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Abstract

Background: On January 21, 2020, the World Health Organization reported the first case of severe acute respiratory syndrome
coronavirus 2, which rapidly evolved to the COVID-19 pandemic. Since then, the virus has also rapidly spread among Latin
American, Caribbean, and African countries.

Objective: The first aim of this study is to identify new emerging COVID-19 clusters over time and space (from January 21 to
mid-May 2020) in Latin American, Caribbean, and African regions, using a prospective space–time scan measurement approach.
The second aim is to assess the impact of real-time population mobility patterns between January 21 and May 18, 2020, under
the implemented government interventions, measurements, and policy restrictions on COVID-19 spread among those regions
and worldwide.

Methods: We created a global COVID-19 database, of 218 countries and territories, merging the World Health Organization
daily case reports with other measures such as population density and country income levels for January 21 to May 18, 2020. A
score of government policy interventions was created for low, intermediate, high, and very high interventions. The population’s
mobility patterns at the country level were obtained from Google community mobility reports. The prospective space–time scan
statistic method was applied in five time periods between January and May 2020, and a regression mixed model analysis was
used.

Results: We found that COVID-19 emerging clusters within these five periods of time increased from 7 emerging clusters to
28 by mid-May 2020. We also detected various increasing and decreasing relative risk estimates of COVID-19 spread among
Latin American, Caribbean, and African countries within the period of analysis. Globally, population mobility to parks and similar
leisure areas during at least a minimum of implemented intermediate-level control policies (when compared to low-level control
policies) was related to accelerated COVID-19 spread. Results were almost consistent when regional stratified analysis was
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applied. In addition, worldwide population mobility due to working during high implemented control policies and very high
implemented control policies, when compared to low-level control policies, was related to positive COVID-19 spread.

Conclusions: The prospective space–time scan is an approach that low-income and middle-income countries could use to detect
emerging clusters in a timely manner and implement specific control policies and interventions to slow down COVID-19
transmission. In addition, real-time population mobility obtained from crowdsourced digital data could be useful for current and
future targeted public health and mitigation policies at a global and regional level.

(J Med Internet Res 2021;23(6):e22999) doi: 10.2196/22999
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Introduction

On January 30, 2020, the World Health Organization (WHO)
declared COVID-19 as a Public Health Emergency of
International Concern and later characterized it as a pandemic
[1]. On January 21, 2020, the WHO published the first situation
report, announcing the first cases of pneumonia of unknown
etiology detected in Wuhan City on December 31, 2019 [2]. By
May 18, 2020, more than 200 countries reported confirmed
cases of COVID-19 [2,3]. Among them, there were several
Latin American, Caribbean, and African countries with limited
resources to monitor, manage, and treat COVID-19. The first
signs of virus spread were delayed among these regions
compared with Europe, Asia, and North America [2,4].

Several government interventions have already been
implemented to prevent and contain the alarming propagation
of COVID-19 [5,6]. Each country has applied its own disease
control measures, which vary by specific policy and
implementation timing. Some countries initially implement a
lower level of measures and policies, while others are adopting
stricter ones. Government health and social distancing policies
are evolving rapidly based on the COVID-19 transmission in
each region. Policies range from traveler’s temperature checks
and medical screening at each country’s entry point and public
school closures to quarantining an entire country. Various Latin
American and African countries adopted COVID-19 restriction
policies rapidly [7]. Barriers such as the effectiveness of social
distancing measures among low-income and middle-income
countries (LMICs) have been pointed out [8]. For these reasons,
global and local health policy makers and international
organizations have said that the lack of health and government
resources among these regions would pose barriers and
challenges to halt virus spread.

Space–time surveillance is a methodology [9] that could be of
use among Latin American and African regions to identify and
list locations in an emergency, apply the strictest public health
measures, and allocate resources. The space–time scan statistic
technique is able to detect dynamic or emerging clusters of
COVID-19, which can be used for targeted monitoring during
the outbreak [10]. Since COVID-19 data are updated daily, this
method could contribute to timely monitoring of the pandemic
among various areas such as Latin American and African
regions. In addition to statistical approaches, digital technology
[11,12] could be used to understand population mobility and to
assess the effectiveness of government policies or the

re-evaluation of specific strategies. During the COVID-19
outbreak, smartphone software can provide information (in an
anonymous way and at the country level) [13] on various
characteristics of population mobility (eg, workplaces or parks).
This information could be of use among countries and
specifically in resource-limited settings to understand rapidly
whether the government restrictions need enhancements or
corrections.

In the early stage of the COVID-19 spread in the United States,
prospective scan statistic methodology detected the active cluster
in New York State, marking the area that needed specific
attention [10]. To the best of our knowledge during COVID-19,
except in the United States, the prospective scan method has
not been applied elsewhere, though it could be a useful
monitoring and intervention–decision tool. In addition, the
collective effect sizes of population mobility patterns under the
social distancing government policies are empirically unknown,
particularly in low-income countries (LICs) and middle-income
countries (MICs) with differential population vulnerability (ie,
poverty, lack of resources, and health infrastructure). Given the
information regarding effective treatment schemes and
population vaccination going forward slowly and taking into
account the delays in deliveries among countries, detection of
emerging clusters among these regions will make a substantial
contribution [14] to the field facilitating the translation of
knowledge and implementation of evidence into COVID-19
practice and policy at the country level. In addition, it will guide
authorities globally and among low- and middle-income
countries (LMICs) to enhance and update if necessary the
applied COVID-19 containment policies based on real-time
population mobility. The first aim of this study, therefore, is to
identify new emerging space–time COVID-19 clusters
implementing space–time surveillance among Latin American,
Caribbean, and African countries, applying a prospective
space–time scan statistic methodology. This technique is a
well-known method for detecting clusters of health-related
events in the space–time dimension [10]. Our available data
extends until May 18, 2020. Thus, we report results applying
the prospective space–time scan statistic in five time periods to
monitor the emerging clusters when adding updated case data:
(1) January 21 to March 15, (2) January 21 to March 31, (3)
January 21 to April 15, (4) January 21to April 30, and (5)
January 21 to May 15. The second aim is to assess the impact
of real-time population mobility patterns between January 21
and May 18 under the implemented government interventions,
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measurements, and policy restrictions on COVID-19 spread
among Latin American, Caribbean, and African countries as
well as globally. This study focuses its analysis on Latin
American, Caribbean, and African countries (as a sample of
LMICs) among other Asian-Pacific regions due to the excessive
COVID-19 transmission in these areas. This study could serve
as a learning tool presenting new information on virus
surveillance and its timely detection among countries and
regions with limited resources at their disposal, while population
mobility patterns will facilitate public health authorities to
design targeted social distancing strategies instead of horizontal
lockdowns or social distancing measures. Results of this study
in combination with lessons from other countries’ experiences
[15] could be helpful for policy makers at regional and
international level.

