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Abstract

Background: Phenotypes characterize the clinical manifestations of diseases and provide important information for diagnosis.
Therefore, the construction of phenotype knowledge graphs for diseases is valuable to the development of artificial intelligence
in medicine. However, phenotype knowledge graphsin current knowledge bases such as WikiDataand DBpedia are coarse-grained
knowledge graphs because they only consider the core concepts of phenotypes while neglecting the details (attributes) associated
with these phenotypes.

Objective:  To characterize the details of disease phenotypes for clinical guidelines, we proposed a fine-grained semantic
information model named PhenoSSU (semantic structured unit of phenotypes).

Methods: PhenoSSU isan “entity-attribute-value” model by its very nature, and it aimsto capture the full semantic information
underlying phenotype descriptions with a series of attributes and values. A total of 193 clinical guidelines for infectious diseases
from Wikipedia were selected as the study corpus, and 12 attributes from SNOMED-CT were introduced into the PhenoSSU
model based on the co-occurrences of phenotype concepts and attribute values. The expressive power of the PhenoSSU model
was evaluated by analyzing whether PhenoSSU instances could capture the full semantics underlying the descriptions of the
corresponding phenotypes. To automatically construct fine-grained phenotype knowledge graphs, a hybrid strategy that first
recogni zed phenotype concepts with the MetaMap tool and then predicted the attribute val ues of phenotypeswith machinelearning
classifiers was developed.

Results:  Fine-grained phenotype knowledge graphs of 193 infectious diseases were manually constructed with the BRAT
annotation tool. A total of 4020 PhenoSSU instances were annotated in these knowledge graphs, and 3757 of them (89.5%) were
found to be able to capture the full semantics underlying the descriptions of the corresponding phenotypes listed in clinical
guidelines. By comparison, other information models, such as the clinical element model and the HL7 fast health care
interoperability resource model, could only capture the full semantics underlying 48.4% (2034/4020) and 21.8% (914/4020) of
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the descriptions of phenotypes listed in clinical guidelines, respectively. The hybrid strategy achieved an F1-score of 0.732 for
the subtask of phenotype concept recognition and an average weighted accuracy of 0.776 for the subtask of attribute value
prediction.

Conclusions: PhenoSSU is an effective information model for the precise representation of phenotype knowledge for clinical
guidelines, and machine learning can be used to improve the efficiency of constructing PhenoSSU-based knowledge graphs. Our
work will potentialy shift the focus of medical knowledge engineering from a coarse-grained level to amore fine-grained level.

(J Med Internet Res 2021;23(6):€26892) doi: 10.2196/26892
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Introduction

When people are sick, their bodies present a series of observable
or perceptible abnormalities, which are called phenotypes. In
medicine, the phenotype concept covers signs and symptoms,
laboratory test results, and imaging findings [1]. Phenotypes
characterize the clinical manifestations of diseases, which
provideimportant cluesfor diagnoses. Knowledge about disease
phenotypes is usualy documented as free text in medica
textbooks or clinical guidelines, and such knowledge forms are
hard for computersto use. Therefore, itisessential to transform
phenotype knowledge into amachine-understandable format to
facilitate the development of automated systems that could
improve health care [2].

To date, many structured knowledge bases, such as WikiData
[3], MaaCards[4], and DBpedia[5], have been constructed for
disease phenotypes. In these knowledge bases, the phenotype
knowledge of a disease is represented as a list of phenotype
concepts or terms (Multimedia Appendix 1). However, such a
concept-based representation only focuses on the presence or
absence of a phenotype but neglects its contextual properties
[6,7]. The description “sudden, severe abdominal pain in the
lower right abdomen,” for example, names three attributes of
abdominal pain, including the onset pattern (sudden), severity
(severe), and quadrant pattern (lower right abdomen). These
attributes are valuable for diagnosis but missing in the provided
concept-based representation. Dueto the neglect of phenotypic
details, current phenotype knowledge bases only characterize
disease manifestations at avery coarse-grained level [8], which
is considered to be “sloppy and imprecise” [9,10].

