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Abstract

Background: Recent years have been witnessing a substantial improvement in the accuracy of skin cancer classification using
convolutional neural networks (CNNs). CNNs perform on par with or better than dermatologists with respect to the classification
tasks of single images. However, in clinical practice, dermatologists also use other patient data beyond the visual aspects present
in a digitized image, further increasing their diagnostic accuracy. Several pilot studies have recently investigated the effects of
integrating different subtypes of patient data into CNN-based skin cancer classifiers.
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Objective: This systematic review focuses on the current research investigating the impact of merging information from image
features and patient data on the performance of CNN-based skin cancer image classification. This study aims to explore the
potential in this field of research by evaluating the types of patient data used, the ways in which the nonimage data are encoded
and merged with the image features, and the impact of the integration on the classifier performance.

Methods: Google Scholar, PubMed, MEDLINE, and ScienceDirect were screened for peer-reviewed studies published in
English that dealt with the integration of patient data within a CNN-based skin cancer classification. The search terms skin cancer
classification, convolutional neural network(s), deep learning, lesions, melanoma, metadata, clinical information, and patient
data were combined.

Results: A total of 11 publications fulfilled the inclusion criteria. All of them reported an overall improvement in different skin
lesion classification tasks with patient data integration. The most commonly used patient data were age, sex, and lesion location.
The patient data were mostly one-hot encoded. There were differences in the complexity that the encoded patient data were
processed with regarding deep learning methods before and after fusing them with the image features for a combined classifier.

Conclusions: This study indicates the potential benefits of integrating patient data into CNN-based diagnostic algorithms.
However, how exactly the individual patient data enhance classification performance, especially in the case of multiclass
classification problems, is still unclear. Moreover, a substantial fraction of patient data used by dermatologists remains to be
analyzed in the context of CNN-based skin cancer classification. Further exploratory analyses in this promising field may optimize
patient data integration into CNN-based skin cancer diagnostics for patients’ benefits.

(J Med Internet Res 2021;23(7):e20708) doi: 10.2196/20708
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Introduction

Background
The incidence of skin cancer has been increasing throughout
the world, resulting in substantial health and economic burdens
[1]. Early detection increases the possibility of curing all types
of skin cancers. However, distinguishing benign skin lesions
from malignant skin lesions is challenging, even for experienced
clinicians [2]. Over the past few years, different digital
approaches have been proposed to assist in the detection of skin
cancer [3,4]. Convolutional neural networks (CNNs) are the
most successful systems for handling image classification
problems [5]. Recent publications have reported CNNs that
support [6] and outperform [7-9] dermatologists in challenging
binary melanoma detection and multiclass skin cancer
classification when only taking single images of the skin lesion
as input.

However, single-image classification does not reflect the clinical
reality. In fact, dermatologists’ diagnoses are based on both the
visual inspection of a single image and the integration of

information from various sources. Figure 1 shows the different
types of information that dermatologists may collect from their
patients, including information on known risk factors for skin
cancer. The corresponding references can be found in
Multimedia Appendix 1 [10-32]. The complexity of this figure
illustrates the diversity of patient data that can be included in
the diagnosis. Roffman et al [33] and Wang et al [34] presented
reasonably accurate skin cancer predictions using deep learning
methods based exclusively on patient nonimage information.
Haenssle et al [35] showed that dermatologists perform
somewhat better in a dichotomous skin lesion classification task
(benign vs malignant or premalignant) when they were provided
with clinical images and textual case information, such as the
patient’s age, sex, and lesion location, in addition to a
dermoscopic image. This raises the question of whether a
combination of CNN-based image analysis and patient data
might also increase the accuracy of the classifier. A combination
of image features and patient data has become a topic of the
International Skin Imaging Collaboration challenge in 2019,
where a large repository of dermoscopic images including
patient data was offered for clinical training and technical
research toward automated algorithmic analysis [36].
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Figure 1. An overview of patient data considered by dermatologists while diagnosing skin lesions. The framed characteristics in the figure illustrate
the fraction of patient data that can potentially be recognized by convolutional neural networks from a single image input. UVR: ultraviolet radiation.

