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Abstract

Background: Obstructive sleep apnea (OSA) is the most prevalent respiratory sleep disorder occurring in 9% to 38% of the
general population. About 90% of patients with suspected OSA remain undiagnosed due to the lack of sleep laboratories or
specialists and the high cost of gold-standard in-lab polysomnography diagnosis, leading to a decreased quality of life and increased
health care burden in cardio- and cerebrovascular diseases. Wearable sleep trackers like smartwatches and armbands are booming,
creating a hope for cost-efficient at-home OSA diagnosis and assessment of treatment (eg, continuous positive airway pressure
[CPAP] therapy) effectiveness. However, such wearables are currently still not available and cannot be used to detect sleep
hypopnea. Sleep hypopnea is defined by ≥30% drop in breathing and an at least 3% drop in peripheral capillary oxygen saturation
(Spo2) measured at the fingertip. Whether the conventional measures of oxygen desaturation (OD) at the fingertip and at the arm
or wrist are identical is essentially unknown.

Objective: We aimed to compare event-by-event arm OD (arm_OD) with fingertip OD (finger_OD) in sleep hypopneas during
both naïve sleep and CPAP therapy.

Methods: Thirty patients with OSA underwent an incremental, stepwise CPAP titration protocol during all-night in-lab
video-polysomnography monitoring (ie, 1-h baseline sleep without CPAP followed by stepwise increments of 1 cmH2O pressure
per hour starting from 5 to 8 cmH2O depending on the individual). Arm_OD of the left biceps muscle and finger_OD of the left
index fingertip in sleep hypopneas were simultaneously measured by frequency-domain near-infrared spectroscopy and
video-polysomnography photoplethysmography, respectively. Bland-Altman plots were used to illustrate the agreements between
arm_OD and finger_OD during baseline sleep and under CPAP. We used t tests to determine whether these measurements
significantly differed.

Results: In total, 534 obstructive apneas and 2185 hypopneas were recorded. Of the 2185 hypopneas, 668 (30.57%) were
collected during baseline sleep and 1517 (69.43%), during CPAP sleep. The mean difference between finger_OD and arm_OD
was 2.86% (95% CI 2.67%-3.06%, t667=28.28; P<.001; 95% limits of agreement [LoA] –2.27%, 8.00%) during baseline sleep
and 1.83% (95% CI 1.72%-1.94%, t1516=31.99; P<.001; 95% LoA –2.54%, 6.19%) during CPAP. Using the standard criterion
of 3% saturation drop, arm_OD only recognized 16.32% (109/668) and 14.90% (226/1517) of hypopneas at baseline and during
CPAP, respectively.

Conclusions: arm_OD is 2% to 3% lower than standard finger_OD in sleep hypopnea, probably because the measured arm_OD
originates physiologically from arterioles, venules, and capillaries; thus, the venous blood adversely affects its value. Our findings
demonstrate that the standard criterion of ≥3% OD drop at the arm or wrist is not suitable to define hypopnea because it could
provide large false-negative results in diagnosing OSA and assessing CPAP treatment effectiveness.

(J Med Internet Res 2021;23(7):e24171) doi: 10.2196/24171

J Med Internet Res 2021 | vol. 23 | iss. 7 | e24171 | p. 1https://www.jmir.org/2021/7/e24171
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:zhongxing.zhang@barmelweid.ch
http://dx.doi.org/10.2196/24171
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

obstructive sleep apnea; wearable devices; smartwatch; oxygen saturation; near-infrared spectroscopy; continuous positive airway
pressure therapy; photoplethysmography

Introduction

Monitoring health using wearables, such as smartwatches and
armbands, is becoming a new lifestyle [1-4]. Hundreds of
millions of smartwatches and armbands are being used daily,
and the number is still sharply increasing. Sleep monitoring is
one of the most popular functions of such wearables [2,5-7],
because sleep is a critical determinant of an individual’s health
and well-being. Obstructive sleep apnea (OSA) is the most
prevalent respiratory sleep disorder occurring in 9% to 38% of
the general population [8], and it is a high-risk factor for cardio-
and cerebrovascular diseases [9,10]. Nevertheless, about 90%
of suspected patients with OSA remain undiagnosed [11] due
to the lack of sleep laboratories or specialists and the high cost
associated with an in-lab polysomnography (PSG) diagnosis
(ie, the gold-standard for sleep disorder diagnosis [12]), thus
leading to decreased quality of life and increased health care
burden in the aging society. Relatively simple and less-expensive
diagnostic methods such as portable home respiratory
polygraphy have been developed [13,14]. However, its signal
quality is compromised, with failure rates ranging from 3% to
18% [14], mostly due to incorrect handling of the device or
sensors by the people performing the test (ie, the patients
themselves) [15]. Home respiratory polygraphy also has the
risk of false diagnosis because it cannot measure sleep/wake,
so patients may be awake during the night. The cost of such
diagnostic methods is still relatively high in many low- and
middle-income countries, limiting their broad application in the
general population. Therefore, using low-cost and easy-to-use
wearable devices, such as smart finger rings, smartwatches, or
armbands, for at-home diagnosis of OSA and to assess treatment
effectiveness would substantially contribute to public health
worldwide [6,16].