To precisely represent phenotype knowledge in clinical
guidelines, it is necessary to introduce fine-grained semantic
information models [11], which consider phenotypes and
attributes simultaneously. The currently available semantic
modelsfor representing phenotype information include but are
not limited to clinical element models (CEMs) [12], the Health
Level Seven fast health care interoperability resource (FHIR)
model [13], and the clinical quality language model [14]. All
these models can be viewed as standard entity-attribute-value
structures, which represent phenotype information with
sufficient detail s by using various attributes and qualifier values.
For example, a CEM model considers 17 attributes associated
with phenotypes, such as phenotype severity, laterality, and
duration. Although semantic information models such as CEM
and FHIR have defined many attributes for phenotypes, it should
be noted that these attributes are mainly designed for recording
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phenotypic information in electronic medical records. However,
the logic underlying phenotypic descriptions in clinical
guidelines is quite different from that in electronic medical
records. For example, clinical guidelines usually describe the
frequency of a phenotype in a population (eg, 30% of patients
may have aloss of smell); however, this attribute is not defined
in CEM and FHIR models. In addition to the frequencies of
phenotypes, other often used attributes such astemporal patterns
(eg, acute, chronic) and pain characteristics (eg, sharp, dull) are
also neglected by the CEM and FHIR models. Therefore, it is
necessary to optimize the attributes included in current
information model sto make them more suitablefor representing
phenotype knowledge in clinical guidelines.

Inthiswork, we aimed to devel op asemantic information model
that could effectively characterize the details of disease
phenotypes for clinical guidelines. A semantic information
model named PhenoSSU (semantic structured unit of phenotype)
was devel oped based on theclinical guidelinesfor 193 infectious
diseases from Wikipedia. A total of 12 attributeswereincluded
in PhenoSSU, which characterized the details of phenotypes
from various aspects. Based on PhenoSSU, we constructed
fine-grained phenotype knowledge graphs for these infectious
diseases. Considering the increased annotation costs associated
with the introduction of PhenoSSU, we also explored the
potential of machine learning for performing automatic
recognition for PhenoSSU based on free text. It is hoped that
our work will contribute to the large-scale construction of
fine-grained phenotype knowledge graphs for more diseases.

Methods

Materials

We collected the clinical guidelinesfor 193 infectious diseases
from Wikipedia[15] asthe corpusfor constructing fine-grained
phenotype knowledge graphs. In Wikipedia, the phenotypic
knowledge of infectious diseaseswas usually buried in asection
named signs and symptoms (Multimedia Appendix 1). Although
Wikipediaiscreated and edited by volunteersworldwide, many
studies have proven the high quality of its biomedical content
[16,17]. In addition, phenotype knowledge graphsfor WikiData
[3] and DBpedia [5] were also constructed based on clinical
guidelines from Wikipedia.

Design of PhenoSSU

PhenoSSU, by itsvery nature, is an entity-attribute-value model
that consists of a phenotype concept along with a collection of
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attributes. Determining the attributes associated with various
phenotypesisthe key to the design of PhenoSSU. Four inclusion
criteriafor attributes were considered in this study:

« Introduced attribute and value set should come from a
standard medical ontology to avoid the arbitrariness of
defining new attributes. Systematized Nomenclature of
Medicine—Clinical Terms (SNOMED-CT) [18,19], one of
the most comprehensive clinical terminology databasesin
theworld, was selected asthe standard for normalizing both
phenotypes and attributes.

« Introduced attribute should be a modifier associated with
phenotypesrather than an entity independent of phenotypes.
The concepts found in SNOMED-CT were organized into
19 distinct hierarchies. Phenotypes and attributes were
mainly located in the clinical finding and qualifier value
hierarchies, respectively (Multimedia Appendix 1).

« Value set of the introduced attribute should contain
categorical variables with limited dimensionality. For
example, the severity attribute in SNOMED-CT contains
a value set including mild, moderate, and severe. This
criterion is for convenience when configuring attributesin

Deng et d

the brat rapid annotation tool (BRAT) [20] (Multimedia
Appendix 1).

