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Abstract

Background: As policy makers continue to shape the national and local responses to the COVID-19 pandemic, the information
they choose to share and how they frame their content provide key insights into the public and health care systems.

Objective: We examined the language used by the members of the US House and Senate during the first 10 months of the
COVID-19 pandemic and measured content and sentiment based on the tweets that they shared.

Methods: We used Quorum (Quorum Analytics Inc) to access more than 300,000 tweets posted by US legislators from January
1 to October 10, 2020. We used differential language analyses to compare the content and sentiment of tweets posted by legislators
based on their party affiliation.

Results: We found that health care–related themes in Democratic legislators’ tweets focused on racial disparities in care (odds
ratio [OR] 2.24, 95% CI 2.22-2.27; P<.001), health care and insurance (OR 1.74, 95% CI 1.7-1.77; P<.001), COVID-19 testing
(OR 1.15, 95% CI 1.12-1.19; P<.001), and public health guidelines (OR 1.25, 95% CI 1.22-1.29; P<.001). The dominant themes
in the Republican legislators’discourse included vaccine development (OR 1.51, 95% CI 1.47-1.55; P<.001) and hospital resources
and equipment (OR 1.22, 95% CI 1.18-1.25). Nonhealth care–related topics associated with a Democratic affiliation included
protections for essential workers (OR 1.55, 95% CI 1.52-1.59), the 2020 election and voting (OR 1.31, 95% CI 1.27-1.35),
unemployment and housing (OR 1.27, 95% CI 1.24-1.31), crime and racism (OR 1.22, 95% CI 1.18-1.26), public town halls (OR
1.2, 95% CI 1.16-1.23), the Trump Administration (OR 1.22, 95% CI 1.19-1.26), immigration (OR 1.16, 95% CI 1.12-1.19), and
the loss of life (OR 1.38, 95% CI 1.35-1.42). The themes associated with the Republican affiliation included China (OR 1.89,
95% CI 1.85-1.92), small business assistance (OR 1.27, 95% CI 1.23-1.3), congressional relief bills (OR 1.23, 95% CI 1.2-1.27),
press briefings (OR 1.22, 95% CI 1.19-1.26), and economic recovery (OR 1.2, 95% CI 1.16-1.23).

Conclusions: Divergent language use on social media corresponds to the partisan divide in the first several months of the course
of the COVID-19 public health crisis.

(J Med Internet Res 2021;23(6):e27300) doi: 10.2196/27300
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Introduction

The novel COVID-19 pandemic continues to surge throughout
the world. The United States’ federal and state policy responses
continue to shift and vary throughout the stages of the pandemic
[1]. Notable divisions related to public health measures and
frameworks for closing and reopening local economies have
proliferated [2]. A unique aspect of the COVID-19 pandemic
is the role that social media plays in housing, disseminating,
and amplifying information and opinions [3,4]. US legislators
have also taken to social media to connect with their
constituents, comment on the pandemic, and provide information
across a spectrum of pandemic-related content to individuals.

Understanding what content US legislators are sharing through
social media posts (eg, Twitter) and how they are relaying
COVID-19–related information is important, as these issues
guide public knowledge and public opinion and inform policy
change. By using social media data, prior studies have identified
growing partisan differences among Republican and Democrat
legislators as the pandemic has progressed [5]. It has also been
found that tweets about specific topics (eg, social distancing)
from legislators are often associated with the time when policies
are put into action, and the effect of such tweets are larger in
democratic counties [6].

The objective of this study was to analyze the language in posts
on Twitter—a leading social media platform—that were posted
by US legislators over the course of the pandemic to identify
potential health care–related themes in COVID-19–related posts
and to analyze the associated sentiment within tweet language
across partisans.

Methods

Data
We identified state legislators’ Twitter posts that were related
to COVID-19 and posted from January 1 to October 10, 2020,
by using Quorum (Quorum Analytics Inc) [7], a software
platform that collects policy-related documents, including social
media posts from politicians that were posted during their time
in office. This study was considered exempt from review by
the University of Pennsylvania Institutional Review Board, as
it involves the analysis of public-facing data.