However, using the aforementioned low-cost wearable devices
to evaluate OSA is still not clinically viable because, currently,
no product has been licensed or certified as a medical diagnostic
device by the United States Food and Drug Administration
(FDA) or CE marking. We hypothesize that one of the major
limitations in measuring OSA with wearables is the detection
of sleep hypopnea. Currently, most consumer-grade wearables
can measure surrogate markers for breathing and heartbeats or
heart rate variability [3,17-20]. Although sleep apneas consisting
of a complete pause in breathing for ≥10 seconds are relatively
easy to assess by analyzing breathing frequency [6,12,21-23],
it is challenging to detect sleep hypopnea, which is defined as
a ≥30% drop in airflow lasting ≥10 seconds accompanied by
either an arousal or a ≥3% drop in peripheral capillary oxygen
saturation (SpO2) measured at the fingertip [12]. Smart rings
that can measure SpO2 at the fingertip (eg, Sleepon [24]) are
likely to accurately quantify the drops in SpO2 because,
essentially, they are similar to fingertip pulse oximetry.
However, these devices have only a very tiny market share
compared to other popular wearables such as smartwatches and
armbands [25]. Whether the measures of oxygen desaturation

(OD) at the fingertip and at the arm or wrist are physiologically
identical in sleep hypopneas is essentially unknown. Some
recent smartwatches (eg, Fitbit [26], Garmin [27], Huami [28],
and Huawei [29]), armbands (eg, Humon [30,31], Moxy [32,33],
PortaMon [34], and Biofourmis [35]), and prototypes [36,37]
claim to measure SpO2 or muscle tissue oxygen saturation (StO2)
at the arm or wrist. However, to the best of our knowledge,
these devices have not been clinically validated for use in
patients with OSA. We were able to find only one registered
clinical validation study (Trial Registration: ClinicalTrials.gov
NCT03775291) measuring OSA using a smartwatch, which
was initiated by Fitbit in December 2018 [38]. However, the
latest update of the study’s recruitment status as of November
2019 was still “active, not recruiting.” The study aimed to only
compare PSG-assessed Apnea–Hypopnea Index (AHI) with the
AHI derived from the smartwatch, rather than performing an
event-by-event comparison of the apnea or hypopnea events
measured by these two devices. Thus, even if we assume that
Fitbit may have completed their validation work recently, their
study still cannot answer the key question as to whether the
hypopnea diagnostic standard criterion of ≥3% OD at the
fingertip can be equally applied to the OD at the arm or wrist.

Therefore, we, for the first time, aimed to compare
event-by-event OD at the fingertip (finger_OD) measured by
the gold-standard in-lab PSG transmission
photoplethysmography (T-PPG) with OD at the arm (arm_OD)
measured by frequency-domain multidistance (FDMD)
near-infrared spectroscopy (NIRS) in sleep hypopneas during
naïve sleep and continuous positive airway pressure (CPAP)
therapy. FDMD-NIRS is a well-validated [39-41] advanced,
noninvasive optical technique that can quantify hemodynamic
changes, including OD, in the measured tissues for long-term
recordings such as all-night sleep with high temporal resolution
[42,43]. Our results can conclusively demonstrate whether
physiologically arm_OD measures can directly replace
finger_OD to define sleep hypopnea. Thus, this study will have
a broad appeal to the general public, sleep clinicians and
scientists, health care insurance providers, and wearable
technology developers who are aiming to measure OSA at-home
by using wearable devices.