Introduced attribute should occur at least oncein the studied
corpus. This criterion is for reducing redundancy when
introducing many unused attributes.

To effectively find the attributes associated with various
phenotypes, we devel oped asimple co-occurrence-based method
for attribute filtering (Figure 1A). Specifically, the phenotypes
in the corpus were annotated with the MetaMap tool [21], a
state-of-the-art concept recognizer, and the values of the
attributes in the corpus were annotated with the Flashtext tool
[22], a string-based concept recognizer. If an attribute
co-occurred with any phenotypesin at least 2 sentences from
the whole corpus, we selected the attribute as a candidate that
was potentially associated with phenotypes. Then, we manually
filtered the attributes that were truly related to phenotypes and
built an initial version of PhenoSSU. The initial PhenoSSU
model was optimized during the annotation process. When
annotators found a new contextual property associated with
phenotypes, we searched for itsexistencein SNOMED-CT and
added the standard attribute corresponding to that contextual
property into theinitial PhenoSSU model.

Figure 1. Modeling process of PhenoSSU: (A) modeling PhenoSSU based on sentence-level cooccurrences of phenotype concepts and attribute values
in clinical guidelines and (B) components of the PhenoSSU model consist of a phenotype concept and 12 attributes.
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Thefinal PhenoSSU model contained 12 attributes, which could
be classified into 3 categories according to the phenotypic details
they characterized (Figure 1B): (1) details about the presence
of phenotypes, including a phenotype’s assertion, frequency in
a population, age specificity, sex specificity, and specificity
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[ Phenotype Concept

@ Attributes for details of presences
® Attributes for details of manifestations

O Attributes for details of distributions

Attribute name I'ypical values

Assertion Present/absent/possible

Frequency in population Frequent/Occasional/Rare
Age specificity Infant/child/adult/old age

Sex specificity Male/female

* ¢ ¢ ¢ 0
* ¢ ¢ ¢ 0

Specificity for severity Mild case/severe case

I'emporal pattern Acute/subacute/chronic

Mild/moderate/severe

Appearance color

L

Severity of phenotypes ®
® Red/purple/black/gray
[

Sensation characteristics Dull/sharp/tender/cramping

O Laterality O Unilateral/Bilateral
O Spatial pattern O Generalized/localized
O Quadrant pattern O Left upper/right lower

regarding the severity of illness, (2) details about the
manifestations of phenotypes, including a phenotype’stemporal
pattern, severity, appearance color, and sensation characteristics,
and (3) details about the spatial distributions of phenotypes,
including a phenotype’s laterality, spatial pattern and quadrant
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pattern. The SNOMED-CT codes, definitions, and value sets  distribution of these 12 attributesin the studied corpusis shown

of these attributes are listed in Multimedia Appendix 1. The

in Figure 2A.

Figure2. Expressive power of PhenoSSU: (A) prevalence of the 12 attributesin the studied corpus, (B) examples of precise and impreci se representations
for original phenotype descriptions with the PhenoSSU model, and (C) comparisons of precise representation percentages among different information

models.
A
Assertion 2791
Frequency in population 1311
Age specificity 284

Severity of phenotypes 197

Temporal pattern 162

Sex specificity 106

Appearance color 86

Severity of illness 81

Sensation characteristics
Spatial pattern
Laterality

Quadrant pattern

Annotation and Nor malization of PhenoSSU

The annotation task of PhenoSSU can be divided into 2 steps:
annotating a phenotype and annotating the attributes associated
with that phenotype. Some annotation examples of different
phenotypes attributes defined in PhenoSSU are presented in
Multimedia Appendix 1. The clinical guides of 193 infectious
diseaseswere annotated with the BRAT (Multimedia A ppendix
1). To facilitate the annotation process, we preannotated the
phenotypesfoundin clinical guidelineswith the MetaMap tool.
Then, two annotators (TY and SL) independently annotated the
193 clinical guidelines by following the annotation guide
developed by LD and TJ. Their independent annotations were
merged and visualized in the BRAT. To mark inconsistent
annotations, weintroduced avirtual attribute named agreement
into PhenoSSU. Two independently annotated PhenoSSU
model swere regarded as consistent when both their phenotypes
(text spans) and associated attribute values were the same. If
there were inconsistencies in any part of a PhenoSSU model,
the value of the agreement attribute was set to disagreement.
Theinitial interannotator agreement at the PhenoSSU level was
calculated with a Cohen kappa statistic [23] of 0.861. All
inconsi stent annotationswere solved by an adjudication process

(TJ).