Methods

Study Design
We conducted a retrospective observational longitudinal study.
We obtained data on COVID-19 propagation and related risk
factors from 218 countries and territories (as reported by the
WHO). We compiled a data set of COVID-19 daily cases and
deaths spanning the period January 21 to May 18, 2020, based
on the most recent publicly available population-level
information (by country), as reported by the WHO [2]. This
study was approved by Parc Sanitari Sant Joan de Déu, Ethics
Committee (PIC-67-20, Barcelona, Spain) and conformed to
the ethical guidelines of the 1975 Declaration of Helsinki.

COVID-19 International Data
The WHO daily situation reports were used from January 21 to
May 18, 2020, to assess disease transmission internationally
[2]. Data on daily confirmed cases, total confirmed cases, daily
confirmed deaths, total confirmed deaths, transmission
classification, and time since the last reported case were
compiled for 218 countries and territories. Case classifications
were based on the WHO case definitions for COVID-19.
Transmission was classified into three distinct groups to capture
changes in the classification that the WHO applied during these
4 months: community transmission, transmission under
investigation, and sporadic clusters transmission (includes
sporadic transmission, clusters, and local transmission) [2].
Cases identified in cruise ships were excluded from the analysis,
while cases among China’s provinces were grouped together.
Cases in Hong Kong, Macao, and Taiwan special administrative
regions of China were classified separately since they applied
different government interventions and policy measures than
mainland China. Based on the WHO database, Puerto Rico was
classified separately from the United States as was the case for
other territories.

Countries’ Government Interventions, Health Policy,
and Restriction Measures
Each country’s health and government policy measures were
obtained as announced from each country’s official source after
January 21, 2020. If this was not feasible, the information was
obtained from local media sources and was cross-checked with
at least two sources (where possible). Additionally, two

researchers cross-validated the obtained information to ensure
the highest accuracy. This information was then validated using
the WHO global tracking database on governments’COVID-19
response as the gold standard database [16]. Based on this
information, a four-level health and government policy
interventions and measures score was created, ranging from 0
to 3, which represented low, intermediate, high, and very high
intervention levels [17]. These intervention and control policy
categories were formed following already announced alert
classification systems [18] and other international COVID-19
government response data and methodologies [19,20].

Other Baseline Assessments by Country

Index for Risk Management and World Bank Income
Classification
Information regarding threat detection and risk assessment were
obtained from the Index for Risk Management (INFORM)
Epidemic Risk Index [21], developed by the EU Joint Research
Centre in collaboration with the WHO, and was used as a
measure of each country’s epidemic preparedness. The INFORM
index ranged from 0 to 10, and higher scores corresponded to
a lower epidemic preparedness risk of a country. More detail
about the development of this index can be found elsewhere
[21].

The World Bank income classification system was also used to
classify each of the 218 countries’ income (high-income
countries, upper-income countries, lower middle–income
countries, and low-income countries) [22]. COVID-19 testing
policy in each country was assessed as the number of days that
each country started implementing COVID-19 tests in the
population and as the number of days that each country
implemented tracing strategies for COVID-19 cases. Information
on these items was obtained from publicly available sources
[20].

Cell Phones and Community Mobility Reports
The population’s mobility patterns at the country level were
obtained from Google community mobility reports. These
reports are publicly available [23] and present movement trends
over time by geography and across different place categorization
such as retail and recreation places, groceries and pharmacies,
parks and other similar places, transit stations, workplaces, and
residential areas. Specifically, as described by Google reports,
retail and recreation grouping correspond to mobility trends for
places such as restaurants, cafés, shopping centers, theme parks,
museums, libraries, and movie theaters. Groceries and
pharmacies reports mobility trends for places such as grocery
markets, food warehouses, farmers markets, specialty food
shops, drug stores, and pharmacies. The parks category
encompasses mobility trends for places such as national parks,
public beaches, marinas, dog parks, plazas, and public gardens.
In addition, transit station cluster marks mobility trends for
places such as public transport hubs (eg, subway, bus, and train
stations). The workplace classification corresponds to the
mobility trend for places of work. Finally, the residential cluster
encompasses mobility trends for staying at home. These reports
show how visits and length of stay at different places change
compared to a specific reference period (a reference period
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defined by Google as, for example, January 3 to February 6,
2020). Data in these reports are generated using aggregated
anonymized sets of data from users that turned on the location
history setting.

Of the 218 countries and territories, 179 had complete data and
were selected for the adjusted analysis. In this analysis, only
COVID-19 daily new cases were analyzed. Analysis was applied
globally only between real-time population mobility patterns
and COVID-19 spread, while the rest of the analysis was
restricted for the regions of Latin America, the Caribbean, and
Africa. By May 15, 2020, we calculated the standardized
incidence ratios (SIRs) [24] for 4 countries (Brazil, Peru,
Uganda, and Nigeria) to compare and validate the accuracy of
our prospective space–time models. COVID-19 SIR estimations
were calculated as the ratio of observed counts to the expected
counts.