Methods

Patients
All patients underwent video-PSG measurement for diagnosis
in our sleep laboratory. The following day, those patients who
were diagnosed with OSA and recommended to use CPAP
therapy by clinicians were recruited and gave their written
informed consent for participation in the study. Patients with
unstable coronary or cerebral artery disease, severe arterial
hyper- or hypotension, respiratory diseases, or a history of a
sleep-related accident were excluded. Finally, 30 newly
diagnosed patients with OSA (mean age 54.2, SD 13.8 years,

IQR 42-65 years; male: n=27; mean BMI 35.9, SD 7.5 kg/m2,
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IQR 31.8-42.0 kg/m2; mean AHI 53.4, SD 24.7 per hour, IQR
32-71 per hour) participated in this study. This study was
approved by the local ethical commission of Northwest
Switzerland, and it was in compliance with the Declaration of
Helsinki.

Protocol
The patients underwent incremental stepwise CPAP (AirSense
10, ResMed) titration combined with video-PSG and
FDMD-NIRS recordings in one nocturnal sleep episode. This
sleep episode consisted of 1 hour of baseline sleep without
CPAP, followed by incremental stepwise titration of 1 cmH2O
pressure per hour starting from 5-8 cmH2O depending on the
individuals. The 1-h baseline sleep allowed us to compare
arm_OD with finger_OD during natural sleep in patients with
OSA. We included the CPAP titration protocol because (1) the
stepwise CPAP titration protocol can increase the number of
hypopneas for data analysis in our patients, since low pressures
cannot fully open the airways to restore the apneas but instead
cause hypopneas and (2) auto-CPAP that can automatically
adjust the pressures within a given range (ie, automatic titration),
and CPAP with fixed pressures are the most efficient and
popular therapy for OSA [44]. Thus, the comparison between
arm_OD and finger_OD in hypopneas under various CPAP
pressures could allow us to test the feasibility of monitoring
treatment efficacy by measuring arm_OD.

Video-PSG
Video-PSG (Embla RemLogic, Natus Medical Incorporated)
is a comprehensive recording of physiological signals during
sleep, including electroencephalography at electrode locations
of C3, C4, O1, O2, F3, and F4 according to 10 to 20 system,
eye movements (electrooculogram), muscle activation
(electromyogram), electrocardiogram, breathing functions, heart
rate, fingertip SpO2 (left index fingertip in this study), and
movement during sleep. Two experienced sleep technologists
independently scored the sleep stages, respiratory and limb
movement events, and motion artifacts in 30-second epochs
according to the 2017 American Academy of Sleep Medicine
manual [12]. Sleep hypopneas were defined as an at least 30%
drop in airflow lasting for at least 10 seconds with either an
arousal or >3% drop in SpO2. The discrepancy between these
two technologists was resolved by discussion or
recommendation by an experienced neurophysiologist. The
hypopneas were excluded from analysis if their SpO2

desaturations were larger than 15% (n=31) to exclude outliers
and potentially unreliable measurements caused by instrument
errors.

FDMD-NIRS Measurements
In this study, FDMD-NIRS (Imagent, ISS) measurements were
conducted over the middle of the left biceps muscle. Imagent
is currently the only commercial benchtop FDMD-NIRS device
[40,42,45] and has been CE-approved for research. Its light
emitters, four laser diodes at 690-nm wavelength and four laser
diodes at 830-nm wavelength, are coupled into four light sources

and are high frequency modulated at 110 MHz. The light can
penetrate the measured tissues with a depth of several
centimeters when the four light sources are aligned and placed
at 2, 2.5, 3, and 3.5 cm away from an optical fiber bundle
connected to the photomultiplier tube detector.