Language Feature Extraction
We extracted the relative frequency of single words and phrases
from tweets by using the Differential Language Analysis
ToolKit package [8] and created two sets of features—(1) an
open vocabulary that was defined by using latent Dirichlet
allocation [9], an unsupervised clustering algorithm, to create
50 data-driven word clusters (topics) and (2) sentiment, which
was measured by using the National Research Council (NRC)
Canada lexicon [10], a data-driven dictionary containing words
associated with positive and negative valence. The NRC lexicon
was developed by using a corpus of 77,500 positive and negative
tweets, and consists of 54,129 weighted unigrams and 316,531
bigrams in which the weight corresponds to the degree of
association between a token and sentiment [10].

Statistical Analyses
To distinguish linguistic differences across political parties
(coded as a dichotomous outcome), each feature set was input
in a logistic regression model, and those that were significantly
different according to a cutoff Benjamini-Hochberg–corrected
P value of <.001 were reported [11]. Two authors independently
evaluated each topic for thematic meanings by reviewing the
top 10 posts per topic and coded them into health care–related
and nonhealth care–related themes.

Data on changes in the prevalence and sentiment of topics that
were significantly associated with either party and occurred
over time were obtained by calculating the mean scores across
all posts per week, stratified by party, and visualized via locally
estimated scatterplot smoothing [12].

Results

US Legislators’ Tweets
We identified 309,438 COVID-19–related tweets from the 4224
unique accounts of US legislators. The descriptive statistics of
the data set are in Table 1. The number of tweets per legislator
over the selected time period is shown in Multimedia Appendix
1. Tweet language that correlated with US legislature party
affiliation is displayed in Figure 1. Of the statistically significant
topics, we identified 7 health care–related themes and 14
nonhealth care–related themes associated with the two major
party affiliations.
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Figure 1. Words and phrases that were significantly associated with tweets from Democratic legislators (blue) and Republican legislators (red). Bar
length indicates effect size and shade indicates relative word frequency (P<.001; Benjamini-Hochberg p-correction). CCP: Chinese Communist Party.
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Table 1. Descriptive statistics of the data collected from Quorum from January 1 to October 10, 2020.

Value, n (%)Category

Number of tweets

309,438 (100)All legislators

88,146 (28.4)Republican legislators

221,292 (71.5)Democrat legislators

Number of retweets

38,120 (12.3)Republican retweets

96,469 (31.1)Democrat retweets

Number of individual accounts

4224 (100)All legislators

2432 (57.6)Democrat legislators

1792 (42.4)Republican legislators

Thematic Differences by Party Affiliation
Health care–related themes (Table 2) associated with a
Democratic party affiliation included the following: racial
disparities in care (odds ratio [OR] 2.24, 95% CI 2.22-2.27),
health care and insurance (OR 1.74, 95% CI 1.70-1.77), public
health guidelines (OR 1.25, 95% CI 1.22-1.29), and COVID-19
testing (OR, 1.15, 95% CI 1.12-1.19). Health care–related
themes associated with a Republican party affiliation included
the following: vaccine development (OR 1.51, 95% CI
1.47-1.55) and hospital resources and equipment (OR 1.22, 95%
CI 1.18-1.25).

Nonhealth care–related topics were also identified across
parities. The themes associated with a Democratic affiliation
included the following: protections for essential workers, the
2020 election and voting, unemployment and housing, crime
and racism, public town halls, the Trump Administration,
immigration, and the loss of life. The themes associated with a
Republican affiliation included the following: China,
congressional relief bills, small business assistance, press
briefings, and economic recovery (Table 3). The prevalence of
the themes over time stratified by affiliation is shown in
Multimedia Appendices 2 and 3. The set of topics that did not
significantly correlate with affiliation are shown in Multimedia
Appendix 4.
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Table 2. Health care–related topics that are more likely to be posted by Democrat legislators and Republican legislators. Effect size is shown by using
odds ratios (ORs) along with 95% CIs. Only significant topics after Benjamini-Hochberg p-correction (P<.001) are shown.

Example tweetsORs (95% CI)Top wordsAffiliation and topic theme

Democrat

“COVID-19 is disproportionately harming communities of color
and exposing generations of systemic racism. We need to collect
racial and ethnic data for coronavirus testing and treatment so
we can address these health disparities and begin rectifying
decades of injustice.”