Statistical Analysis
Based on the literature review, government interventions are
not having an immediate effect on COVID-19 spread; for this
reason, we considered their time scheduling based on a starting
time point t0, with the addition of a seven-day lag [25]. These
time lag effects only concern the modeling process via a mixed
model approach, as it is when our analysis tested the government
control policies.

Prospective Space–Time Scan Statistic
The early detection of emerging COVID-19 space–time clusters
was determined using a prospective version of the space–time
scan statistic approach [9]. The method helps to identify
COVID-19 clusters in the space–time dimension, which have
a significant relative risk (RR) at the end of the study period
[10]. The general assumption is that the number of COVID-19
cases follows a Poisson distribution with a constant risk, which
is proportional to the at-risk population of each corresponding
country or territory over the geographic region under study.

This approach works using cylinders that move and scan the
region of interest looking for potential space–time clusters of
COVID-19 cases. The center of the cylinder is defined as the
centroid of each country in the region of interest. The general
working function of this technique can be summarized as
follows: an unknown large number of cylinders of different
spatial and temporal sizes are generated around each centroid
until the maximum spatial and temporal thresholds are reached;
the observed and expected case counts are computed within
each cylinder, which is derived from the total number of
centroids captured in each cylinder.

In this manner, the RR is defined as having more observed than
expected COVID-19 cases within each cylinder. We determined
the elevated RR of COVID-19 calculating maximum
log-likelihood ratio tests. Furthermore, 100 runs of Monte Carlo
testing were used to depict the empirical distribution of the
log-likelihood ratio, assuming constant risk. This distribution
allows us to assess the statistical significance of space–time
clusters (P value <.05), and the cylinder with the largest
log-likelihood ratio is the most likely cluster.

In our study, we reported the significant emerging clusters of
COVID-19 at the country level for the Latin American,
Caribbean, and African regions, and computed the estimated
RR, which identifies the risk for the population to COVID-19
within a cluster in comparison with the risk outside of the
cluster. Moreover, five time periods were monitored: (1) January
21 to March 15; (2) January 21 to March 31; (3) January 21 to
April 15; (4) January 21 to April 30; and (5) January 21 to May
15, 2020.

This analysis was carried out using the R package scanstatistics
in R version 3.6.3 (R Foundation for Statistical Computing) and
follows previous prospective scan statistic work [9,10,26].

Mixed Models Analysis
We also fitted a negative binomial (NB) mixed model, with
daily new COVID-19 cases as the outcome. The model accounts
for a linear trend with respect to time since the appearance of
the first COVID-19 case, taking into account the varying secular
trends across regions and the treatment–effect heterogeneity
across time, and was adjusted for the countries’ preparedness
in epidemics (INFORM index), COVID-19 testing policy,
COVID-19 type of transmission for each country through time,
populations’ real-time mobility patterns, their interaction with
each level of government control policy, and the country’s
income level. In this mixed model, all the predictors are assumed
to be fixed effects; however, the intercept includes a
country-level random effect term. As offset, the natural
logarithm of the total population was added to the generalized
linear predictor function of the NB component to account for
the variable number of daily new COVID-19 cases per country
population. Models were tested globally and regionally (for
Latin American, Caribbean, and African countries). The
maximum likelihood estimation procedure was used to fit all
multilevel analysis models. In this mixed model, only three out
of five real-time mobility patterns for workplaces, parks, and
similar places as well as mobility for food and drug supplies
were applied to avoid collinearity, as the correlation among the
mobility variables was higher than 0.70. Mixed model analysis
was carried out using the R package glmmTMB in R Version
3.6.3 [27].

Validation Analysis
First, the predicted validity of the prospective scan statistic
model was tested evaluating the relation between the RRs of
the prospective scan statistic and the SIR estimations using
Pearson rho coefficients. Second, we used the Man-Whitney U
test to explore the increase in mean COVID-19 cases before
and after April 15, 2020, and then, we checked if the prospective
scan had predicted a potential COVID-19 cluster. We followed
classical reported criteria to classify a correlation as weak (≤0.3),
moderate (0.4-0.6), and strong (≥0.7; coefficients are presented
as absolute values) [28]. All P values are based on two-sided
tests. A P value ≤.05 was considered as significant.
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Results

Prospective Scan Statistics and Emerging
Country-Level Results Between January 21 and May
15 for Latin America, the Caribbean, and Africa
Tables 1 and 2 provide the characteristics of the significant
COVID-19 emerging space–time clusters at the country level
among LMICs, from January 21 to May 15, 2020. Analyzing
COVID-19 spread between January 21 to March 15, 7 major
clusters among Latin American, Caribbean, and African
countries were revealed. For the Latin American and Caribbean
countries, cluster 1 included 15 countries with a RR>1 (ie,
having more observed than expected COVID-19 cases). Saint
Kitts and Nevis (cluster 3) showed an extremely elevated RR
of 19.31 (P<.001). Exploring the African region during the same
period, cluster 4 integrated most of the countries with a RR of
9.46 (P<.001), and cluster 5 encompassed Madagascar,
Mauritius, Mayotte, Reunion, and Seychelles with a RR of 21.35
(P<.001). Rwanda and Uganda were grouped in cluster 6 and
Sudan in cluster 7. Both these clusters marked the most elevated
RR (cluster 6: RR 37.75, P<.001; cluster 7, RR 45.75, P<.001;
Figures S1 and S2 in Multimedia Appendix 1).