The most common commercially available NIRS devices,
including wearable NIRS devices (eg, Humon [30,31], Moxy
[32,33], and PortaMon [34]), are continuous-wave NIRS
(CW-NIRS), which measure the hemodynamic changes in
human tissues based on the modified Beer–Lambert law
(MBLL) [46-48]. As illustrated in Figure 1A, in the original
Beer–Lambert law, the light extinction is proportional to the
concentration C multiplied by the constant extinction coefficient
ε for the particular absorber and the length d of the absorbing
media when light passes through a nonscattering but absorbing
media [49]. C × ε is also called the absorption coefficient µa of
the absorbing media. However, biological tissues are highly
scattering media, and scattering will increase the path-length
of light, thus increasing the probability of both light absorption
and loss of light. Scattering also makes it possible that some
light can go out of the tissue from the same side of the light
source (ie, backscattering light), as shown in Figure 1B. Thus,
reflectance photoplethysmography (R-PPG) pulse oximeter
[50-52] and the NIRS device in which the light source and
detector are placed on the same side of the measured tissues
were developed based on MBLL. In MBLL, the light
propagation due to scattering is taken into account by
introducing the differential path-length factor (DPF). The real
path-length of light in the tissue is then calculated as DPF
multiplied by the source-detector distance r. DPF varies between
different biological tissues and different individuals, and it also
depends on other factors such as light wavelength and age and
gender of the individual [48,53]. CW-NIRS devices use fixed
value of DPF in the range of 3 to 6 for different light
wavelengths [53]. They can only estimate the relative changes
in the main absorbing chromophores, that is, oxygenated
hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) in
the measured biological tissues. R-PPG and T-PPG pulse
oximeters usually use two near-infrared wavelengths that are
mainly absorbed by HbO2 and HHb respectively. The influences
of scattering on light attenuation are approximately assumed to
be cancelled out in the calculation of SpO2 that is derived from
the ratio of the light intensities of the two wavelengths, ie,
assuming the path-lengths of the two wavelengths are identical
in the tissues [50-52]. However, this assumption is actually not
valid because DPF varies between different wavelengths.
Experimental calibrations against in vitro measurement of
arterial oxygen saturation (SaO2) in extracted arterial blood (ie,
invasive co-oximetry) thus must be performed in commercial
pulse oximeters during their research and development period
to correct measurement errors [50-52]. Several calibration-free
methods were also proposed, including calculating the real light
path-length and absorption by using the frequency-domain NIRS
algorithm [52,54-57].
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Figure 1. Beer–Lambert law and frequency-domain multidistance near-infrared spectroscopy (FDMD-NIRS) measurement. (A) The original Beer–lambert
law describing the light propagation in a nonscattering absorbing media. The attenuation of light intensity in this absorbing media is proportional to the
concentration C multiplied by the constant extinction coefficient ε for the particular absorber and the length d of the absorbing media. (B) The travelling
of light in biological tissue (ie, highly scattering media). Light travels a longer pathway in the tissue than the light source-detector distance r due to
scattering. (C) Basic principle of FDMD-NIRS measurement. The blue sine wave represents the high-frequency modulated light source. IDC0 and IAC0

are its light intensity and modulation amplitude, respectively. The two black sine waves are the output light detected after passing the measured tissues.
They are detected by detectors 1 and 2 placed at different distances away from the light source. The light intensities and modulation amplitudes of the
two black sine waves are smaller than those of the light source, and their phases are delayed because of the absorption and scattering in the tissues.
Detector 1 is closer to the light source than detector 2. Therefore, the light intensity IDC1 and modulation amplitude IAC1 detected at detector 1 are larger
than the light intensity IDC2 and modulation amplitude IAC2 detected at detector 2. The phase delay φ1 at detector 1 is smaller than the phase delay φ2
at detector 2 because the light reaching detector 2 has travelled a longer distance in the tissue. Similarly, the light intensity and modulation amplitude
will be further decreased, and the phase delay will be further increased, when the light reaches the other detectors placed farther away than detector 2.

As illustrated in Figure 1C, in FDMD-NIRS, the light emitted
from light source can be detected by detectors placed at different
distances away from the source. The light intensity (IDC) and
modulation amplitude (IAC) of the detected light decrease, and
a phase delay (φ) occurs between the detected light and the
source light due to absorption and scattering. The detected IDC

and IAC are smaller but theφ is larger at the detector further away

from the light source. The IDC, IAC and φ from different light
source-detector distances vary linearly [42,45]. Therefore, to
submit the measured IDC, IAC and φ to linear regression, we can
obtain the following equations derived from the photon diffusion
equation in a semi-infinite geometry [40,45,58-60]:

ln (r2IAC) = rSAC + CAC (1)
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ln (r2IDC) = rSDC + CDC (2)

φ = rSφ + Cφ (3)

Where r is the known source-detector distance, SAC, SDC and Sφ
are the slopes and CAC, CDC and Cφ are the intercepts. The

linearity of the equation is monitored by the R2 of the fitted
linear regression. By combing any two of these three slopes (eg,
we chose SAC and Sφ in the following equations), we can
calculate the absorption coefficient µa and the reduced scattering

coefficient µS
’ of the measured tissue [40,45,58-60]:

µa = ω/2v × (Sφ / SAC −SAC / Sφ) (4)

µS
’ = (SAC

2 − Sφ
2) / 3µa−µa (5)

where ω/2π is the modulation frequency and v is the velocity
of light in the tissue. FDMD-NIRS uses two wavelengths. The