The phenotypes annotated in BRAT were normalized with
SNOMED-CT. To facilitate the normalization process, we a so
leveraged the MetaM ap tool to obtain candidate concepts from
the SNOMED-CT database and then manually selected the
concept corresponding to each query phenotype. There was no
need to normalize the attribute val ues because they were already
normalized in SNOMED-CT.

https://www.jmir.org/2021/6/e26892
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One aspect to note about the normalization processisthe special
treatment used for finding sites of phenotypes. Finding sites
were not explicitly included in the PhenoSSU model because
they are entities independent of phenotypes. In SNOMED-CT,
there were more than 39,000 concepts of finding sites in the
body structure hierarchy, and these were hard to set as avalue
list in the BRAT. However, finding sites are indispensable
information for describing phenotypes. Therefore, we also
annotated the entities of finding sites associated with
phenotypes. Taking the annotation of “bleeding from the nose
and gum” asan example, the entities of the phenotype (bleeding)
and two finding sites (nose, gum) were annotated separately
and connected with arelation curve named locate (Multimedia
Appendix 1). If aphenotype had an associated finding site, the
phenotype together with the finding site was regarded as an
integral concept in the normalization process. For example, the
annotation of “bleeding” associated with “nose” was normalized
as “249366005|epistaxis,” which shared the same codes as the
annotation of “bleeding from nose” If a composite concept
could not be normalized as awhole (eg, “rash associated with
hands’), we standardized the phenotype and its corresponding
finding ste separately and combined them into a
postcoordination expression [24] (eg, “271807003|Rash’:
“33712006|Skin structure of hand”; Multimedia Appendix 1).
In summary, information about finding sites was implicitly
considered an integral part of a phenotype concept rather than
its attribute.

Automatic Recognition of PhenoSSU

The manua annotation of a PhenoSSU model is a very
time-consuming process because annotators not only need to
find the mention of a phenotype but also need to determine the
existence of attribute trigger terms in the context surrounding
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a phenotype. To reduce annotation costs, it is necessary to
develop algorithms for the automatic annotation of PhenoSSU
models.

The recognition task of PhenoSSU can be divided into 2
subtasks: phenotype concept recognition and attribute value
prediction. The first subtask aims to recognize the text spans
corresponding to phenotypes, and the second subtask aims to
select appropriate valuesfor 12 attributes based on aphenotype’s
context.

The 193 annotated clinical guides were randomly divided into
atraining set and atest set at aratio of 6:4. For the subtask of
phenotype concept recognition, we still used the MetaMap toal,
which can recognize phenotype concepts based on the
Metathesaurus in the Unified Medical Language System
(2020AA release) [25]. We optimized the parameters of the
MetaMap tool based on its performance on the task of
recognizing phenotype conceptsin thetraining set (Multimedia
Appendix 1).

The subtask of attribute value prediction can be regarded as a
classification problem, and two machine |l earning-based models
were explored for this subtask. One model was based on a
support vector machine (SVM), and the other model was based
on a bidirectional long short-term memory (BiLSTM) neural
network. For the value classification model of a specific
attribute, the input was the encoded feature vectors of a
phenotype’'s context and the output was one of the normalized
values for this attribute.

We chose an SVM for developing attribute value prediction
model s because SV M-based models have proven their efficiency
in the 2010 Informatics for Integrating Biology & the
Bedside/Veterans Affairs challenge [26] and SemEval-2015
Task 14 [27]. In the SV M-based model (Multimedia Appendix
1), the context of a phenotype was encoded with the existence
of trigger terms (terms that indicated a normalized value [eg,
“sudden onset” was the trigger term of the normalized value
“acute’]) and their distances to the target phenotype [26,27].
The SV M-based model was developed by using the scikit-learn
package (version 0.23.1) [28]. The parameters of the SV M-based
model were optimized by using a grid search strategy [29] on
the training set.