Using data for the period of January 21 to March 31, 2020,
allowed us to assess the evolution of COVID-19 spread among

LMICs. It was shown that the initial 7 emerging COVID-19
country clusters among Latin America, the Caribbean, and
Africa, when the period of analysis extended for 15 days, were
spread to 20 clusters. Cluster 5 that included only Antigua and
Barbuda Island had the most elevated relative risk (RR 60.48;
P<.001) followed by cluster 6 (Puerto Rico, Saint Maarten, and
Virgin Islands) with a RR of 23.27 (P<.001) and cluster 8
(Dominica) with a RR of 21.85 (P<.001; Figures S3 and S4 in
Multimedia Appendix 1).

Analyzing data from January 21 to April 15-30 and to May 15,
2020, it was shown that the spread was further extended with
the evolution of time. Specifically, when the period of analysis
extended to April 15, the virus spread was reported to 27 clusters
among Latin America, the Caribbean, and Africa, and by April
30 and May 15, the emerging clusters were 29 and 28,
respectively. For the period between January 21 to April 15 for
Latin America and the Caribbean, the cluster with the highest
RR was Chile (RR 18.02; P<.001), followed by Antigua and
Barbuda (RR 14.22; P<.001), and Mexico (RR 14.07; P<.001).
For Africa, the emerging clusters were Djibouti (RR 165.84;
P<.001), followed by Mauritius (RR 136.05; P<.001) and Egypt
(RR 52.20; P<.001). Focusing on the period between January
21 to April 30 and to May 15, we showed extended COVID-19
spread following similar patterns as previously mentioned
(Figures S5-S10 in Multimedia Appendix 1).
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Table 1. Emerging COVID-19 space–time clusters and their RR for having more observed than expected COVID-19 cases, from January 21 to March
15 and March 31, 2020, at the country level within the Latin American, Caribbean, and African regions.

RRa,bDurationClusterRegion, date range, and cluster number

Latin America and Caribbean

January 21 to March 15

3.02March 11-15, 2020Argentina, Bolivia, Brazil, Barbados, Colombia, Grenada, Guyana, Saint
Lucia, Peru, Paraguay, Suriname, Trinidad, Uruguay, Saint Vincent,
Venezuela

1

4.04March 9-15, 2020Bahamas, Belize, Costa Rica, Cuba, Cayman Islands, Ecuador,
Guatemala, Honduras, Haiti, Jamaica, Mexico, Nicaragua, Panama, El
Salvador, Turks and Caicos Islands

2

19.31March 12-15, 2020Saint Kitts and Nevis3

January 21 to March 31

11.61March 17-31, 2020Bolivia, Colombia, Ecuador, Peru1

3.87March 22-31, 2020Bahamas, Belize, Costa Rica, Cuba, Cayman Islands, Dominican Repub-
lic, Guatemala, Honduras, Haiti, Jamaica, Mexico, Nicaragua, Panama,
El Salvador, Turks and Caicos Islands

2

2.53March 22-31, 2020Barbados, Grenada, Trinidad, Saint Vincent3

2.79March 24-31, 2020Argentina, Chile, Paraguay, Uruguay4

60.48March 21-31, 2020Antigua and Barbuda5

23.27March 20-31, 2020Puerto Rico, Saint Maarten, Virgin Islands6

2.99March 27-31, 2020Curacao7

21.85March 22-31, 2020Dominica8

1.25March 26-31, 2020Saint Lucia9

Africa

January 21 to March 15

9.46March 6-15, 2020Benin, Burkina Faso, Ivory Coast, Algeria, Ghana, Guinea, Gambia,
Mali, Mauritania, Senegal, Sierra Leone, Togo

4

21.35March 13-15, 2020Madagascar, Mauritius, Mayotte, Reunion, Seychelles5

37.75March 9-15, 2020Rwanda, Uganda6

45.75March 13-15, 2020Sudan7

January 21 to March 31

8.75March 17-31, 2020Madagascar, Mozambique, Mauritius, Mayotte, Reunion, Seychelles10

34.34March 18-31, 2020Rwanda, Uganda11

3.83March 19-31, 2020Benin, Burkina Faso, Ivory Coast, Algeria, Ghana, Guinea, Gambia,
Mali, Mauritania, Senegal, Sierra Leone, Togo

12

6.92March 15-31, 2020Botswana13

5.91March 21-31, 2020Equatorial Guinea14

31.00March 22-31, 2020Djibouti15

4.47March 20-31, 2020Egypt, Sudan16

3.27March 30-31, 2021Guinea-Bissau17

13.84March 26-31, 2020Zambia18

2.85March 18-31, 2020Tanzania19

2.86March 28-31, 2021Morocco20

aRR: relative risk estimate.
bAll RRs have a P value <.001
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Table 2. Emerging COVID-19 space–time clusters and their RR for having more observed than expected COVID-19 cases from January 21 to April
15, April 30 and May 15, 2020, at the country level within the Latin American, Caribbean, and African regions.

RRa,bDurationClusterRegion, date range, and cluster number

Latin America and Caribbean

January 21 to April 15

5.27March 29-April 15, 2020Colombia, Costa Rica, Ecuador, Panama, Peru1

2.81March 31-April 15, 2020Barbados2

14.07March 21-April 15, 2020Mexico3

5.94March 22-April 15, 2020Dominican Republic4

9.88March 22-April 15, 2020Puerto Rico, Saint Maarten, Virgin Islands5

14.22March 21-April 15, 2020Antigua and Barbuda6

2.08March 17-April 15, 2020Saint Vincent7

18.02March 29-April 15, 2020Chile8

1.94April 6-15, 2020Curacao9

4.54March 22-April 15, 2020Belize, Guatemala, El Salvador10

1.74March 18-April 15, 2020Bahamas, Cuba11

1.33April 10-15, 2020Saint Lucia12

1.61April 12-15, 2020Argentina, Uruguay13

4.66April 14-15, 2020Saint Kitts and Nevis14

3.98March 22-April 15, 2020Dominica15

January 21 to April 30

5.85April 7-30, 2020Colombia, Ecuador, Panama, Venezuela1

3.44April 15-30, 2020Barbados2

7.64March 21-April 30, 2020Mexico3

3.84March 29-April 30, 2020Dominican Republic4

1.67April 22-30, 2020Antigua and Barbuda, Dominica, Saint Kitts and Nevis, Saint
Lucia