µa and µS
’ of both these wavelengths can be calculated

individually by using the same equations (4) and (5). Equation
(4) gives us the absorption coefficient of the measured tissues
calculated by taking the influence of scattering into account. It
is equal to C × ε as mentioned above. In NIRS, the main
contributions to absorptions in tissues are HbO2 and HHb, so
we have the following equation:

µa
λ = εHHb

λ CHHb + εHbO2
λ CHbO2 (6)

where µa
λ is the absorption coefficient of the measured tissue

at wavelength λ. εHHb
λ and εHbO2

λ are the known extinction
coefficients at wavelength λ for HHb and HbO2, respectively.
CHHb and CHbO2 are the concentrations of HHb and HbO2,
respectively. Using two wavelengths λ1 and λ2, we can then
calculate CHHb and CHbO2 with the following equations:

CHbO2 = (μa
λ1 εHHb

λ2 − μa
λ2 εHHb

λ1) / (εHbO2
λ1 εHHb

λ2

− εHbO2
λ2 εHHb

λ) (7)

CHHb = (μa
λ2 εHbO2

λ1 − μa
λ1 εHbO2

λ2) / (εHbO2
λ1 εHHb

λ2

− εHbO2
λ2 εHHb

λ1) (8)

Therefore, Sto2 can be further derived as:

StO2 = 100 × CHbO2 / (CHbO2 + CHHb) (9)

The FDMD-NIRS algorithm can calculate the absolute values
of HbO2, HHb, and StO2 in the measured tissue and it is superior
to the simple CW-NIRS algorithm, because of its sophisticated

mathematical frameworks calculating µa and µS
’ that can best

estimate the real light propagation distance in the measured
tissues based on the diffusion equation in complex geometries.
The robustness, precision, and accuracy of measuring HbO2,
HHb, and StO2 of the Imagent system used in this study have
been well validated in different physical blood-lipid models
[45,58,61] and in vivo studies [59,62-64]. It has been used as
a gold-standard reference measurement of StO2 for validations
or calibrations of wearable CW-NIRS armbands [31] and
portable CW-NIRS oximeters [61,65] including those that have
received FDA clearance [66,67].

In this study, the sampling rate of FDMD-NIRS recording was
5.2 Hz. The reliability and accuracy of FDMD-NIRS
measurements depend on the linearity of the measured optical

signals on distances, because µa and µS
’ are derived from the

slopes of equations (1-3). The linear dependence R2 of the
modulated light amplitude and phase shift over the measured
distances should be highly close to 1 in each light wavelength.
Thus, before the start of the recording, our Imagent system was

calibrated on an optical phantom block with known µa and µS
’,

that is, the light intensity of each light source was adjusted so

that R2 was equal to 1 and the measured µa and µS
’ of the optical

phantom block were equal to their known values. This
calibration step can exclude the uncertainty of our measurements
due to machine errors such as light source and detector errors.

The raw optical data were discarded if the R2 was smaller than
0.95 in either modulated light amplitude or phase shift in any
wavelength to exclude poor-quality data arising from improper
probe-skin contact and shunted light reaching the detector
without travelling through the tissue [68,69]. The NIRS data
were then subjected to a low-pass (<0.08 Hz), zero-phase filter
designed using Hanning window to remove the physiological
noises, including heart rate, respiratory noise, and spontaneous
slow hemodynamic oscillations [70,71]. The filtered data were
smoothed with moving average smooth method (robust locally
weighted scatter plot smoothing [70,72]).

Statistical Analysis
Bland-Altman plots were used to illustrate the agreements
between arm_OD and finger_OD during baseline sleep and
under CPAP, respectively. We used t test to determine whether
the differences between arm_OD and finger_OD were
significantly different from 0. In order to check whether
arm_OD could replace finger_OD in subgroups of hypopneas
(ie, hypopneas with different degrees of desaturations), we used
Spearman correlation to evaluate the relationship between
arm_OD and finger_OD in different subgroups defined by
finger_OD greater than or equal to specific cut-offs. The cut-offs
ranged from 2% to 8%. P values <.05 indicated statistical
significance for both analyses. Pre-processing of FDMD-NIRS
signals was carried out in MATLAB (MathWorks, Inc.). All
statistical analyses were performed using R statistical software
(version 3.2.4; R Foundation for Statistical Computing).