Objective
This review presents the status quo of CNN-based skin lesion
classification using image input and patient data. The included
studies were analyzed with respect to the amount and type of
patient data used for integration, the encoding and fusing
techniques, and the reported results. The review also discusses
the heterogeneity of the studies that have been conducted so far
and points out the potential and challenges of such combined
classifiers that should be addressed in the future.

Methods

Search Strategy
Google Scholar, PubMed, MEDLINE, and ScienceDirect were
searched for peer-reviewed publications, restricted to human
research published in English. The search terms skin cancer
classification, convolutional neural network(s), deep learning,
lesions, melanoma, metadata, clinical information, and patient
data were combined.

Study Selection
This review only includes skin lesion classification studies using
CNNs that consider both image and patient data. It must be
noted that there are a few studies that investigated the
incorporation of visual and nonvisual information on skin cancer
classification, but did not obtain visual features using deep
learning techniques, for example, the studies by Binder et al
[37], Alcon et al [38], Cheng et al [39], Liu et al [40], and
Rubegni et al [41]. This review exclusively focuses on
integrating patient data with the state-of-the-art CNN-based
feature extractors. Therefore, the abovementioned studies were
not considered in this review.

Study Analysis
The objective of this review is to update practitioners on the
status quo approaches toward patient data incorporation into
CNN-based skin lesion diagnostics regarding all relevant
practical aspects.

Type and Amount of Patient Data
The goal is to achieve better performance of the CNN-based
classifier by integrating new information that cannot be extracted
from a digitized image. Various types of patient data have been
shown to assist dermatologists. Key question: Which and how
many different types of patient data have been tested for
CNN-based classification?

Encoding and Fusing Techniques
A CNN-based classifier extracts various visual features from a
digitized image as the basis for its diagnosis. Patient data are
nonimage data and are mostly provided as numbers or strings
in tables. The patient data can be classified in a dichotomous
fashion (presence of the feature: yes or no), fall into several
discrete categories (eg, Fitzpatrick skin type), or be continuous
(eg, patient age). This may require different, carefully chosen
encoding and fusing techniques. Moreover, the weight attributed
to patient data in comparison with image features can strongly
influence how the different features contribute toward the
decision making of the system. Key questions: What are the
encoding and fusing techniques applied in the studies? Do the
studies focus on the quantitative relationship between image
and nonimage features?

Reported Study Results
This review aims to summarize the recent findings regarding
the impact of patient data on the performance of CNN-based
classifiers. Key questions: What is the classification task? Is it
a binary or multiclass problem? Which skin lesions should be
distinguished? How is the influence of individual and/or
combined patient data documented? In the case of multiclass
classification, is the impact also shown for each single class of
skin lesion individually?

Applied Performance Metrics
The included publications reported different statistical metrics
as the study end points. If the classes in the test set are
approximately equally distributed, then accuracy is a frequently
used performance metric, where the total number of correctly
predicted samples is divided by the total number of samples in
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the test set. In binary classification problems with a positive
and a negative class, sensitivity and specificity are further
common study end points, especially if there is an imbalance
between the samples of both classes. Sensitivity was determined
only on the basis of the actual positive samples in the test set.
It is calculated by counting the correctly classified positive
samples by the total number of positive samples. In contrast,
specificity was determined based on actual negative samples in
the test set. Here, the correctly classified negative samples were
divided by the total number of negative samples. While using
a CNN, the sensitivity and specificity depend on the selected
cutoff value. If the output of the neural network is greater than
the cutoff value, the input is assigned to the positive class, and
if it is below that value, then the input is assigned to the negative
class. Thus, this value represents a central parameter for the
trade-off between sensitivity and specificity. A decrease in the
threshold value leads to an increase in the sensitivity with a
simultaneous decrease in specificity and vice versa. The
dependence of the cutoff value of the specificity and sensitivity
of the two metrics is shown in the receiver operating
characteristic curve. Here, the sensitivity is plotted against the
false-positive rate (1−specificity) in a diagram for each possible
cutoff value. The area under the receiver operating characteristic
curve was used as an integral performance measure for the
algorithms.