2.24 (2.22-2.27)“communities,” “black,” “color,”
“racial,” “disparities,” “dispropor-
tionately,” “impact,” “hit,”
“women,” and “latino”

Racial disparities

“The #MedicareCrisisProgram would: Expand Medicare to the
recently unemployed & cap out-of-pocket costs Expand Medicaid
to cover even more people Ensure no out-of-pocket costs for
COVID-19 testing/treatment for everyone”

1.74 (1.70-1.77)“healthcare,” “americans,” “ac-
cess,” “insurance,” “coverage,”
“affordable,” “millions,” “medi-
caid,” and “court”

Health care and insur-
ance

“The pandemic is nowhere near over. Continue practicing social
distancing & WEAR A MASK”

1.25 (1.22-1.29)“mask,” “social,” “distancing,”
“wear,” “spread,” “hands,”
“stay,” “home,” “wash,” “prac-
tice,” and “stop”

Public health guidelines

“New COVID-19 mobile testing site opens. Scheduled Locations
for Free Drive-Through COVID-19 Testing” [retweet]

1.15 (1.12-1.19)“testing,” “free,” “county,”
“sites,” “appointment,” “center,”
“residents,” “open,” “city,” “vis-
it,” and “symptoms”

COVID-19 testing

Republican

“Three Coronavirus Vaccine Developers Report Promising Initial
Results” [retweet]

1.51 (1.47-1.55)“vaccine,” “research,” “drug,”
“production,” “effective,” “vac-
cines,” “treatments,” “develop-
ment,” and “defense”

Vaccine development

“Kansans everywhere are stepping up to fight the #Coron-
avirus.…,which manufactures aircraft parts in…, is using their
3D printing capabilities to work with local area hospitals on
prototypes of N-95 surgical masks and protective face shields.”

1.22 (1.18-1.25)“medical,” “patients,” “hospi-
tals,” “masks,” “equipment,”

“supplies,” “ppe,”a “donate,”
“blood,” “needed,” and “plasma”

Hospital resources and
equipment

aPPE: personal protective equipment.

J Med Internet Res 2021 | vol. 23 | iss. 6 | e27300 | p. 5https://www.jmir.org/2021/6/e27300
(page number not for citation purposes)

Guntuku et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Nonhealth care–related topics that are more likely to be posted by Democratic legislators and Republican legislators. Effect size is shown by
using odds ratios (ORs) along with 95% CIs. Only significant topics after Benjamini-Hochberg p-correction (P<.001) are shown.

Example tweetsOR (95% CI)Top wordsAffiliation and topic theme

Democrat

“Essential workers--like farmworkers, first respon-
ders, health care workers, and grocery store

1.55 (1.52-1.59)“workers,” “essential,” “leave,” “sick,” “pay,”
“employees,” “safety,” “job,” “frontline,” “gro-
cery,” “protections,” and “deserve”

Protections for essential
workforce

workers--deserve hazard pay from their govern-
ment or their company for their service during the
#coronavirus pandemic.”

“To make sure this virus doesn't keep people from
the ballot box, states and localities should bring

1.31 (1.27-1.35)“vote,” “mail,” “voters,” “ballot,” “elections,”
“absentee,” “november,” “census,” “primary,”
“voter,” “ballots,” and “2020”

2020 election and vot-
ing

the ballot box to them through expanded vote-by-
mail and no-fault absentee voting.
#SAFEDemocracy”

“Wisconsin residents who have exhausted their
regular unemployment insurance (UI) benefits

1.27 (1.24-1.31)“unemployment,” “assistance,” “benefits,”
“rent,” “program,” “housing,” “insurance,”
“eviction,” “eligible,” “lost,” and “claims”

Unemployment and
housing assistance

may now apply for Pandemic Emergency Unem-
ployment Compensation (PEUC).”

“As coronavirus fears have intensified, incidents
of violence & discrimination against Chinese

1.22 (1.18-1.26)“violence,” “police,” “domestic,” “racism,”
“asian,” “stand,” “hate,” “gun,” “survivors,”
“protests,” “discrimination,” and “victims”

Crime and racism

Americans have increased. Joined hundreds of
San Franciscans marching in Chinatown today to
protest prejudice and racial profiling. #Together-
WeStand #StandWithChinatown”

“Tomorrow evening, at 7:30 pm EST [Eastern
Standard Time], I am hosting another Coronavirus
Telephone Town Hall.”