5

2.95March 29-April 30, 2020Peru6

11.47March 29-April 30, 2020Saint Maarten7

6.47March 29-April 30, 2020Chile8

2.94March 20-April 30, 2020Virgin Islands9

4.49March 17-April 30, 2020El Salvador10

1.26April 28-30, 2020Costa Rica11

January 21 to May 15

3.40April 25-May 15, 2020Bolivia, Brazil, Barbados, Colombia, Grenada, Guyana, Peru,
Paraguay, Suriname, Trinidad, Uruguay, Venezuela

1

8.28April 14-May 15, 2020Panama2

5.32April 7-May 15, 2020Ecuador3

4.54March 24-May 15, 2020Mexico4

2.80April 8-May 15, 2020Dominican Republic5

1.64May 6-15, 2020Saint Lucia6

1.34May 8-15, 2020Costa Rica7

4.41March 29-May 15, 2020Saint Maarten8

1.35May 4-15, 2020Jamaica9

3.17March 29-May 15, 2020Chile10
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RRa,bDurationClusterRegion, date range, and cluster number

1.85March 21-May 15, 2020Antigua and Barbuda11

Africa

January 21-April 15

5.91March 22-April 15, 2020Botswana, Mozambique, Malawi, Swaziland, Zambia, Zimbab-
we

16

5.54March 31-April 15, 2020Benin, Burkina Faso, Ivory Coast, Algeria, Ghana, Guinea,
Gambia, Guinea-Bissau, Liberia, Mali, Mauritania, Niger,
Senegal, Sierra Leone, Togo

17

15.17March 19-April 15, 2020Rwanda, Uganda18

165.84April 4-15, 2020Djibouti19

136.05March 20-April 15, 2020Mauritius20

5.17March 23-April 15, 2020Gabon, Equatorial Guinea21

37.35April 14-15, 2020Reunion22

52.20April 13-15, 2020Egypt23

5.56April 12-15, 2020Sao Tome and Principe24

3.47April 14-15, 2020Libya, Tunisia25

16.18March 14-15, 2020Somalia26

1.84March 22-April 15, 2020Sudan27

January 21 to April 30

4.26March 31-April 30, 2020Benin, Burkina Faso, Ivory Coast, Algeria, Ghana, Guinea,
Gambia, Guinea-Bissau, Liberia, Mali, Mauritania, Niger,
Senegal, Sierra Leone, Togo

12

4.85March 22-April 30, 2020Comoros, Mozambique, Malawi, Swaziland, Zambia, Zimbabwe13

108.36April 5-30, 2020Djibouti14

117.76March 20-April 30, 2020Mauritius15

4.71April 5-30, 2020Cameroon, Gabon, Equatorial Guinea, Sao Tome and Principe16

6.57March 19-April 30, 2020Rwanda, Uganda17

33.32April 13-30, 2020Egypt18

3.83April 28-30, 2020Nigeria19

4.03April 28-30, 2020Tunisia20

4.05April 11-30, 2020Reunion21

1.88March 20-April 30, 2020Botswana22

2.69April 24-30, 2020Chad23

6.08April 26-30, 2020Democratic Republic of the Congo24

2.57April 16-30, 2020South Sudan25

2.61April 23-30, 2020Sudan26

2.16April 29-30, 2020Cape Verde27

3.42April 29-30, 2020Republic of Kong28

6.10March 14-April 30, 2020Somalia29

January 21-May 15

4.84April 3-May 15, 2020Benin, Burkina Faso, Ivory Coast, Algeria, Ghana, Guinea,
Gambia, Guinea-Bissau, Liberia, Mali, Mauritania, Niger,
Senegal, Sierra Leone, Togo

12

7.35April 11-May 15, 2020Comoros, Mozambique, Malawi, Swaziland, Zambia, Zimbabwe13

151.42March 20-May 15, 2020Mauritius14
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RRa,bDurationClusterRegion, date range, and cluster number

60.47April 4-May 15, 2020Djibouti15

5.65April 12-May 15, 2020Cameroon, Gabon, Equatorial Guinea, Sao Tome and Principe16

25.85April 13-May 15, 2020Egypt17

2.33April 28-May 15, 2020Nigeria18

4.38April 28-May 15, 2020Chad19

3.79March 19-May 15, 2020Rwanda, Uganda20

11.98May 8-15, 2020Democratic Republic of the Congo21

4.35May 3-15, 2020South Sudan, Tanzania22

3.68April 14-May 15, 2020Reunion23

3.45May 4-15, 2020Republic of Congo24

3.31May 6-15, 2020Seychelles25

1.49May 5-15, 2020Cape Verde26

2.12April 7-May 15, 2020Libya27

1.26March 20-May 15, 2020Botswana28

aRR: relative risk estimate.
bAll RRs have a P value <.001.

Predictive Validity of the Prospective Scan Model
To evaluate the predictive validity of the prospective scan
statistic approach, we used Brazil, Peru, Uganda, and Nigeria
as country examples. Figure S11 in Multimedia Appendix 1
illustrates the RRs of the prospective scan approach and the SIR
estimations. The correlation of both models for all 4 countries
was strong and significant (Uganda: ρ=0.78, P=.04; Nigeria:
ρ=0.98, P=.002; Brazil: ρ=0.95, P=.01; and Peru: ρ=0.86,
P=.03). In addition, among all 4 countries that prospective scan
modelling predicted a potential outbreak after April 15, 2020,
we found a significant increase in the comparison of the
COVID-19 mean new cases before and after April 15 (Uganda:
W=697, P=.008; Nigeria: W=1280, P<.001; Brazil: W=1596,
P<.001; and Peru: W=1246, P<.001).