Inspired by recent methodology developmentsfor the assertion
status prediction task [ 30,31], we chose BiLSTM for devel oping
attribute value prediction models. Thereferenced studies[30,31]
showed that BiLSTM and attention mechanisms could achieve
better performances than other approaches when classifying
assertions of medical concepts. Since assertion status prediction
belonged to thetask of attribute value prediction, wetransferred
the attention-enhanced BiLSTM model to our study. In agiven
BiLSTM-based model (Multimedia Appendix 1), the context
of aphenotypewasfirst split into 3 segments, including the l eft
context, the phenotype itself, and the right context, which were
then encoded into a 3x768 vector with a pretrained language
model named BERT (bidirectional encoder representation from
transformers) [32-34]. Each BiLSTM-based model was
developed by using the Keras package (version 2.3.1) [35], and
the BERT encoding process was performed by using the
bert-as-service package (version 1.10.0) [36]. Considering the
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very imbalanced distributions of attribute values in our dataset
(Multimedia Appendix 1), we used the synthetic minority
oversampling technique [37] from theimbalanced-learn package
(version 0.7.0) [38] to balance the sample distributions. The
hyperparameters of the constructed BiL STM-based modelswere
optimized using an early stopping strategy [39] on the training
set.

Evaluation of the Performance for Recognizing
PhenoSSU

To evaluate the performance of the proposed algorithm in
extracting PhenoSSU models from free text, we used the
evaluation metrics from SemEval-2015 Task 14: Analysis of
Clinical Text [27].

The evaluation metric for the subtask of phenotype concept
recognition was the F1-score. A predicted phenotype concept
was regarded as atrue positive if its text span overlapped with
agold standard text span. The precision metric was cal culated
as the fraction of correctly predicted phenotypes among all
phenotypes identified by MetaMap, and the recall metric was
calculated as the fraction of correctly predicted phenotypes
among all phenotypesidentified by the annotators. The F1-score
was calculated as the harmonic mean of precision and recall.

We chose the average weighted accuracy as the evaluation
metric for the subtask of attribute value prediction because the
distributions of different attribute values were very imbalanced.
The average weighted accuracy metric considersthe prevalence
of an attribute value in the corpus, so it can measure how good
an algorithm is at predicting the rare values of an attribute. The
detailed calculating process of the average weighted accuracy
can be found in Multimedia Appendix 1.

Evaluation of the Expressive Power of PhenoSSU

Since the am of this work was to develop a semantic
information model that was more suitable than current
approaches for representing phenotype knowledge in clinical
guidelines, it was necessary to evaluate whether the annotated
PhenoSSU model could capture the full semantics underlying
the original descriptions of phenotypes. For example, in Figure
2B, the description “common symptoms include sudden onset
of fever” could be perfectly represented by the PhenoSSU model
(phenotype: fever; assertion: possible; frequency: frequent;
temporal pattern: acute). By comparison, the description
“abscesses grow larger as disease progress, often over months’
was only partially represented by the PhenoSSU model
(phenotype: abscess; assertion: present), which missed the
information regarding the course and duration of abscess
associated with the description.

To evaluate the expressive power of PhenoSSU, we introduced
avirtual attribute named “equal to the original description” into
the PhenoSSU model. If the annotated PhenoSSU did not
capture the full semantics of an original description, we set the
value of thisattribute to “partial.” Two annotators (TY and SL)
independently evaluated the expressive power of the annotated
PhenoSSU model. The initial interannotator agreement as
measured with Cohen kappa statistic was 0.903 (3631/4020).
We reached a consensus for those inconsistent judgments by
an adjudication process (TJ).
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Results

