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Abstract

Background: The use of artificial intelligence has revolutionized every area of life such as business and trade, social and
electronic media, education and learning, manufacturing industries, medicine and sciences, and every other sector. The new
reforms and advanced technologies of artificial intelligence have enabled data analysts to transmute raw data generated by these
sectors into meaningful insights for an effective decision-making process. Health care is one of the integral sectors where a large
amount of data is generated daily, and making effective decisions based on these data is therefore a challenge. In this study, cases
related to childbirth either by the traditional method of vaginal delivery or cesarean delivery were investigated. Cesarean delivery
is performed to save both the mother and the fetus when complications related to vaginal birth arise.

Objective: The aim of this study was to develop reliable prediction models for a maternity care decision support system to
predict the mode of delivery before childbirth.

Methods: This study was conducted in 2 parts for identifying the mode of childbirth: first, the existing data set was enriched
and second, previous medical records about the mode of delivery were investigated using machine learning algorithms and by
extracting meaningful insights from unseen cases. Several prediction models were trained to achieve this objective, such as
decision tree, random forest, AdaBoostM1, bagging, and k-nearest neighbor, based on original and enriched data sets.

Results: The prediction models based on enriched data performed well in terms of accuracy, sensitivity, specificity, F-measure,
and receiver operating characteristic curves in the outcomes. Specifically, the accuracy of k-nearest neighbor was 84.38%, that
of bagging was 83.75%, that of random forest was 83.13%, that of decision tree was 81.25%, and that of AdaBoostM1 was
80.63%. Enrichment of the data set had a good impact on improving the accuracy of the prediction process, which supports
maternity care practitioners in making decisions in critical cases.

Conclusions: Our study shows that enriching the data set improves the accuracy of the prediction process, thereby supporting
maternity care practitioners in making informed decisions in critical cases. The enriched data set used in this study yields good
results, but this data set can become even better if the records are increased with real clinical data.
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Introduction

Background
Machine learning is increasingly prevalent in and vital to health
care industries in terms of predicting and identifying quality
treatments for patients and enhancing other health care services.
Therefore, machine learning techniques are used for extracting
knowledge from huge and complex data sets in an organized
form so that it can be used for making effective decisions.
According to Sana et al [1], machine learning techniques provide
diagnosis and analytical amenities in several medical fields and
their applications in clinical factors and analytics such as disease
prediction, decision making based on extracted medical
knowledge, and serving in patient management. Moreover, with
the increasing amount of available data, machine learning
techniques have significant benefits as prediction tools in health
care [2] that sometimes provide surprising prediction models
that help in clinical counseling [3]. These tools are fundamental
to biomedical research and are utilized as an integral part of the
clinical decision-making process [4].

Child delivery can be performed through several methods in
hospitals, but the most common methods are either traditional
vaginal birth or cesarean (c-section), while vacuum extractions
and obstetric pincers can be used during complications in vaginal
deliveries [5]. There are several assumptions pertaining to the
mode of delivery, but it is still challenging to predict the type
of childbirth accurately [6,7]. C-section is a technique used in
maternity care for delivering children by performing a surgical
incision to the woman’s abdomen and uterus [8], which normally
takes place when complications arise related to the mother or
a child in a normal delivery [9]. The possible complications of
c-section for mothers are infections, excessive bleeding that
could cause anemia, and reaction to anesthesia; therefore,
maternal death rates with c-sections are higher than that for
vaginal deliveries [8]. However, a c-section could be necessary
to save the lives of both the mother and the child if the baby is
located in a wrong position in the womb, the head of the baby
is larger than the birth canal, the direction of the baby is
reversed, or the mother has a c-section history or even
heart-related diseases [10]. Molina et al [11] further explained
that c-sections are lifesaving for obstructed labor and any other
obstruction in the delivery process for decreasing baby and
mother mortality, but the risk of complications and overuse can
harm both mothers and babies. Every mode of delivery has its
pros and cons, but selecting the wrong type may lead to a variety
of risks such as baby cessation, excessive bleeding, baby
breathing problems, and other similar issues [7].

