addition to these
items, the CLEFT-Q field test included 7 questions that asked
respondents about the overall appearance of their face, nose,
nostrils, lips, cleft lip scar, teeth, and jaws. There were 4
response options to these items. These responses were included
in the relevant decision tree training data set, meaning, for
example, that the decision tree nose assessment was able to
administer an additional item that asked about overall nose
appearance. The CAT model could not use this item as it was
not part of the Rasch-validated scale.

Clinical Variables
In addition to item responses, the training data sets included
several clinically relevant variables, for example, age, gender,
cleft type, planned future treatments, and patient-perceived
appearance scores. The variables included in each model are
listed in Multimedia Appendix 2.

Decision Tree Training
Regression trees could make binary splits based on item
responses or any of the included clinical variables. We grew
trees to a prespecified maximum depth corresponding to the
number of items permitted by their CAT comparator. Tree
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growth was not limited by observations per node or by a
prespecified complexity parameter. Branches that did not
improve model fit were removed retrospectively through
cost-complexity pruning. For this, we used training data to
choose complexity parameters that minimized prediction error
in a 10-fold cross-validation.

In other words, for each scale, many different decision trees
were created from and evaluated in different folds of the training
data set. The model that predicted scores with the least error in
the training data set cross-validation was selected for final
assessment in the test data set.

Computerized Adaptive Tests
The CATs were programmed to select items using a minimum
expected posterior variance item selection criterion [18]. Finally,
participants were scored using an EAP approach [15].

Assessment Length
We aimed to compare the accuracy of CAT assessments and
decision trees that had a similar number of items. For this reason,
we chose fixed-length stopping rules to limit the number of
items administered in the CAT models. The CAT algorithms
would continue to administer items until the fixed-length
stopping rule was met, and they were not limited by time,
standard error of measurement, or any other stopping criterion.
It was not possible to predetermine decision tree assessment
lengths. This is because splits could be made based on clinical
variables, and some branches were pruned, creating inconsistent
assessment lengths. Instead, tree growth was limited by depth,
and the number of items required to reach each terminal node
was recorded. If a decision tree made a split based on overall
patient-reported appearance (ie, the additional question posed
to CLEFT-Q field test participants, not included in the scale),
we counted this as an item. Splits based on clinician-reported
variables were not counted as items. For each scale, we
compared models at 2 maximum assessment lengths, which
were approximately 75% and 50% of the length of the whole
scale.

Comparison Methods
For each respondent in the test data set, person-location logits
were predicted by decision trees and their CAT comparators in
Monte Carlo simulations. For each model, we recorded the mean
number of items administered, which items and clinical variables
were used to make predictions, the Pearson’s correlation
coefficient of predictions and ground truth, and the mean
absolute error (MAE) of the predictions with respect to ground
truth. Additionally, we calculated the root mean squared error
of predictions, which is typically reported in CAT simulations
and tends to penalize large errors that are potentially important
in this context [19].

Squared CAT errors and squared decision tree errors were
compared using a two-sided Wilcoxon signed-rank test.

Results

Assessment length was generally similar between decision trees
and CAT assessments (see Multimedia Appendix 1). Notable
exceptions to this were the nose assessments limited to 9 items

(mean of 7.32 items in decision tree assessments vs 9.00 items
in CAT assessments), and the speech function assessments were
limited to 9 items (mean of 7.01 items in decision tree
assessments vs 9.00 items in CAT assessments).

For most comparisons, the squared error was significantly higher
(P<.001) in decision tree predictions than in predictions made
by CAT assessments at comparable or slightly shorter mean
assessment lengths. The poor accuracy of the decision tree
models compared to CAT was also captured by correlation
coefficients and MAE values (see Multimedia Appendix 1).

While information about age, gender, cleft type, laterality, and
patient-reported overall appearance scores were used by some
of the deeper decision trees, these algorithms tended to make
splits based on CLEFT-Q scale item responses preferentially
(ie, other variables were either not used, used at deeper levels,
or removed through pruning). An exception to this was the nose
assessment decision tree, which made its first split based on the
patient-reported overall appearance of the nose.