Results

In total, 2185 hypopneas (median 67, IQR 41-82) were analyzed,
including 668 (median 16, IQR 11-35) recorded during baseline
sleep and 1517 (median 41, IQR 25-64) recorded during CPAP.
Figure 2 illustrates the typical changes that occurred in arm_OD
and finger_OD in hypopnea events. Indeed, sleep hypopneas
cause OD in arm StO2. The absolute (mean) values of StO2 are
68.8% (SD 6.5%) at baseline before the start of hypopneas. The
distributions of finger_OD and arm_OD (Figure 3) suggest
larger OD in the finger than in the arm both at the baseline and
during CPAP, as the peaks of the distributions of arm_OD are
smaller than those of finger_OD.
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Figure 2. Typical oxygen desaturation (OD) at fingertip (finger_OD) and at arm (arm_OD) during hypopneas. Arrows indicate the degree of OD. SpO2

is measured at the fingertip by polysomnography transmission photoplethysmography, and StO2 is measured at the biceps muscle by frequency-domain
multidistance near-infrared spectroscopy. SpO2: peripheral capillary oxygen saturation; StO2: peripheral tissue oxygen saturation.
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Figure 3. Distributions of oxygen desaturation at fingertip (finger_OD) and at arm (arm_OD) at (A) baseline (n=668) and (B) under continuous positive
airway pressure (CPAP: n=1517).

Bland-Altman plots (Figure 4) show that the mean difference
between finger_OD and arm_OD is 2.86% (95% CI
2.67%-3.06%, t667=28.28; P<.001) during baseline sleep and
1.83% (95% CI 1.72%-1.94%, t1516=31.99; P<.001) under

continuous positive airway pressure (CPAP) sleep, with broad
95% limits of agreement (LoA) as [-2.27%, 8.00%] and [-2.54%,
6.19%], respectively. Using the criterion of arm_OD ≥3%, we
can only define 16.32% (109/668) and 14.90% (226/1517) of
hypopneas at baseline and during CPAP sleep, respectively.
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Figure 4. Bland-Altman plots of oxygen desaturation at fingertip (finger_OD) and at arm (arm_OD) at (A) baseline (n=668) and (B) under continuous
positive airway pressure (CPAP: n=1517). The x-axes show the mean between the two measures, whereas the y-axes represent the differences (ie,
finger_OD – arm_OD). The horizontal dotted lines indicate the mean difference and the 95% limits of agreement between the measures, ie, mean
difference ± 1.96 × SD. The distribution of the mean difference is shown at the right margin of the plot, which is a normal distribution.

To test whether arm_OD could replace finger_OD in subgroups
of hypopneas such as those causing severe OD, we correlate
arm_OD and finger_OD in different subgroups with finger_OD

≥ specific cut-offs (from 2% to 8%). Again, we could only
observe weak correlations (ie, correlation coefficients < 0.4)
between them at baseline and under CPAP (Figure 5).
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Figure 5. The correlations between oxygen desaturation at fingertip (finger_OD) and at arm (arm_OD) in the hypopnea events wherein finger_OD ≥
cut-off. X-axis shows the cut-off of finger_OD (from 2% to 8%). Y-axis depicts nonparametric Spearman’s correlation coefficient between finger_OD
and arm_OD. The number of events used for correlation analysis and the P value are shown in the figure. The correlation analyses are performed for
both baseline and CPAP sleep. For example, the green triangle at X=6, Y=0.3 means that during naïve baseline sleep there are 234 hypopneas associated
with at least 6% finger_OD, and in these events, arm_OD weakly correlates to finger_OD with Spearman’s correlation coefficient equal to 0.3 and
P<.001.

Since the baseline values of StO2 (mean 68.8% SD 6.5%) are
obviously much smaller than those of SpO2 (usually above
90%), it is possible that the relative change rather than the
absolute (raw) value of arm_OD has better agreement with the
finger_OD. We therefore normalize the arm_OD to its baseline.
The mean difference between finger_OD and normalized
arm_OD is 1.68% (95% CI 1.46-1.90%, t667=14.99; P<.001)
during baseline sleep and 0.88% (95% CI: 0.75-1.01%,
t1516=12.91; P<.001) during CPAP sleep, respectively. The
mean differences are smaller than those between absolute
arm_OD and finger_OD. However, the 95% LoA are still
equally broad, which are [-3.99%, 7.34%] during baseline sleep
and [-4.32%, 6.08%] during CPAP sleep respectively, suggesting
poor agreement. Only 41.6% (278/668) of hypopneas at baseline
and 31.7% (481/1517) during CPAP sleep can be defined using
the criterion of normalized arm_OD ≥3%, suggesting that the
normalization still has poor sensitivity in detecting hypopneas.