The rate of c-sections is higher than the rate of normal deliveries,
especially in high-income countries, where in 2012, around 23
million deliveries were conducted by c-section worldwide [11].
Prema and Pushpalatha [8] indicated that the highest rate of
c-section was 29.1% in November 2005, while nearly one-third
of the deliveries were conducted using c-section in 2015 [12]
as reported by the Centers for Disease Control and Prevention
[13]. In the United States, the c-section rate significantly
increased to 60% from 1996 to 2009, and the c-section rate was
32% of all deliveries in 2007 [12]. Li et al [14] reported that in

China, 46.2% of the 14,541 deliveries across 3 provinces in
different hospitals were conducted by c-section in the years
2007 and 2008. Similarly, in Pakistan, around half of the total
deliveries are conducted at home, but a high number of
c-sections are conducted at hospitals [9]. Fergus et al [4] argued
that overinterpretations increase the numbers of c-section, even
if there are no specific risks involved in the normal deliveries.
It is difficult to know the optimal level of the c-section rate
because although the World Health Organization advocates that
national rates do not exceed by 10 to 15 c-sections per 100
births, the rates of c-sections are noticeably higher [11].

Related Work
Studies related to identifying the mode of childbirth were found
in different databases such as Google Scholar, Science Direct,
IEEE explorer, Wiley, ResearchGate, and other data sources.
The major keywords used in the browsers were phrases such as
cesarean sections using machine learning, c-sections using
machine learning, machine learning in maternity care, AI in
maternity care, etc. C-section is the most commonly increasing
mode of delivery worldwide, and areas of concerns such as ideal
c-section rate, safety, and cost are still under debate [15].
Moreover, many researchers have investigated different features
to determine the main causes for cesarean delivery and have
built a prediction model based on these features. Some main
causes are related to the medical and obstetric history of the
mother [5,6,8,15-17]. The study of Lee and Gay [18] found that
sleep disturbance and fatigue in late pregnancy lead to greater
chances of delivery by c-section. Others analyzed the
socioeconomic or sociodemographic features [1,19] and some
have determined the main causes to be the region and level of
medical services afforded [9].

Wollmann et al [3] attempted to predict the chances of normal
births after a c-section. In this regard, they collected data of
women with one previous birth in Sweden during 2008-2014
and built 3 machine learning models and 1 regression model.
They concluded that the majority of the women with a history
of c-sections could still successfully deliver a baby in the normal
way. Similarly, Prema and Pushpalatha [8] investigated the
main causes of cesarean delivery based on the extracted features.
Several machine learning models were trained on a data set
collected from a pregnancy risk assessment survey. Their models
have predicted c-sections with 96% accuracy for women who
had a history of c-sections compared to 89% accuracy for
women who had no previous c-section. Khan et al [10] presented
a study to predict whether c-section is compulsory along with
increased safety for both mother and child during and after
delivery. They trained 3 ensemble models and found the highest
accuracy model of 87.66%. They also found that for predicting
the target mode of delivery, several features such as previous
c-sections, amniotic fluid, fetal intrapartum pH, and preinduction
should be considered. Sana et al [1] figured out the
socioeconomic features that cause cesarean delivery. They
trained decision tree (DT) and artificial neural network models
to predict the mode of delivery in which artificial neural
networks showed a high accuracy of 82%. Abbas et al [9]
believed that c-section causes can be influenced by regions and
therefore, they selected a region with a limited health care
infrastructure. They trained several models based on 23 features
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in order to predict the mode of delivery, and the highest accuracy
model was 91.8%. They also concluded that the maternal age
and the previous mode of delivery considerably influenced the
mode of the next delivery.