COVID-19 Spread in Relation to Real-time Population
Mobility Patterns Between January 21 and May 18
Globally and Regionally for Latin America, the
Caribbean, and Africa

Population Mobility Patterns and COVID-19 Spread at
the Global Level
COVID-19 daily new cases and real-time population mobility
changes by region are presented in Figure S12 in Multimedia
Appendix 1. Among the 3 population mobility patterns, a
reduced change in comparison with the reference period of time
was observed. Population mobility patterns and COVID-19
spread worldwide and by the Latin American, Caribbean, and
African region are reported in Table 3. Worldwide, between

January and May 2020, population mobility to all kinds of food
places, drug stores, and pharmacies was not associated with
COVID-19 spread, while the use of park places (ie, national
and city parks, public beaches, and dog parks) and mobility to
workplaces were negatively related with COVID-19 spread
(mobility to parks and similar places: b=–0.03, 95% CI –0.04
to –0.02); workplaces mobility: b=–0.03, 95% CI –0.05 to
–0.02). However, when the interaction effect between
government control policies (intermediate, high, and very high)
and population’s mobility patterns was applied and compared
with that of low-level government control policies, different
trends were extracted regarding COVID-19 spread. It was
observed that COVID-19 spread changes significantly
throughout mobility confounders depending on the degree of
the implemented control policies. Specifically, with the
implementation of intermediate, high, and very high control
policies, mobility to parks and other similar places (like beaches,
dog parks, and others) were related with increased COVID-19
spread (b=0.02, 95% CI 0.01-0.03; high-level interventions:
b=0.02, 95% CI 0.01-0.03; very high–level interventions:
b=0.02, 95% CI 0.01-0.03) when compared with the population
mobility in parks during the implementation of low-level
government control policies. Similar increased COVID-19
spread estimates were shown for population mobility to
workplaces during high-level and very high–level movement
restrictions (high-level interventions: b=0.02, 95% CI 0.01-0.04;
very high–level interventions: b=0.03, 95% CI 0.01-0.04) when
compared with population mobility to workplaces during the
implementation of low-level government policies.
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Table 3. Results from mixed model analysis that evaluated the COVID-19 spread with government interventions, their interaction with population

mobility patterns, and other factors during the first 4 months of the outbreak.a

Africa, b (95% CI)Latin America and the
Caribbean, b (95% CI)

Latin America, the
Caribbean, and Africa,
b (95% CI)

Global, b (95% CI)Items

0.02 (–0.05 to 0.09)0.09 (0.05 to 0.13)0.03 (0.00b to 0.06)–0.003 (–0.01 to 0.01)Number of days since first case

N/AN/AN/AN/AcLow-level interventions (reference category)

0.41 (–1.20 to 2.03)2.42 (–1.50 to 6.35)0.48 (–0.62 to 1.58)–0.90 (–1.23 to –0.56)Intermediate-level interventions

0.90 (–0.19 to 1.98)2.42 (1.52 to 3.32)0.92 (0.35 to 1.49)0.88 (0.59 to 1.16)High-level interventions

0.25 (–0.88 to 1.39)1.94 (0.73 to 3.16)0.27 (–0.39 to 0.94)0.74 (0.40 to 1.08)Very high–level interventions

–0.03 (–0.10 to 0.05)–0.004 (–0.05 to 0.05)–0.01 (–0.05 to 0.03)0.004 (–0.02 to 0.02)Population mobility for food and drug supplies

–0.04 (–0.10 to 0.02)–0.10 (–0.13 to –0.07)–0.07 (–0.10 to –0.05)–0.03 (–0.04 to –0.02)Population mobility to parks/leisure activities

–0.05 (–0.09 to –0.01)–0.003 (–0.02 to 0.01)–0.02 (–0.04 to 0.00b)–0.03 (–0.05 to –0.02)Population mobility to workplace

N/AN/AN/AN/ANumber of days since first case × low-level in-
terventions (reference category)

0.0004 (–0.09 to 0.09)–0.28 (–0.92 to 0.36)–0.02 (–0.07 to 0.03)0.04 (0.03 to 0.05)Number of days since first case × intermediate-
level interventions

0.01 (–0.06 to 0.08)–0.06 (–0.10 to –0.02)0.002 (–0.03 to 0.03)–0.001 (–0.01 to 0.01)Number of days since first case × high-level in-
terventions

0.006 (–0.06 to 0.07)–0.07 (–0.11 to –0.02)–0.001 (–0.03 to 0.03)0.005 (–0.01 to 0.01)Number of days since first case × very
high–level interventions

N/AN/AN/AN/ALow-level intervention × population mobility
for food and drug supplies (reference category)

0.05 (–0.09 to 0.18)0.01 (–0.08 to 0.11)0.02 (–0.05 to 0.09)0.02 (–0.00 to 0.04)Intermediate-level intervention × population
mobility for food and drug supplies

0.03 (–0.05 to 0.11)0.03 (–0.03 to 0.08)0.03 (–0.00b to 0.07)0.004 (–0.02 to 0.02)High-level intervention × population mobility
for food and drug supplies

0.05 (–0.03 to 0.12)–0.003 (–0.05 to 0.05)0.02 (–0.02 to 0.05)0.001 (–0.02 to 0.02)Very high–level intervention × population mo-
bility for food and drug supplies

N/AN/AN/AN/ALow-level intervention × population mobility to
visit parks and do leisure activities (reference
category)

–0.02 (–0.10 to 0.06)–0.02 (–0.28 to 0.23)0.03 (–0.01 to 0.06)0.02 (0.01 to 0.03)Intermediate-level intervention × population
mobility to visit parks and do leisure activities

0.04 (–0.02 to 0.11)0.07 (0.04 to 0.10)0.05 (0.02 to 0.07)0.02 (0.01 to 0.03)High-level intervention × population mobility
to visit parks and do leisure activities