Results

Classification Tasks
A total of 11 publications fulfilling the inclusion criteria are
summarized in Table 1. The studies were very heterogeneous
with respect to CNN architecture, classification task, including
image and patient data, data augmentation (if reported), and
fusion techniques, rendering a meaningful direct comparison
very difficult. A total of 5 studies dealt with binary
classifications with the end point of either dichotomous
melanoma or basal cell carcinoma (BCC) classification or with
the end point to distinguish malignant from benign lesions in
general. The remaining 6 studies were classified between 5 and
8 different skin diseases or lesions. As malignant lesions,
melanoma (6 studies), BCC (6 studies), and squamous cell
carcinoma (SCC; 3 studies) were included. In addition, these
studies differentiated among the following benign lesions:
melanocytic nevus (NV; 6 studies), benign keratosis-like lesions
(BKLs; 4 studies), dermatofibroma (3 studies), vascular lesions
(VASCs; 3 studies), actinic keratosis (AK; 2 studies), and
seborrheic keratosis (SK; 2 studies). Moreover, merged groups
comprising AK and intraepithelial carcinoma or Bowen disease
(2 studies) and dermatofibroma, lentigo, melanosis,
miscellaneous, and VASCs (1 study) were used in some of the
studies.
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Table 1. Summary table.

Samples, nData setCNNa architectureClassification taskResult (with-
out/with)

Patient data typesStudy

5405ISICeResNet50Binary: benign or

malignant (MELb,

BCCc, SCCd)

Accuracy:
0.8344/0.8834

4 types: age, sex, loca-
tion, and presence of
melanocytic cells

Bonechi et al
[42]

5289OwnDenseNet121Binary: low risk or
high risk for MEL

Accuracy: 0.84/0.925 types: age; sex; size;
how long it existed;
changes in size, color,

Chin et al
[43]

or shape including
bleeding and itching

63022017 ISBIf challenge+inter-
active atlas of dermoscopy
[45]+ISIC

ResNet50Binary: MEL yes or
no

Accuracy:
0.848/0.859

2 types: age and sexGonzalez-
Diaz [44]

27,665ISIC (HAM10000 [47],
BCN_2000 [48], MSK
[49])+7-point data set [50]

EfficientNets8 classes: MEL,

NVg, BCC, AKh,

BKLi, DFj, VASCk,
SCC

Sensitivity:
0.725/0.742; speci-
ficity: data not avail-
able

3 types: age, sex, and
location

Gessert et al
[46]

8087-point data setInception V35 classes: MEL,

BCC, NV, MISCl,

SKm

Sensitivity:
0.527/0.604; speci-
ficity: 0.902/0.910

3 types: sex, location,
and elevation

Kawahara et
al [50]

1199OwnConvolutional filters
of learned kernel

Binary: BCC yes or
no

Accuracy:
0.847/0.911

5 types: age, sex, loca-
tion, size, and elevation

Kharazmi et
al [51]

weights from a
sparse autoencoder

10,015ISIC 2018 data setSENet1547 classes: NV, MEL,
BKL, BCC,

AKIECn, VASC, DF

Sensitivity:
0.8544/0.8764;
specificity: data not
available

3 types: age, sex, and
location

Li et al [52]

1612OwnResNet506 Classes: BCC,
SCC, AK, SK,
MEL, NV

Accuracy:
0.671/0.788

8 types: age, location,
lesion itches, bleeds or
has bled, pain, recently
increased, changed its
pattern, and elevation

Pacheco and
Krohling
[53]

300ISICShallow network
with 2 convolutional
layers

Binary: MEL yes or
no

Accuracy: 0.61/0.853 types: age, sex, and
size

Ruiz-Castilla
et al [54]

16,720HAM10000AlexNet7 classes: AKIEC,
BCC, BKL, DF,
MEL, NV, VASC

Accuracy:
0.7929/0.8039

3 types: age, sex, and
location

Sriwong et
al [55]

2917 (only
testing)