Ricciardi et al [20] adopted classification methods DT, random
forest (RF), AdaBoostM1, gradient boosting, and DECORATE
(Diverse Ensemble Creation by Oppositional Relabeling of
Artificial Training Examples) for predicting patients’ mode of
delivery. They applied these methods to a data set of 370 records
collected from public and private hospitals from the years 2000
to 2009. RF outperformed with 91.1% accuracy, 90% sensitivity,
and >96% ROC. In the study of Improta et al [2], the 4
classification methods, namely, DT, RF, AdaBoost, and gradient
boosting were trained on a cardiotocographic data set for
identifying the mode of delivery, in which RF showed the
highest performance with 87.6% accuracy, 87.9% precision,
and 93% ROC. In a study conducted by Saleem et al [21] for
classifying the mode of delivery using 4 machine learning
methods, the AdaBoost model showed the highest accuracy of
91.8%, sensitivity of 95.5%, and specificity of 98%. Of the 4
classification algorithms used by Pereira et al [5] to predict the
mode of delivery, DT outperformed with accuracy of 84%,
sensitivity of 88%, and specificity of 80%. A DT method was
adopted by Soleimanian et al [15] to investigate the mode of
delivery in a data set of 80 patients and they found an accuracy
of 86.25%. In the study of Fergus et al [4], ensemble methods
were used for classifying the mode of delivery by using a
cardiotocographic tracer in which all 3 methods showed
promising results of 87%, 90%, and 96% for sensitivity,
specificity, and ROC, respectively. Moreover, Fergus et al [22]
established that machine learning with fetal heart rate signals
significantly improved the efficacy of detecting the mode of
delivery compared to obstetrician and midwife predictions and
other systems. Their results showed 94%, 91%, and 99%
sensitivity, specificity, and ROC, respectively.

Objective of This Study
This study aims to provide prediction models for identifying
the mode of childbirth based on antenatal signs and symptoms
by using machine learning techniques. To achieve the objectives
of this study, the data set was first enriched with additional cases
using the Synthetic Minority Oversampling Technique
(SMOTE) [23]. Second, several prediction models were trained
and tested on original and enriched data sets. A cross-validation
of 10 folds was used for evaluating the performance of the
models. In the outcomes, the enriched data set showed better
performance in terms of accuracy, sensitivity, specificity,
F-measure, and receiver operating characteristic (ROC)
compared to the original data set. These findings encourage the
applications of these models for maternity care decision support
systems to predict the mode of delivery before birth.

Methods

Software Used
The data synthesis and analysis in terms of classifications and
predicting the mode of delivery were performed using Weka
software (University of Waikato, New Zealand) [24]. Weka has
many machine learning algorithms that are useful for training

data sets and then testing them on unseen cases to predict target
values [25,26].

Data Collection
The data set used in this study was harvested from the study of
Soleimanian et al [15] and is publicly available in the University
of California, Irvine machine learning repository [12,27]. The
data set contains 5 features, namely, age, delivery_number,
delivery_time, blood_of_pressure, and heart_problem, while
cesarean is a class attribute to label whether the delivery was
performed by c-section. In the data set, each attribute shows
different values, such as age ranges from 22 years to 38 years,
delivery_number shows the number of births from 1 to 4,
delivery_time shows 3 different statuses that are premature,
timely, or latecomer, blood_of_pressure also shows 3 different
statuses that are low, normal, and high, the heart_problem is
categorized as either yes or no, and the last attribute (cesarean)
is categorized as to whether the birth was by c-section or not.
This data set contains 80 records of pregnant women and
information about whether delivery was conducted by c-section
or normal birth.