Overview of the PhenoSSU M odel and
PhenoSSU-Based Knowledge Graphs

To characterize the details of phenotypesfor clinical guidelines,
asemantic information model named PhenoSSU was proposed.
With the introduction of 12 attributes associated with various
phenotypes, the obtained knowledge graphs based on PhenoSSU
weremore fine-grained than those based on phenotype concepts.
In this work, 193 PhenoSSU-based knowledge graphs for
infectious diseases were constructed. At the concept level, we
annotated 4020 phenotypic terms, 3962 of which could be
normalized with 1508 concepts in SNOMED-CT. At the
attribute level, we annotated 5278 nondefault attribute values
(“present” was the default attribute value for the assertion
attribute, and “none” was the default attribute value for other
attributes), which indicated the widespread presence of
contextual properties for phenotypes in clinical guides. The
most commonly used attributes included assertion, frequency
in apopulation, age specificity, phenotype severity, and temporal
pattern (Figure 2A).

Since the knowledge graphs in WikiData were also extracted
from Wikipedia, we compared our knowledge graphswith those
in WikiData at the concept level. WikiData built knowledge
graphs for 66 of the 193 diseases, and these graphs included
354 phenotype concepts. Our annotations covered 297 of the
354 (83.9%) phenotypes from WikiData. For the uncovered
phenotypes, we could not confirm their existence on the
corresponding webpages of Wikipedia (including current and
historical webpages). Most of these uncovered phenotypes may
come from the manual additions of volunteers, who made use
of sources other than Wikipedia (Multimedia Appendix 1).

Expressive Power of PhenoSSU for Representing
Phenotype Knowledge

To evaluate the expressive power of the PhenoSSU model
guantitatively, we manually analyzed whether a PhenoSSU
instance could capture the full semantics underlying the
corresponding descriptions of phenotypes (Figure 2B).

In this study, we annotated 4020 PhenoSSU instances, 3757 of
which (89.5%) were determined to precisely represent the
origina phenotype knowledge described by natural language

https://www.jmir.org/2021/6/e26892
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(Figure 2C). If we only considered the presence and absence of
phenotype concepts (concept-based representation), the
percentage of precise representations decreased to 20.3%
(853/4200). This result further suggested the necessity of
introducing the attributes associated with phenotypes into the
developed model. We also analyzed the expressive power of
the CEM and FHIR models for phenotypes and found that their
percentages of precise representations were 48.4% (2034/4200)
and 21.8% (914/4200), respectively. Most of the attributes
defined in the CEM and FHIR modelswere not used in clinical
guidelines except for the severity and laterality of phenotypes.
The CEM model achieved a higher expression power than that
of the FHIR model because it considered the uncertainty of
phenotypes (assertion: possible), which is a frequently used
attributein clinical guidelines. Please see Multimedia Appendix
1 for detailed comparisons between the attributes used in the
PhenoSSU, CEM, and FHIR models.

Potential for Increasing the Speed of PhenoSSU M odéel
Annotation With Machine Learning

With the introduction of attributes, it would take more time to
annotate a PhenoSSU model than to annotate phenotype
concepts. To increase the efficiency of annotating PhenoSSU
models, we developed a hybrid strategy that first recognized
phenotype concepts with the MetaMap tool and then predicted
the attribute values of phenotypes with SVM-based or
BiLSTM-based classifiers (Figure 3). For the subtask of
phenotype concept recognition, the MetaMap tool achieved an
F1-score of 0.732 (precision 0.660; recall 0.824), which was
comparable to its performance on other medical corpora [40].
For the subtask of attribute value prediction, the average
weighted accuracy of the SV M-based method (0.776) was better
than that of the BiL STM-based model (0.691). Thismay bedue
to limited number of training data, which made it hard for the
deep learning-based approach to learn useful features from
contexts. However, the performance of the BiLSTM-based
model wastill higher than the performance of areference model
(0.542) that always selected default values for attributes (it
selected “present” for the assertion attribute and “none” for
other attributes). These results indicate that machine learning
methods have the potential to speed up PhenoSSU annotations.
The detailed performances of the compared models for
predicting the values of different attributes are listed in
Multimedia Appendix 1.
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Figure 3. Automatic recognition of PhenoSSU.
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Discussion

Principal Findings

In this work, we designed a fine-grained information model
named PhenoSSU, which can precisely represent phenotype
knowledge for clinical guidelines. We also developed an
automatic strategy to extract PhenoSSU models from clinical
guidelines and found that machine learning could be used to
improvethe efficiency of PhenoSSU annotation. Taken together,
our work will provide a useful theoretical and technical guide
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for the construction of fine-grained phenotype knowledge
graphs.