–0.001 (–0.06 to 0.06)0.09 (0.06 to 0.13)0.05 (0.03 to 0.07)0.02 (0.01 to 0.03)Very high–level intervention × population mo-
bility to visit parks and do leisure activities

N/AN/AN/AN/ALow-level intervention × population mobility to
workplaces (reference category)

0.07 (–0.02 to 0.16)0.03 (–0.10 to 0.16)0.03 (–0.03 to 0.08)0.01 (–0.01 to 0.03)Intermediate-level intervention × population
mobility to workplaces

0.04 (–0.00b to 0.08)0.0004 (–0.02 to 0.02)0.01 (–0.01 to 0.03)0.02 (0.01 to 0.04)High-level intervention × population mobility
to workplaces

0.04 (–0.00b to 0.08)–0.0002 (–0.02 to 0.02)0.02 (–0.00b to 0.03)0.03 (0.01 to 0.04)Very high–level intervention × population mo-
bility to workplaces

aModels were also adjusted by country income level; preparedness in epidemics (Index for Risk Management); COVID-19 type of transmission (ie,
community transmission or local transmission); and COVID-19 testing and tracing policies (in days).
bThese are values less than 0.005 in absolute numbers.
cN/A: not applicable.
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Population Mobility Patterns and COVID-19 Spread for
Latin America, the Caribbean, and Africa
When the analysis was stratified by Latin American, Caribbean,
and African countries, specific trends in COVID-19 spread were
shown due to distinct population’s mobility patterns (Table 3).
As noted, the coefficients of the interaction between the
populations’ mobility to parks and similar places and social
distancing measures were consistent at the regional level, apart
from the region of Africa. Specifically, when high-level and
very high–level control policies were applied in comparison
with those at a low level, only people’s mobility to parks and
similar places was related with increased COVID-19 spread
(exception was the African countries where the results were not
significant; ie, Latin America, the Caribbean, and Africa:
high-level interventions concurrently with mobility to parks
and similar places b=0.05, 95% CI 0.02-0.07; very high–level
interventions concurrently with mobility to parks and similar
places b=0.05, 95% CI 0.03-0.07). Moreover, the interaction
between populations’ mobility to workplaces and social
distancing measures showed heterogeneity among the tested
regions. However, apart from the global analysis, results were
not significant for the Latin American, Caribbean, or African
regions.

Finally, we conducted a sensitivity analysis to assess our
inferences for large countries in terms of area extension (due
to possible subnational mitigation policies) and to avoid a
possible bias effect toward big country areas, taking into account
our analytical sample of countries (n=179). For the sensitivity
analysis, we fitted all models again for data on COVID-19
spread removing the 5 top countries with the largest area
worldwide (ie, Russia, Canada, China, the United States, and
Brazil) and the top 3 countries with the largest area regionally
for Latin America and for Africa (Brazil, Angola, Argentina,
etc). Again, the observed results remained in the same direction
at the global and regional level, as was previously mentioned
(data not shown in the text).

Discussion

Principal Findings
This study analyzed the geographical and temporal COVID-19
spread among LMICs in Latin America, the Caribbean, and
Africa using the prospective space–time scan statistical
methodology and the impact of real-time population mobility
patterns during the implemented government interventions in
the area of interest between January 21 and May 18, 2020. First,
analyzing the current data with scan statistics at five prospective
time periods, it was shown that virus spread was rapid and at
alarming rates since March 15, where we detected 7 emerging
COVID-19 clusters, which at May 15 had spread to 28, among
the regions of Latin America, the Caribbean, and Africa. As
governments decide their strategies in response to the pandemic,
surveillance is of importance especially among LMICs that have
limited resources at their disposal; hence, the prospective scan
statistic could be used as a useful surveillance tool at the
international, national, and subnational levels. Second, as
presented in 4 country-specific examples, the prospective scan
statistic showed high predictive validity with classic surveillance

technics. Third, when the real-time mobility to parks, beaches,
and other similar places as well as the mobility to workplaces
were tested as individual factors, it was shown that these patterns
were related with reduced COVID-19 spread. However,
worldwide, the population movement to parks, beaches, and
other similar places (although more reduced than the reference
period) seemed to be related with increased virus spread with
all levels (intermediate, high, very high) of government control
policies activated (when compared with the low-level
government control policies). Fourth, similar trends were shown
for population mobility to workplaces when high and very
high–level control policies (after comparing them with low-level
government interventions) were implemented worldwide. Fifth,
stratified analysis for the Latin American, Caribbean, and
African regions showed a variety of patterns mostly following
the entire samples’ tendency (ie, real-time mobility to parks
when the social distancing measures were implemented).
Governments are applying social and mobility restriction
measures to slowdown the COVID-19 spread, but there is
limited information about the real-time population mobility
patterns, and based on our analysis, this information could help
public health authorities to design effective strategies to slow
down virus transmission.