Data Enrichment
The data set used in this study originally contained 80 records,
of which 46 records were normal vaginal deliveries while the
remaining 34 were c-sections. According to the criteria of
Vapnik [28], the total number of records was insufficient for
predictive purposes [25]. Therefore, the data set needed more
records to ensure that the prediction models are reliable and
trustworthy. For this reason, the existing data set was enriched
with more records using the standard method of SMOTE [23].
SMOTE is a popular method of machine learning used for
oversampling [29] in which the minority class in a data set is
generated by a synthetic example in the feature area based on
the selected k-nearest neighbor (k-NN) from the minority class
[21]. This practice has been adopted in several biomedical
studies [4,30-36]. Mohammed et al [34] used the SMOTE
method for enriching the minority class and concluded that
oversampling has a positive impact on the prediction models.
Similarly, Ramezankhani et al [32] adopted the SMOTE method
for increasing the samples in the minority class in the original
data set with various percentages (ie, 100%, 200%....,700%),
which resulted in increased sensitivity of the different classifiers
used. Another study of Hussain et al [37] used the SMOTE
method and compared the results with the original data,
concluding that the prediction models’ performance after
oversampling was enhanced compared to the original data.
According to Ebenuwa [38] and Frank [39], SMOTE can be
used for increasing the size of a data set. This study used the
SMOTE method for enriching the samples in both classes with
100%; therefore, the total number of records after oversampling
increased to 160 while the ratio between the 2 classes remained
the same as in the original data set. At the current stage, the
enriched data set was sufficient for reliable prediction.

Prediction Models
The ability to gain meaningful insight from the available
unstructured and unorganized data and to utilize it as an integral
part of a business decision support system is an art. There are
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several technologies available that work in this domain for
structuring and organizing the historical data for predicting new
patterns for the unseen scenarios, including machine learning.
Similarly, these techniques are widely used in the health care
industry, where prediction models have evolved with clinical
practice in every medical field. In the literature, several studies
have attempted to classify the types of childbirth from different
perspectives by using machine learning models. The most widely
used classifiers for predictions are DT, RF, AdaBoost, support
vector machine, k-NN, Naïve Bayes, and several other
techniques. This study has utilized 5 machine learning classifiers
for developing prediction models that can help health care
practitioners in deciding the favorable mode of delivery,
primarily based on the mother’s history and condition. A brief
discussion of these classifiers is presented below.

DT
DT is a nonparametric supervised learning technique used for
both classification and regression and it uses large and
complicated data sets to explore features and mined patterns
that are vital to discrimination and predictive modeling. In this
technique, the large data sample is divided into training and
testing data sets, and based on the training data set, building a
DT model and a testing data set in order to decide on the suitable
tree size required to attain an optimal final model is performed
[40].

RF
RF is an ensemble technique used for classification or regression
that utilizes the input data and constructs multitude of DTs at
the training time and outputs the class (classification) or the
prediction mean (regression) of an individual tree [41]. In this
technique, each DT is randomized using a bootstrap resampling
method with random feature selection, and the classification is
performed based on the voting of various randomized DTs on
the final outcome [4]. Furthermore, the optimum split is
computed using various feature sets and lingers until the tree is
completely grown without pruning. This process is iterated for
all trees in the forest by using different bootstraps of data, and
the classifications of new samples are therefore based on the
majority of votes cast [4].

AdaBoost
AdaBoost is an ensemble technique of linear member classifiers
that is constructed to enhance the efficiency of the binary
classifiers. In this technique, the weak learning models with
better accuracy can be boosted to develop a strong prediction
model. AdaBoost is an iterative-based technique where each
iteration detects the misclassified data points and increases the
weights of the correct points to increase the chance of the next
classifiers getting them right. Moreover, in this method, the
instances are moved from the iterative samples of the training
data to the subsequent data set, and the classifiers are combined
based on the weighted majority of votes [10,42].

Bagging
Bootstrap aggregation (or bagging) is an ensemble technique
used for classification or regression. In bagging, a repeated
sample is made from a training set by using simple random
sampling with replacement, and for each bootstrap sample, a

weak classifier is trained. These classifiers are then utilized for
predicting class labels on testing data, and the class that obtains
the majority of the votes wins [43].

k-NN
k-NN is a supervised learning technique that takes a data set in
which the data points are labeled with different classes and uses
them for learning to label the new points. The labeling of new
points is based on the closest of its neighbors’ labels and the
majority of votes cast; therefore, the labels of the nearest
neighbors are the labels of the new points. In k-NN, k is the
criteria number of checking the nearest neighbors [12,44].