Discussion

Principal Findings
This study has shown that it is technically possible for decision
trees built through recursive partitioning to use clinician-reported
data to reduce the patient-reported assessment burden in a range
of cleft-related health domains. However, this approach has
demonstrated little clinical value with regard to the CLEFT-Q.
Decision trees preferentially made splits based on
patient-reported item responses and not clinician-reported data.
One way to interpret this in real-world terms is that the clinical
variables used in this study are less important than almost any
individual CLEFT-Q item response for measuring a person’s
cleft-related health state (Figure 2). However, this finding is
not necessarily generalizable. Differences in cleft phenotype
may have a relatively mild impact on health constructs measured
by the CLEFT-Q. Clinician-reported variables may be more
salient in other health domains. For example, “history of spinal
cord injury” may be a powerful predictor of the physical
functioning score.

Our second finding was that decision trees produced more error
than CAT assessments of a comparable length (Figure 3;
Multimedia Appendix 1). CLEFT-Q scales are short (6 to 12
items), which means CAT item selection is relatively
computationally undemanding in this specific case. Any benefits
in lag time gained by the recursive partitioning approach are
unlikely to outweigh this loss of accuracy. Therefore, we would
not advocate the use of binary decision trees for adaptive
CLEFT-Q assessments.

In this study, we used recursive partitioning for tree construction,
which is limited to binary data splits (ie, individuals can be
categorized into only 2 subgroups after providing an item
response; Figure 2). There are 3 or 4 possible responses to each
CLEFT-Q item, and therefore the CAT models can categorize
a respondent in 3 or 4 ways each time they provide an item
response. For polytomous PROM scales, there are far fewer
attainable scores in a binary decision tree than in a CAT
assessment of equivalent length. For example, in the speech
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function assessment at a 6-item limit, there were 85 unique
scores achieved by our CAT models compared to 45 in the
decision tree group. Our decision trees, therefore, underfit the
test data to an extent.

A way to overcome this in future work could be through
constructing trees with nonbinary splits, for example, by treating
all variables as categorical and using chi-square automatic
interaction detection (CHAID) [20,21]. This technique could
have a higher risk of overfitting, although this might be
mitigated through split rules and by merging similar branches
[6]. Future work is needed to test whether CHAID could create
more efficient, more accurate, adaptive assessments by
incorporating non-PROM data at no extra burden to the
assessment taker.

A limitation of this study is that some comparisons were made
on assessments of unequal mean length; for example, the nose
assessment was limited to 9 items, and the speech function
assessment was limited to 9 items. In these cases, it is difficult
to conclude the relative accuracy of CAT and decision trees, as
these models used different quantities of patient-reported
information to make their measurements. In addition, decision
trees tended to pose fewer questions than their CAT comparators
due to the pruning process and the use of clinical variables.
However, even with this limitation in mind, our findings support
the use of CAT over binary trees for personalized CLEFT-Q
assessments in clinical practice.

Figure 2. Dendrogram of the three-item decision tree for the nostrils scale. Nodes are represented by rectangular boxes. Branches are labelled with
splitting criteria . Leaves (terminal nodes) are represented by coloured ovals and are labelled with the mean person location logit for training dataset
respondents falling into that subgroup.
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Figure 3. Bland-Altman plots comparing the accuracy of personalized CLEFT-Q lip appearance assessments. The left panel demonstrates the results
for a computerized adaptive test with a mean length of 5.00 items. The right panel demonstrates the results for a decision tree with a mean length of
4.95 items.

Conclusions
Even with knowledge of clinician-reported variables, the
decision tree models described in this study achieve less accurate

CLEFT-Q score estimates than CATs of similar length. Decision
trees with binary splits are at risk of underfitting polytomous
PROM scale data. Future work could focus on the application
of decision trees with nonbinary splits to this context.
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