ILSVRCo 2015 [57]+ownResNet505 classes: BCC,
SCC, MEL, BKL,
NV

Mean average preci-
sion: 0.726/0.729;
Accuracy:
0.721/0.720

3 types: age, sex, and
location

Yap et al
[56]

aCNN: convolutional neural network (most of the studies had the goal of investigating the usefulness of the presented fusion technique independently
of the convolutional neural network architecture and, therefore, often showed the performance of the fusion with multiple architectures; we included
only the best-performing architecture).
bMEL: melanoma.
cBCC: basal cell carcinoma.
dSCC: squamous cell carcinoma.
eISIC: International Skin Imaging Collaboration.
fISBI: International Symposium on Biomedical Imaging [49].
gNV: melanocytic nevus.
hAK: actinic keratosis.
iBKL: benign keratosis-like lesion.
jDF: dermatofibroma.
kVASC: vascular lesion.
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lMISC: summary of dermatofibroma, lentigo, melanosis, miscellaneous, and vascular lesion.
mSK: seborrheic keratosis.
nAKIEC: actinic keratosis and intraepithelial carcinoma.
oILSVRC: ImageNet Large Scale Visual Recognition Challenge.

Types and Amount of Patient Data
Most of the studies included three types of patient data (7/11,
64%). Compared with the diversity of potentially useful patient
data illustrated in Figure 1, only a few types of patient data were
considered. The most commonly included types of data were
patient’s age and sex (studies: 10/11, 91%). Only Kawahara et
al [50] and Pacheco and Krohling [53] did not consider age and
sex, respectively. The third most commonly considered feature
was lesion location (studies: 8/11, 73%). Elevation and lesion
size were considered in 27% (3/11) of studies. Chin et al [43]
and Pacheco and Krohling [53] included statements about
symptoms such as itching, bleeding or pain. In addition, they
tracked the lesion’s evolution by documenting whether the
lesion increased in size or changed its shape. Furthermore,
Bonechi et al [42] considered the presence of melanocytic cells
as an additional potentially relevant feature.

Encoding
The means of choice to encode the patient data was one-hot
encoding in most cases. One-hot encoding is one way to encode
several discrete classes with a string of bits, where exactly one
value in the string of bits encoding one class is assigned 1 and

all others are assigned 0 (eg, melanoma=010; BCC=100;
NV=001). Different techniques were used for continuous
parameters such as the patient’s age. One-hot encoding is only
possible after discretizing the continuous range, which was
performed by Bonechi et al [42], who divided the age ranging
from 0 to 95 in the sections of 5 years. Gessert et al [46] tested
numerical against one-hot encoding and found the former to be
superior. Li et al [52] normalized the age in the range between
0 and 1 and represented its information using only one value.

As patient data are rarely documented in a standardized way,
dealing with missing values is an essential skill that requires
the algorithm to be proficient. However, only 18% (2/11) of
publications went into detail on how they dealt with missing
values. Gessert et al [46] suggested a negative fixed value for
missing data, whereas Li et al [52] used the more common
approach to fill in missing values with average values for
continuous data and the most frequent values for discrete patient
data.

Fusing Technique
Figure 2 illustrates the main function blocks in which the studies
vary with respect to the fusing techniques.

Figure 2. Overview of the different fusing techniques in the main function blocks of the combined classifier. CNN: convolutional neural network.

The fusing techniques differ in the way they actively weigh the
image and patient data. In 82% (9/11) of studies, a
concatenation-based fusion was applied, that is, the feature
vector extracted from the images was enlarged by attaching the
encoded patient data. In this case, weighting is achieved by
defining the ratio between the number of features originating
from the image and the patient data input. Common CNN
architectures extract 1024, 2048, or even more features from
the image input. In most studies, the authors decided to reduce
the image features before concatenating them with patient data.
In only 27% (3/11) of studies, the authors provided sufficient
information on this point and revealed a considerable variance

in the ratio of image features to patient data: 112 to 28 [53],
128 to 80 [42], and 2048 or 2×2048 to 11 [56]. However,
reducing the image features should be done with care, as it is
accompanied by a loss of information. Only Pacheco and
Krohling [53] reported the effect of changing the ratio and
proved its strong influence on the classification performance.
A totally different weighting approach was introduced by Li et
al [52]. This approach used a multiplication-based fusion.
Inspired by the squeeze-and-excitation operation of a SENet
network [58], the authors used patient data to control the
importance of each image feature channel at the last
convolutional layer. Thus, the network was able to focus on
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specific parts of the image feature based on patient data. The
authors determined the multiplication-based fusion to be superior
to the concatenation-based approach in multiple network
architectures.