Performance Evaluation Method
There are several methods for evaluating the performance of
prediction models such as using the whole data set as a training
set, providing a separate test set, cross-validation, and percentage
split, of which cross-validation is regarded as the most reliable
method [45]. In this study, each prediction model built was
evaluated using cross-validations of 10 folds [46]. In 10-fold
cross-validation, the training set is divided into 10 subsets, and
each subset is used once in the testing phase [47]. Amin and
Ali [12] and Soleimanian et al [15] trained their models by using
the whole data set as training data, but this method was not
recommended in several other studies such as those of Mitchell
[48], Smith and Frank [45], and Brownlee [49] because machine
learning methods learn the training data and can predict them
easily. As explained by Mitchell [48], utilizing the entire data
set for training and testing purposes at the same time may
produce unrealistic outcomes that are extremely positive and
prone to overfitting. As further explained by Smith and Frank
[45], the results achieved using training data as test data give
rise to resubstituting errors, which are typically unjustifiably
optimistic for predicting the performance of a model with future
unseen data. Moreover, a training set for a model evaluation
can be useful if one is more interested in a descriptive rather
than a predictive model [49]. This is usually the challenge of
machine learning: to predict unseen cases that have not been
trained. To the contrary, cross-validation is regarded as the most
profound and reliable method for model evaluation in machine
learning when all data exist in 1 set [45]. Furthermore, in
cross-validation, the test set contains unseen cases that are
unknown to the model during the training phase, which can help
reliable assessment of a classifier’s performance [50] because
cross-validation helps render generalization errors and variance
[51]. As further explained by Schaffer [52] cross-validation can
be used to choose a classifier in case of lack of pertinent
domain-specific knowledge. In short, cross-validation provides
practical estimation because a model is predicting actual results
that may have been unknown to the model in the training
process.

Results

This study has applied the selected prediction models to both
the original data set (80 cases) and the enriched data set (160
cases). The performance of each model was evaluated using
cross-validations of 10 folds [46]. In 10-fold cross-validation,
the training set is divided into 10 subsets, and each subset is
used once in the training phase [47]. In the implementation
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phase, when the required parameters are set for testing the
model, a confusion matrix is calculated for each classifier run.
Specifically, the confusion matrix provides 4 important values
that are computed based on the correctly and incorrectly
classified instances of a data set. These values are commonly
known as true positive, true negative, false positive, and false
negative. This matrix is the basis for calculating important
measures such as model performance, model accuracy,
sensitivity, specificity, and F-measure. All these measures are
calculated using different equations. For example, the accuracy
of a model is calculated using the following equation:

where FP=false positive, FN=false negative, TP=true positive,
and TN=true negative.

The accuracies of the different models before and after enriching
the data set for identifying the mode of delivery were evaluated
using equation 1, and the outcomes are depicted in Table 1 and
Figure 1.

Table 1. Accuracies and kappa values of models before and after data enrichment.

Enriched data setOriginal data setMethod

Kappa valueAccuracy (%)Kappa valueAccuracy (%)

0.68584.380.22861.25k-Nearest neighbor

0.66483.750.19261.25Bagging

0.65483.130.21562.50Random forest

0.61281.250.18157.50Decision tree

0.60380.630.12457.50AdaBoost

Figure 1. Comparison of the accuracy between models before and after data enrichment. AB: AdaBoost; DT: decision tree; k-NN: k-nearest neighbor;
RF: random forest.

According to Table 1 and Figure 1, the performances of all the
models in terms of accuracy were very low when they were
trained with the original data set; however, accuracy was
tremendously improved when the models were trained with the
updated enriched data set, whose improvement reached

approximately 20%-23%. In the original data set, RF showed
the highest accuracy of 62.50%, which was far lower in
performance than the lower model trained with the enriched
data. Moreover, for the models trained with the enriched data
set, k-NN showed the highest accuracy of 84.38%, while

J Med Internet Res 2021 | vol. 23 | iss. 6 | e28856 | p. 5https://www.jmir.org/2021/6/e28856
(page number not for citation purposes)

Ullah et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


bagging, RF, DT, and AdaBoost showed accuracies of 83.75%,
83.13%, 81.25%, and 80.63%, respectively.