Discussion

Principal Findings
In this study, we compare, for the first time, event-by-event
finger_OD to arm_OD in sleep hypopneas during naïve sleep
and CPAP therapy sleep. We choose the gold-standard reference
methods for both arm_OD and finger_OD—advanced
FDMD-NIRS for arm_OD and PSG fingertip transmission
photoplethysmography for finger-OD. Arm_OD is 2% to 3%
smaller than finger_OD, probably because finger_OD is caused
only by arterioles, whereas arm_OD is physiologically
determined by mixed sources of arterioles, venules, and

capillaries [42,73,74]. The lower value of arm_OD is thus most
likely due to the contribution of the venous blood pool. The
significant difference between finger_OD and arm_OD and
their broad LoA (Figure 4) suggest that arm_OD cannot directly
replace finger_OD to define hypopneas. If the standard criterion
of ≥3% drop is applied, it will cause a high rate of false-negative
results in diagnosing OSA and in assessing the efficacy of CPAP
treatment. The poor agreement between finger_OD and arm_OD
and the low sensitivity of arm_OD in measuring hypopneas
cannot essentially be improved even after normalization, in
which raw arm_OD is normalized to its baseline before the start
of hypopnea. The poor correlations (Figure 5) between
finger_OD and arm_OD across hypopnea severity further
suggest that the arm_OD cannot be used to define hypopneas,
that is, correlations remain low even in severe hypopneas that
are associated with much larger finger_ODs.

The armband and smartwatch are two of the most popular
wearable technologies. Our results have direct implications for
wearable armbands and portable oximeters using NIRS
techniques to measure OSA, as we discuss below.

First, the FDMD-NIRS system used in our study is well
recognized as the most robust and reliable reference NIRS
technique [31,42,61]. Arm StO2 measured by our device should
be identical to that measured by consumer-grade wearable NIRS
armbands (eg, Humon [30,31], Moxy [32,33], and PortaMon
[34]). It should also be equal to that measured by FDA-cleared
medical-grade portable NIRS oximeters, such as INVOS 5100C
(Medtronic) [66], FORE-SIGHT (CAS Medical Systems) [67],
SenSmart (Nonin Medical Inc) [75], Hutchinson InSpectra
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(Hutchinson Technology Inc) [76], and ViOptix ODISsey
(ViOptix Inc) [77]. Our results suggest that the absolute or
relative (ie, normalized to baseline) OD at arm muscle measured
by these aforementioned devices cannot be directly used to
define sleep hypopnea.

Second, the NIRS StO2 is the proportion of HbO2 in arterial,
capillary, and venous compartments of the measured tissue. It
can be expressed by its two major compounds as StO2 = (a ×
SaO2) + (b × SvO2), where SaO2 and SvO2 are the arterial and
venous oxygen saturation [68,73]. Fingertip SpO2 is the best
noninvasive estimate of SaO2 [50,52]. The ratio of the
coefficients a/b is called the arterio-venous ratio (AVR). The
AVR of different tissues (eg, brain and muscles) and different
populations (eg, healthy people and patients, adults, and
children) has been determined by invasive measurements under
different conditions but not during sleep [73,78-88].
Commercially available NIRS oximeters, including the
aforementioned FDA-certificated medical devices take the fixed
AVR value as either 0.25/0.75 or 0.30/0.70 but have not
validated it in OSA [78-88]. Our results of poor correlations
between arm_OD and finger_OD (Figure 5) indicate that such
an uncritical AVR adoption is not justified. According to the
mathematical model of fixed relationship between StO2 and
SaO2, we expect a strong correlation between StO2 and SpO2

that we could not confirm using our data. These conflicting
results suggest that the model is not valid for OSA. Therefore,
developers of wearable or portable NIRS devices should first
study the AVR in muscle tissues and validate it against invasive
blood sample measurements before using their devices
commercially for OSA diagnosis.