From the design of PhenoSSU, it can be seen that PhenoSSU
was derived from SNOMED-CT because both the phenotype
concepts and attribute values in PhenoSSU came from
SNOMED-CT. PhenoSSU strengthened the expressive power
of SNOMED-CT by combining 12 attributes with phenotype
concepts. In SNOMED-CT, there was a technique named
postcoordination expression [24] that could also capture the
details of phenotypes by using combinations of existing
concepts. For example, the out-of-vocabulary concept “ severe
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headache, unilateral” can be expressed as a postcoordination of
3 concepts—headache (25064002): severity (272141005) =
severe (24484000) and laterality (272741003) = unilateral
(66459002). Compared with the postcoordination expression
technique, PhenoSSU is a predefined information model that
provides a general framework for knowledge representation. It
is more convenient to configure the PhenoSSU model into the
BRAT annotation tool to construct fine-grained phenotype
knowledge graphs than to use the competing approach.

In recent years, machine learning, especially deep learning, has
been widely used for processing medical information [41-44].
In this work, we also explored the potential of automatically
constructing fine-grained phenotype knowledge graphs based
on machine learning. The results in Figure 3 suggest that
machine learning can assist with the human annotations of
PhenoSSU to some extent. However, there are till great
challengesto overcome to improve the performance of machine
learning, especially the insufficiency and imbalanced
distributions of training data. In future work, an activelearning
framework [45] that incorporates both human intelligence and
machine intelligence may be a better strategy for constructing
fine-grained knowledge graphs.

The improvement of knowledge granularity for disease
phenotypes may potentially benefit knowledge-based diagnosis
systems because the differential diagnostic capability of a
PhenoSSU model is theoretically stronger than that of asingle
phenotype concept. From the perspective of coarse-grained
knowledge graphs, some diseases (eg, the flu and common cold)
have many similar symptoms (eg, fever and cough); however,
these similar symptoms may have obvious differencesfrom the
perspectives of fine-grained knowledge graphs. For example,
fever may be present in both flu and common cold. However,
fever is more common in flu patients and usually appears
suddenly with a body temperature of 38 degrees or above. By
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comparison, fever is rarely seen in common cold cases and
usually appearsgradualy. Therefore, adiagnosis system cannot
exclude the common cold if a patient has fever; however, it can
safely exclude the common cold if a patient has such a
PhenoSSU instance like “phenotype: fever; temporal pattern:
acute; severity: severe” PhenoSSU-based knowledge graphs
should be very suitable for dialogue-based symptom checkers
such as babylon [46] and symptoma [47], which collects the
symptoms of a patient one by one. Considering the details of
phenotypes in inquiry processing may potentially improve the
efficiency and accuracy of dialogue-based symptom checkers.

Limitations

Onelimitation of thiswork isthat we only considered the corpus
of infectious diseases during the modeling process of PhenoSSU.
In addition, we only considered attributeswith categorical values
and did not consider attributes with numeric values. Another
limitation of this study is that we only tested the effectiveness
of the PhenoSSU model for 193 infectious diseases, whichisa
small number considering that thousands of other diseasesexist.
In addition, attributes suitable for infectious diseases may not
be suitable for other types of diseases. We will solve these
limitations during the process of constructing PhenoSSU-based
knowledge graphs for more diseases in future work.

The annotation gquidelines for PhenoSSU and the
PhenoSSU-based knowledge graphs for 193 infectious diseases
can be found by visiting our website [48]. The scripts for
modeling and extracting PhenoSSU can be found on GitHub
[49].

Conclusions

PhenoSSU is a fine-grained semantic information model that
can precisely represent phenotype knowledge in clinical
guidelines, and machine learning can be used to improve the
efficiency of constructing PhenoSSU-based knowledge graphs.
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