Kappa values or kappa statistics [53] is a measure that compares
the observed accuracy with the expected accuracy (random
chance) and is the appropriate method when 2 or more
independent classifiers are analyzing the same case [9]. There
are different thresholds ranges for the kappa values [54];
however, in machine learning, when investigating an unseen
scenario, a kappa value higher than 0.40 might be considered
exceptional [55]. According to Table 1, the kappa values of
k-NN, bagging, RF, DT, and AdaBoost in the original data set
are lower than the threshold, but in the enriched data set are
0.685, 0.664, 0.654, 0.612, and 0.603, respectively, surpassing
the threshold value. Moreover, Figure 2 shows the confusion

matrix of the models used in this study, where “a” represents 0
class while “b” represents 1 class in the data set. Furthermore,
the accuracies of the models for identifying the mode of delivery
were also measured using recall, precision, and F-measure.
These are the important measures computed based on the values
of the confusion matrix. Recall, which is also referred to as
sensitivity, is the proportion of the real positive values that are
correctly classified as positive, while precision, which is referred
to as predictive positive value or confidence [56] or specificity
[57], is the proportion of the predicted positive values that are
correctly real positives [56]. Similarly, F-measure [58] is the
hormonic mean of precision and recall [59]. Table 2 and Table
3 exhibit the values of recall, precision, and F-measures for all
models trained before and after data enrichment, respectively.

Figure 2. Confusion matrix of applied models before and after data enrichment. AB: AdaBoost; DT: decision tree; FN: false negative; FP: false positive;
k-NN: k-nearest neighbor; RF: random forest; TN: true negative; TP: true positive.

Table 2. Precision, recall, and F-measure of the models trained with original data.

Normal deliveryCesarean sectionMethod

F-measureRecallPrecisionF-measureRecallPrecision

0.5870.6470.5370.6350.5870.692k-Nearest neighbor

0.5080.4710.5520.6800.7170.647Bagging

0.5160.4710.5710.6940.7390.654Random forest

0.5950.7350.5000.5530.4570.700Decision tree

0.4850.4710.5000.6380.6520.625AdaBoost

Table 3. Precision, recall, and F-measure of the models trained with enriched data.

Normal deliveryCesarean sectionMethod

F-measureRecallPrecisionF-measureRecallPrecision

0.8250.8680.7870.8590.8260.894k-Nearest neighbor

0.8000.7650.8390.8630.8910.837Bagging

0.8000.7940.8060.8540.8590.849Random forest

0.7690.7350.8060.8420.8700.816Decision tree

0.7700.7650.7760.8320.8370.828AdaBoost
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There is a clear difference between the values of all measures
in Table 2 and Table 3 due to the feeding of additional records
into the data set for data enrichment. The models’ performance
based on the enriched data set has shown the values of precision,
recall, and F-measure above 80% accuracy, except for a few
values in Table 3. This is empirical evidence that populating
the data set with additional records can increase the performance
of the prediction models. Hence, Table 3 supports that these
models can be used for maternity care decision making in
identifying the mode of delivery before birth. Similarly, the
models were analyzed using ROC curve evaluation [60]. ROC
curves are highly useful for establishing the classifiers and
envisioning their performance and are commonly used in health
care decision making [61] because it visualizes the entire
scenario of trade-off between recall and (1-specificity) across
a set of cutoff points and is considered an effectual measure of
inherent validity of a diagnostic test [62]. Moreover, as discussed
in a previous study [9], ROC curves provide the percentage
between precision and recall in which higher values of precision
represent a low false-positive rate, which means that the