Our findings also indicate that appropriate arterial oxygen
saturation measurement is not possible with armbands using
the R-PPG method. As mentioned in the Methods section,
R-PPG essentially has the same theoretical limitations as
CW-NIRS, such that the scattering of light in the human tissues
cannot be calculated. R-PPG and T-PPG pulse oximeters
estimate SpO2 under the assumption that changes in blood
volume only occur in arterial but not in the venous compartment.
SpO2 is measured from the fingertip or the superficial forehead
because these locations are well perfused by arteries [36,52,89].
It is not recommended to measure SpO2 by using R-PPG at the
wrist or the arm, because of its low signal-to-noise ratio.
Compared to the more precise fingertip T-PPG method, the low
signal-to-noise ratio of R-PPG at the wrist or arm is about 10
times weaker due to various factors such as relative low blood
perfusion and sensitivity to pressure and ambient light sources
[51,89]. Additionally, the key assumption of constant venous
blood volume is no longer valid at the wrist or arm [89,90].
Although recently, some smartwatches [26-29] and a few
armbands [35-37] claimed that they can measure SpO2 at the
arm or wrist by using R-PPG, they actually measure both arterial
and venous blood [89,90] similar to NIRS. A main difference
between NIRS and R-PPG is the measurement depth. Whether
R-PPG measures the blood only in the skin or in both the skin
and muscle depends on the distance between the light source
and detector [91]. The detector can detect the light passing
through deeper tissues at a larger separation distance. In vivo

studies suggest that R-PPG can obtain its best signal-to-noise
ratio at a separation distance of 3 to 6 mm [92]. Thus, a
separation distance of several millimeters is used in the design
of R-PPG pulse oximetry [36]. A recent study modeled the
R-PPG light propagation in human skin [37]. The authors found
that even at a separation distance of only 0.6 mm, many light
rays reaching deeper into the muscle can still be received by
the detector because of the random nature of light scattering
[37]. Therefore, similar to NIRS armbands, armband devices
using R-PPG capture the oxygen saturation in both skin and
muscle. There are challenges in using both techniques to
differentiate SaO2 and SvO2 desaturations from the measured
StO2 desaturation to define sleep hypopneas.

We did not include a smartwatch in this study, although recently,
leading smartwatch companies like Apple, Fitbit, Garmin,
Huami, and Huawei have all added the function of measuring
oxygen saturation in their products. This is because these
commercially available products cannot or are unwilling to
export their raw data for analyses, or their temporal resolutions
are simply too low for an event-by-event comparison necessary
for our study because usually these consumer-grade
smartwatches upload their data to their cloud servers in minute
resolution. Nevertheless, our results may have indirect
implications for smartwatches. R-PPG smartwatch is different
from the fingertip T-PPG in measuring SpO2. Lee et al [89]
found that the raw light signals measured by wrist R-PPG and
fingertip T-PPG change differently during breath-holding,
indicating different SpO2 values are calculated by these two
techniques. Abay et al [36] reported that wrist R-PPG results
in lower SpO2 values than fingertip T-PPG at rest, and during
venous occlusion, fingertip T-PPG SpO2 does not exhibit
desaturation but wrist R-PPG SpO2 drops similarly as the
simultaneously measured NIRS StO2 at the same arm. Their
findings also indicate that although smartwatches measure the
wrist and NIRS measures the arm muscle, the measured changes
in oxygen saturation by these two techniques are likely to be
the same. Thus, the venous blood influences in our NIRS StO2

measurements are also likely to be observed in smartwatch
measurements.

Conclusions
Our study warns consumers, health care insurance companies,
and sleep clinicians and scientists to interpret the AHI provided
by smartwatches and armbands with caution until those products
are clinically and experimentally validated. An AHI >5/hour
suggests the diagnosis of OSA [12]. Our results suggest that
AHI is likely to be underestimated if using the criterion of
arm_OD ≥3% to define hypopneas. Wearable technology
developers who are validating their products can learn from this
study and take into account the mismatch between the ODs
measured by their products and by the gold-standard technique
fingertip pulse oximetry. Developing new parameters (eg,
estimated-oxygen-variation provided by Fitbit smartwatches
[26]) or combining smartwatches with external fingertip T-PPG
sensors [93] may be a more promising strategy to measure OSA.
Nevertheless, validations of these new approaches are necessary
before releasing them for clinical use. In addition, our finding
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of a weak correlation between finger_OD and arm_OD indicates
that (1) prediction of finger_OD using arm_OD may be possible
but will require development and implementation of
sophisticated data-mining, such as machine learning algorithms
[90], and (2) as previous studies have validated NIRS oximeters

as medical devices, protocols that quantify the arterial and
venous contributions to the arm_OD are needed. Arm_OD can
then be calibrated to indicate the changes in the arterial ODs at
the arm or wrist.
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AVR: arterio-venous ratio
CPAP: continuous positive airway pressure
CW-NIRS: continuous wave near-infrared spectroscopy
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FDMD: frequency-domain multidistance
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LoA: limit of agreement
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T-PPG: transmission photoplethysmography
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