In addition, the studies vary in the extent to which deep learning
methods were applied to the patient data before fusing or on
the combined feature vector after fusing it with the image data.
Sriwong et al [55] applied no further deep learning methods but
used a separate support vector machine for classification, which
received the image features extracted by the CNN and the
encoded patient data as input. Gonzalez-Diaz [44] used a
separate support vector machine for the patient data to generate
a probabilistic output, which was factorized with the output of
the CNN-based classifier to provide the final diagnosis of the
system. Because of the end-to-end training of a neural network,
a direct fusion within the CNN architecture was used in most
studies. Kharazmi et al [51] simply added patient data before
the last classifying softmax layer. More complex deep learning
methods were applied by Gessert et al [46] before concatenation
or using an embedded network comprising multiple fully
connected layers after concatenation as presented by Pacheco
and Krohling [53] and Yap et al [56].

Reported Study Results
As summarized in Table 1, all but one study reported a
considerable improvement in the classification performance
when patient data were used in addition to image analysis.
However, the authors consistently emphasized that patient data
are only a support source and the image features clearly provide
the main evidence [53,56]. Yap et al [56], who considered the
features of age, sex, and lesion location for a multiclass problem
(BCC, SCC, melanoma, BKL, NV), concluded in the discussion

that their incorporation of patient data showed only a slight but
not significant improvement in accuracy and recommended
testing different features, such as nevus count, proportion of
atypical nevi, and history of melanoma.

Although 5 studies reported results for binary classification
tasks, 55% (6/11) of studies dealt with a multiclass classification
problem, distinguishing between up to 8 different skin diseases,
and revealed insights on how the use of patient data influences
the classification performance for an individual type of skin
lesion. Table 2 shows which individual classifications benefitted
from the integration of patient data and whether this was
achieved at the expense of others. Among the 6 studies, Gessert
et al [46], Sriwong et al [55], and Li et al [52] dealt with
comparable classification tasks and used the same patient data
(age, sex, and location). All 3 studies identified improvements
in the classification of BKL and dermatofibroma. Li et al [52]
even listed an absolute increase in the sensitivity for
dermatofibroma of approximately 20% (from 63.56% to
84.55%). It must be stated critically that the authors failed to
mention the corresponding specificity, which makes it difficult
to draw reliable conclusions. Furthermore, Table 2 shows that
the improvements may go along with the degradation of
classification performance for other lesion types [52,55] or that
the improvement of sensitivity for one class may be paralleled
by a decrease in specificity, as shown clearly by the results of
Gessert et al [46]. In contrast, Kawahara et al [50] and Pacheco
and Krohling [53] used different patient data (eg, elevation of
the lesion) and reported an increase in sensitivity and specificity
in almost all classes. Unfortunately, a deeper insight into the
study results of Yap et al [56] was not possible because the
confusion matrix, including the classification performance of
the single-lesion types, was not legible.
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Table 2. Influence of included patient data on the classification performance of the single skin diseases or lesionsa.