1.2 (1.16-1.23)“join,” “hall,” “town,” “live,” “questions,”
“discuss,” “tomorrow,” “tune,” “facebook,”
“virtual,” “i'll,” “telephone,” “tonight”

Public town halls

Trump Administration

“Donald Trump and Mike Pence's handling of
COVID-19 is the greatest failure of any American

1.22 (1.19-1.26)“trump,” “national,” “service,” “global,” “admin-
istration,” “postal,” “guard,” “security,” “deci-

sion,” “usps,”a and “members”

Word set 1

presidency.…#Debate2020 #TrumpFailure
#IwillVote”

“Democratic presidential candidate Joe Biden
criticized President Donald Trump's 'callousness'
in handling the coronavirus pandemic” [retweet]

1.17 (1.13-1.2)“trump,” “president,” “white,” “house,”
“trump's,” “donald,” “don't,” “biden,” “he's,”
“joe,” “administration,” “campaign,” “pence,”
“force,” and “rally”

Word set 2

“ICE must suspend immigration enforcement
during the #COVID19 pandemic.”

1.16 (1.12-1.19)“letter,” “release,” “colleagues,” “risk,” “pris-

ons,” “urging,” “ice,”b “immigration,” “in-
mates,” “detention,” and “vulnerable”

Immigration

Loss of life

“In trump's catastrophic zeal to lie about the
coronavirus threat, innumerable Americans' lives
are in danger.”

1.38 (1.35-1.42)“trump,” “americans,” “lives,” “president,”
“american,” “died,” “100,” “million,” “deaths,”
“200,” “states,” “lost,” “dead,” and “leadership”

Word set 1

“Within a few short days, 200,000 mothers fathers
daughters sons children parents lovers wives

1.13 (1.09-1.16)“family,” “lost,” “friends,” “loved,” “died,”
“life,” “heart,” “loss,” “years,” “god,” “prayers,”
“remember,” “thoughts,” and “honor”

Word set 2

husbands friends grandparents aunts uncles
cousins DEAD of coronavirus. We dare not get
numb. That equates to every person...EVERY
single person in my community.”

Republican

“Pompeo slams communist China for lying about
Wuhan coronavirus” and “The Wuhan virus is
#MadeInChina.” [retweet]

1.89 (1.85-1.92)“china,” “world,” “chinese,” “accountable,”
“communist,” “global,” “hold,” “party,”
“wuhan,” “china's,” “outbreak,” “government,”
“travel,” “held,” and “organization”

China

“Small businesses impacted by the #coronavirus
can apply for a low-interest SBA [Small Business
Association] disaster loan here”

1.27 (1.23-1.3)“small,” “businesses,” “program,” “relief,”
“loans,” “impacted,” “apply,” “owners,” “eco-
nomic,” “grants,” “assistance,” “grant,” and
“disaster”

Small business assis-
tance

J Med Internet Res 2021 | vol. 23 | iss. 6 | e27300 | p. 6https://www.jmir.org/2021/6/e27300
(page number not for citation purposes)

Guntuku et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Example tweetsOR (95% CI)Top wordsAffiliation and topic theme

Government relief funds

“Democrats Filibuster Covid Relief” [retweet]1.22 (1.18-1.25)“funding,” “federal,” “local,” “state,” “million,”
“act,” “support,” “relief,” “communities,”
“cares,” “resources,” “governments,” “provide,”
and “emergency”

Word set 1

“In the CARES [Coronavirus Aid, Relief, and
Economic Security] Act,…received money to be
disbursed ASAP [as soon as possible] to help local
communities fight coronavirus. Grants were dis-
bursed through specific programs, including
Community Development Block Grants-flexible
funding to states and local governments-
Steubenville awarded $365,667!”

1.23 (1.2-1.27)“relief,” “senate,” “bill,” “republicans,”
“democrats,” “house,” “americans,” “mc-
connell,” “pass,” “american,” “pelosi,”

“congress,” “package,” “politics,” and “gop”c

Word set 2

Press briefings

“What is Montana doing in response to coron-
avirus?” COVID-19 Montana state response up-
date.”

1.22 (1.19-1.26)“governor,” “update,” “press,” “north,” “confer-
ence,” “gov,” “watch,” “live,” “carolina,”

“#ncpol,”d “michigan,” “nc,”e “south,” “state's,”
and “briefing”

Word set 1

“#ICYMI [in case you missed it] I discussed the
#Coronavirus in depth on the latest episode of
#TheBreakDown.”