classifier returns an accurate outcome, and the high values of
recall showing a low false-negative rate, which means that the
classifier returns positive outcomes. Figure 3 and Figure 4 show
the ROC curves of all classifiers used for predicting the mode
of delivery based on before and after data enrichment,
respectively. The ROC curve has several advantages over single
values of precision and recall in which one of its important
benefits is that 2 or more diagnostic tests can be graphically
compared at the same time in 1 graph [62]. Moreover, a curve
that is nearer to the left upper corner shows the best accuracy
of a classifier, while a curve closer to the lower right corner
shows the worst [63]. In Figure 4, the curves closer to the left
upper corner provide solid evidence, indicating that the
accuracies of the classifiers used in the models based on
enriched data are high. Therefore, these models are reliable and
can be used for predicting the mode of delivery in the antenatal
stage and can also be a part of the maternity care decision
support system. Figure 3 shows ROC curves as middle lines,
which are far away from the left upper corner compared to
Figure 4; thus, Figure 4 is significantly more reliable.

Figure 3. Receiver operating characteristic curves of all classifiers based on original data. AB: AdaBoost; DT: decision tree; k-NN: k-nearest neighbor;
RF: random forest.
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Figure 4. Receiver operating characteristic curves of all classifiers based on enriched data. AB: AdaBoost; DT: decision tree; k-NN: k-nearest neighbor;
RF: random forest.

Discussion

Principal Findings
The outcomes in the above tables and figures show that the
models’ performance in terms of accuracy, sensitivity,
specificity, F-measure, and ROC curve is high when trained
using the enriched data set compared to the measures achieved
using the original data set. In particular, the outcomes shown
in Table 1 and Table 3 and Figure 4 represent high model
accuracies based on the enriched data set computed using
various evaluation methods. All these models were evaluated
using cross-validation, which is a commonly adopted method
that is considered reliable for models’ evaluation in machine
learning. In comparison, Amin and Ali [12] and Soleimanian
et al [15] trained their models using the same data set (original)
and achieved higher accuracy results than those in this study.

The reason for achieving higher accuracy results was due to the
optimistic method adopted for evaluation using the whole data
set as a training set, which was not encouraged in several other
studies such as that of Mitchell [48], Smith and Frank [45], and
Brownlee [49]. Moreover, this study investigated the relationship
of each attribute to its class. A correlation test was performed
to identify factors influencing the mode of delivery. In this
regard, the relationship of each attribute to its class was
estimated. Figure 5 shows the correlation of each attribute to
its class. The correlation of each attribute to its class is not high,
but on closer investigation, this study concluded that the attribute
“heart problem” is strongly correlated with class compared to
other attributes, and this factor positively influences the mode
of delivery. Thus, a patient with chronic heart-related issues
may lead the obstetrician to a decision that is more favorable
to c-section than normal delivery.
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Figure 5. Correlation between attributes and class.

Conclusion and Future Directions
This study investigated the mode of childbirth by pregnant
women by using a machine learning approach. To this end, 5
classification models were trained in order to identify the
optimal prediction model to assist obstetricians in decision
making for the mode of delivery before birth. In the first part,
the original data set was synthesized by populating its records
based on the existing ones by using a standard machine learning
approach referred to as SMOTE. In the second part, 5 machine
learning models were trained based on the original and modified
enriched data sets. The models that were trained using the
enriched data set performed far better than those trained using
the original data set in terms of accuracy, sensitivity, specificity,
F-measure, and ROC. This clear difference in the results
between the 2 sets of models was due to the increase of records
in the original data set. In particular, for the model set trained

with the enriched data set, k-NN outperformed the rest of the
models with accuracy of 84.38%, while bagging, RF, DT, and
AdaBoost showed accuracies of 83.75%, 83.13%, 81.25%, and
80.63%, respectively. Overall, the prediction models developed
based on the enriched data set showed similar performances,
and therefore the accuracy, sensitivity, specificity, F-measure,
and ROC all indicate that these models should be used in the
maternity care decision-making process as well as in assisting
the obstetrician and midwife in making decisions about the
mode of delivery before birth. The data set was artificially
populated using a machine learning method. However, in future,
if the same data set with the same features enriched with real
clinical data will help identify more accurate results, the
accuracy may be even more enhanced. The enriched data set in
its current stage used in this study yields better results than the
original data set, but this data set can become the best if the
records are increased with real clinical data.
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