Skin diseaseStudy, patient da-
ta, and metric

SKlMISCkVASCjDFiBKLhAKIECgAKfSCCeBCCdNVcMELb

Gessert et al [46]: age, sex, location

XX−++Xq+−−p(+/−)o+nAUCm

XX−−−X−−−−−Sensitivity

XX+++X+++++Specificity

Sriwong et al [55]: age, sex, location

XX−++−XX+−+Sensitivity

XX++/−++XX−+−Specificity

Li et al [52]: age, sex, location

XX+++−XX+−−Sensitivity

Kawahara et al [50]: sex, location, elevation

++XXXXXX+++Sensitivity

++XXXXXX+/−++Specificity

Pacheco and Krohling [53]: age, location, itches, bleeds, pain, increased, changed, elevation

+XXXXX+++++Sensitivity

+XXXXX+−+++Specificity

aThe study of Yap et al [56] is excluded because the confusion matrix was not legible. It must be noticed that there are some combinations where the
outcome deteriorates by including patient data.
bMEL: melanoma.
cNV: Melanocytic nevus.
dBCC: basal cell carcinoma.
eSCC: squamous cell carcinoma.
fAK: Actinic keratosis.
gAKIEC: actinic keratosis and intraepithelial carcinoma.
hBKL: benign keratosis-like lesion.
iDF: dermatofibroma.
jVASC: vascular lesion.
kMISC: miscellaneous and vascular lesion.
lSK: seborrheic keratosis.
mAUC: area under the curve.
nIndicates improvement compared with classification performance without patient data.
oIndicates no change compared with classification performance without patient data.
pIndicates degradation compared with classification performance without patient data.
qThis implies that the lesion type was not considered in the classification task of the study.

In total, 36% (4/11) of studies analyzed the influence of the
used patient data on the classification performance in a more
differentiated way. They showed the impact of either individual
patient data or special combinations of patient data on
classification performance, thereby providing a more detailed
insight into the contribution of individual patient data.

As the only ones, Pacheco and Krohling [53] performed an
exploratory analysis of the patient data within the used data set
before observing the classification of the CNN. The authors
considered eight types of patient data (age, location, lesion
itches, lesion bleeds, lesion hurts [“pain”], recent increase in
size, changed shape or pattern, and elevation) and six different
types of skin lesions (BCC, SCC, AK, SK, melanoma, and NV).

The exploratory analysis suggested that the patient data
parameters such as “bleeding” and “pain” were suitable to
differentiate between pigmented (NV, melanoma, and SK) and
nonpigmented lesions (AK, BCC, and SCC), whereas the patient
data parameters such as “changed its pattern” and “elevation”
helped to identify melanomas. As “pain” was always denied in
the case of AK, this feature seemed to be a promising
discriminator. The analyzed patient data for SCC and BCC were
very similar; therefore, no improvement was expected for these
2 skin diseases because of the integration of patient data. The
classification results confirmed the exploratory analysis because
the classifications of AK, melanoma, NV, and SK improved
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when patient data were incorporated into the classifiers, whereas
the performance for BCC and SCC remained almost the same.

Li et al [52] considered three types of patient data (age, sex,
and lesion location) and 7 skin lesion types (NV, melanoma,
BKL, BCC, AK and intraepithelial carcinoma, VASC, and
dermatofibroma). The study showed the overall classification
performance for all possible combinations of patient data. The
integration of parameter “location” resulted in the best
classification performance, individually. The combination of
patient data parameters of “age” and “location” provided the
best result overall, whereas the parameter “sex” decreased
performance upon integration. The authors concluded that the
rare diseases of VASC and dermatofibroma are more location
specific, whereas none of the skin diseases in question occur
preferentially in men or women. Therefore, the authors
recommended the use of “location” and the avoidance of “sex”
in the combined classifier.

Sriwong et al [55] addressed the same problem as that of Li et
al [52]. However, their study only analyzed some combinations
of patient data (age, age+sex, and age+sex+location). The best
overall result was achieved by incorporating the combination
of “age,” “sex,” and “location.” Contrary to Li et al [52], the
study yielded the largest improvement for the feature “age.”
Although adding “sex” did not show a considerable
improvement, additionally adding “location” increased the
performance slightly. The authors stated that the information
of “sex” and “location” is more powerful when used in
combination, thereby confirming statements in related studies
[40,59].

Bonechi et al [42] considered four types of patient data
individually (age, sex, location, and presence of melanocytic
cells) for a binary classification (malignant yes or no).
Unfortunately, the analysis results have not been reported in
detail, but the authors reported the parameter “presence of
melanocytic cells” to be the most informative.