1.14 (1.1-1.17)“hearing,” “response,” “discuss,” “committee,”
“watch,” “force,” “joined,” “task,” “meeting,”

“dr,”f “morning,” “impact,” “talk,” “yesterday,”
and “hear”

Word set 2

“6th Circuit unanimously rules DWP (drunk-with-
power) Beshear ban on church services unconsti-
tutional! Kentucky coronavirus”

1.16 (1.12-1.19)“georgia,” “court,” “power,” “supreme,” “restric-
tions,” “republican,” “politics,” “tennessee,”
“decision,” “law,” “abortion,” and “wisconsin”

State politics

Economic recovery and news

“As a nation, we will defeat the coronavirus and
rebuild the greatest economy. #Commitment-
ToAmerica”

1.19 (1.15-1.22)“economy,” “economic,” “back,” “jobs,” “recov-
ery,” “plan,” “recover,” “america,” “future,”
“nation,” “forward,” “industry,” “climate,” “en-
ergy,” and “safely”

Word set 1

“Germany's R0 coronavirus experiment: Berlin
tries to manage a variable no one can measure
accurately”

1.20 (1.16-1.23)“news,” “times,” “york,” “data,” “good,”
“washington,” “thread,” “study,” “post,”
“breaking,” “shows,” “found,” and “months”

Word set 2

aUSPS: US Postal Service.
bICE: Immigration and Customs Enforcement.
cGOP: Grand Old Party.
dNCPOL: North Carolina Political News.
eNC: North Carolina.
fDR: doctor.

Sentiment Differences by Party Affiliation
We performed an analysis of sentiment for the language used
in tweets and found that overall, Republican-affiliated tweets
used more positive sentiment, which increased over time. The
variation in overall sentiment is shown in Figure 2. Negative

sentiment was associated with content from both parties across
the following themes: health care and insurance, COVID-19
testing, and racial disparities. Positive sentiment was associated
with content within the theme of government public health
expertise. Sentiment within themes over time and across parities
is identified in Multimedia Appendices 5 and 6.
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Figure 2. Sentiment analysis of US legislators’ language on Twitter across party affiliations.

Discussion

By using machine learning techniques, we investigated narrative
content in over 300,000 twitter posts from US legislators over
the course of the COVID-19 pandemic to date. Investigating
the language within posts on social media platforms has become
more common and has been specifically used to study aspects
of health and health care. This study is among the first to analyze
US legislators’ Twitter-based language to identify the
COVID-19–related themes that policy makers are discussing
on Twitter with a specific focus on health care–related topics.
Additionally, this study deployed advanced language
assessments that use machine learning to analyze how legislators
are talking about these themes by conducting sentiment analyses
throughout the phases of the pandemic.

We noted key differences across the two major US political
parties. Health care–related themes that correlated with a
Democratic party affiliation focused on the health care access
and disparities across race. The themes that correlated with a
Republican party affiliation focused on initial and persistent
vaccine progress, access to equipment (eg, personal protective
equipment), and government expertise. Furthermore, in the
language analysis, we identified that across content posted by
Republican legislators, there was considerably more content
about the pandemic and approaches for managing the pandemic
across health care topics. Language analysis was also used to
detect thematic differences in narrative content within Twitter
posts across the two major political parties. In this study, our

results indicated that legislators with a Democratic party
affiliation focused their COVID-19 content more toward social
services and racial disparities. Content from
Republican-affiliated legislators focused thematically on
government relief and economic aid. This finding is consistent
with surveys of elected officials and the general public, which
suggests that awareness and concern about health disparities
among Democrats are greater than those among Republicans
[13,14].

There are limitations to this study, including the fact that content
was collected from publicly available Twitter posts; thus,
legislators who do not post content were not included. If a
legislator did not have a party affiliation (as noted by the
Quorum database), we could not include them in this analysis.
We also did not control for demographic or health access data,
as our analysis was performed on the language of individual
legislators. Further, a topic’s significant association with a
particular affiliation does not imply that other party legislators
did not tweet about it; it only indicates the relative frequency
of tweets containing the words that were associated with each
topic.

This study highlights the ability to understand how legislators
use social media (eg, Twitter); what information they choose
to share; and how they frame their content, which was
determined through sentiment analysis [15]. These are key
insights that will remain important to the public and health care
systems as policy makers continue to shape the national and
local responses to the pandemic [16].
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Multimedia Appendix 1
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Multimedia Appendix 3
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[PNG File , 286 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Topics that were associated with Democrat (top) and Republican (bottom) legislators' Twitter language but did not pass the
statistical significance threshold.
[DOCX File , 15 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Sentiment of COVID-19–related legislator tweets on health care topics.
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