Discussion

Principal Findings
Although the main evidence for a good diagnosis is still
provided by the image input, all 11 publications indicate a
possible benefit of integrating patient data in CNN classifiers,
as illustrated in Table 1. This corresponds with the results of
other approaches that combine visual and nonvisual features
for skin lesion classification [37-41], thereby suggesting it as a
promising avenue of research. However, publication bias
favoring studies with positive results cannot be excluded.

One focus of further research into combined CNN-based
classifiers should be to render its classification process
transparent, easy to understand, and applicable in a clinical
setting. The 11 studies published so far have dealt with these
aspects only marginally. Therefore, these issues need to be
addressed in future studies to reliably reveal the potential of
integrating patient data.

Reproducibility, Comparability, and Generalization
No objective benchmarks exist in the field of integrating patient
data into CNN-based classifiers. The heterogeneity of the studies
conducted so far is substantial. This applies to the number and
types of skin diseases or lesions to be classified, databases and
data augmentation, CNN architectures, patient data, and fusion
techniques. These aspects have a great influence on the way
that the algorithm learns to diagnose the lesions in question and
render it very difficult to reproduce and compare the approaches
and results externally and independently. A way to solve this
would be the more extensive use of external and publicly
available data sets to objectively optimize the classification
accuracy in an experimental setting. This needs to be done
systematically in preparation for clinical trials that will be
required to prove the algorithm’s generalizability and
applicability in the clinic. In addition, the best way to handle
missing data needs to be addressed.

Transparency and Explainability
All presented studies lack an investigation of the impact of
patient data individually and in combination on single-lesion
classes. Both the fusion method and weight attributed to the
patient data in addition to the biological significance itself may
substantially influence the classification results. Further research
should be dedicated to explaining the mechanisms by which
the incorporation of these factors contributes to the decision
making of the CNN-based combined classifier to render the
results more transparent.

Call for Extensive Exploration Analysis
As shown in Figure 1, a diversity of patient data has been shown
to be useful in a clinical setting and could be considered for
diagnosis by CNN-based classifiers as well. So far, researchers
have mostly used patient data that are readily available and/or
routinely recorded, such as age, sex, and lesion location.
However, readily available factors may not be the best choice.
For instance, sex was included in 91% (10/11) of studies, but
was stated to be of minimal benefit for the classification task if
investigated in detail. Regarding the results of studies
considering patient data besides these three factors, the results
indicate that the integration of other patient data may be more
promising [39,42,53]. Studies analyzing the risk factors for skin
cancer so far demonstrated that patient data can be helpful in
distinguishing skin lesions in binary classification tasks.
Corresponding studies are available for differentiating between
melanoma and nonmelanoma skin cancer [10,60] and for
distinguishing between BCC and SCC [61]. Patient data, such
as the skin type (I, II, III vs IV), the count of atypical nevi (>4
vs none) and common nevi (>100 vs 0-4) are well-established
criteria for melanoma risk [11,12]. To our knowledge, no
extensive study has analyzed significant correlations among
individual or combinations of these types of patient data and
the improvement of multiclass problems as considered in this
review. An extensive exploration analysis in this field would
help to choose patient data suitable for the considered
classification task. Following the study of Haenssle et al [35],
it would further be of interest to note which type of patient data
influences the clinician’s decision the most. Studies comparing
the benefit of specific patient data integration in the artificial
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intelligence system versus the clinician’s decision and, therefore,
pointing out the opportunities of human-algorithm integration
systems should be the subject of future research.

Conclusions
All 11 studies published so far indicate that the integration of
patient data into CNN-based skin lesion classifiers may improve
classification accuracy. The studies mainly used patient data

that were routinely recorded (age, sex, and lesion location).
Regarding the technical details, the main differences in the
presented approaches occur in the fusing techniques. Further
research should be dedicated to systematically evaluating the
impact of incorporation of individual and combined patient data
into CNN-based classifiers to show its benefit reproducibly and
transparently and to pave the way for the translation of these
combined classifiers into the clinic.
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