The major strength of the prospective space–time scan
methodology is the ability to add dynamically updated data sets
and reapply the analysis to extract new emerging COVID-19
clusters, while it also has the ability to monitor the growing or
shrinking COVID-19 evolution among initial detected clusters.
Our analysis showed that Antigua and Barbuda had an emerging
COVID-19 cluster with one of the highest RRs in Latin America
and the Caribbean by the end of March 2020 and continues with
a shrinking magnitude by mid-May. Similar trends were reported
for Mexico and Chile. The same tool could be used subnationally
among these countries to detect emerging clusters at the
cross-national level (as has been done for the United States
[10]). Regarding African regions, Djibouti, Mauritius, and Egypt
showed growing and reducing magnitudes in COVID-19 spread
from January 21 to May 15, 2020. This kind of information
could be helpful to the relative stakeholders since it gives the
opportunity to the public health authorities to evaluate constantly
the effectiveness of the implemented mitigation and control
strategies. Our comparative analysis between prospective scan
and SIR modeling among 4 areas showed similar predictive
results in virus spread. As has recently been reported, effective
COVID-19 surveillance and monitoring need to include
additional information on suspected, probable, and negative
COVID-19 tests for a holistic understanding of COVID-19
transmission patterns [29], something that is often not possible
for LMICs and could be marked as a barrier. Thus, future
studies, data sets, and research funding are needed [30]. Health
policy research showed that countries should not phase out
social distancing policies until they establish strong systems
that could effectively monitor the COVID-19 spread [15]. For
this reason, at the early stages of the virus spread, the
prospective scan methodology could serve as a useful public
health surveillance tool especially among LMICs that are facing
substantial limitations to monitor and detect virus transmission.
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A lot of discussion has happened about the role of government
interventions and control policies on COVID-19 spread. Until
today, there is limited information on the impact of social
restrictions and control policies at the global, regional, and
national levels [15,25]. In Europe, the strictest government
policy measures are related with less virus spread [31]. Targeted
national health policies with effective screening and isolation
tools as well as support systems are needed [15]. Based on that,
real-time population mobility patterns during this intervention
and social distancing period could be useful to stakeholders and
policy makers to plan current and future public health–targeted
strategies. Recent studies showed the important role of
COVID-19–targeted strategies at the national level [32,33].
Moreover, this kind of information could serve among LMICs
with limited resources in social distancing implementation,
allowing them to plan targeted mobility control activities [34].

To date, although this kind of information is publicly available
from well-known crowdsource applications, analyses at a
national, regional, or global level are lacking. Our study used
the publicly available crowdsource mobility information and
showed that at the global level, when all kinds of government
control policies were implemented, mobility to parks, beaches,
and other leisure places was related with accelerated COVID-19
spread when compared with places where low-level control
policies were effective. At a global level, peoples’ mobility for
work was also related to increased virus spread when high-level
and very high–level government interventions were active, after
comparing with the reference category of low-level government
interventions. However, at the regional level (LMICs among
Latin America, the Caribbean, and Africa), the results were not
significant, showing that the aforementioned relation is mainly
driven from the rest of the areas around the world. At this point,
it has to be noted that, when we did not take into account the
interaction with governmental social distancing interventions,
the aforementioned mobility patterns were related with reduced
virus transmission.

During the period that a region is facing increased dynamics of
COVID-19 spread, social activities and engagement are
associated with increased risk for virus spread [35]. For this
reason, the WHO and other public health organizations are
recommending avoiding crowded conditions [36]. Recent data
from the United States showed that lower mobility to workplace
and retail locations is related with lower virus transmission [35].
Our entire sample analysis showed a positive relation between
mobility to places like parks and workplaces while governments
applied social distancing measures. Similar findings were also
reported by other researchers for the United States [35]. In
addition, our regional stratified analysis showed consistent
findings with the global one, except from the region of Africa.
Taking into account that human mobility is a complicated
concept (and at this point is analyzed collectively by using
crowdsource data), we may hypothesize that individuals’
behavior (use of face mask) [32], people’s dynamic network
[33] when visiting these places, and seasonality could be
potential explaining mechanisms of virus spread [35,37]. The
aforementioned findings could guide stakeholders on specific
social distancing implementations and enforcement planning
[38]. In the past months, countries are introducing various

nonpharmaceutical intervention strategies in their local health
policy agendas. These results can be used as roadmap indicators
for specific social distancing planning. Targeted implemented
policies could lead to further suppressed levels of virus spread,
with less negative effects on the economy and citizens [39]. To
this extent, a recent study noted that, during the phasing out of
government social distancing policies, higher mobility at
workplaces was correlated with increasing virus spread [40].

Effectiveness of the Current Measures and Current
and Future Challenges
To date, countries have adopted divergent restriction strategies
to suppress and halt COVID-19 transmission. Stricter social
distancing policies seem effective in suppressing virus spread
[31]. Differences in innovative surveillance techniques, virus
transmission monitoring, COVID-19 cases tracing, systematic
population testing, and isolating practices have been shown
[15]. Regions with previous experiences in infectious diseases
(eg, severe acute respiratory syndrome) have invested in their
public health care system’s reformation to efficiently handle
the current outbreak [15]. Western societies (eg, the European
Union and the United States) seem to lack this kind of planning
[41]. In addition, recent studies showed that COVID-19 spread
could be more rapid among more prosperous countries [15,42].
Countries need to organize their health systems [15,41],
establishing effective infectious diseases and crisis management
planning [43] (eg, enhance monitoring techniques and screening
tools) to prevent virus spread in the community. Future
longitudinal studies may be needed to better describe the relation
of real-time mobility data with COVID-19 transmission.

Strengths and Limitations
This is among the first studies using COVID-19 prospective
surveillance analysis among LMICs, exploring COIVD-19
spread in relation with real-time population mobility patterns.
However, this study shares common limitations with previous
studies of this kind [17,25]. Specifically, there were challenges
in capturing uncertainty (completeness of the WHO COVID-19
data set or government interventions being announced on one
day but only being applied after several days) and lags in data
availability, which may not fully capture temporal trends of
COVID-19 spread. We extracted only mobility patterns from
smartphones using Google software to ensure homogeneity of
the used information. In addition, this study had only the ability
to analyze data from regions in which mobile phone information
was obtainable [35]. For example, the use of crowdsourcing
digital data for the extraction of real-time population trends
through mobile phones may be limited particularly in Africa
(data for selected African countries reported that about one-third
of adults own smartphones) [44]. This may have altered the
findings of this study. In addition, certain large countries applied
subnational control policies at different time points, which could
have affected our findings. In that manner, we applied a
sensitivity analysis excluding large countries from the global
and regional sample, and testing whether those countries had
an impact on the inferential analyses. The applied
aforementioned analysis showed that the results remained
similar. Additionally, our investigation focused on data
variations in the COVID-19 spread from January to May 2020.
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Therefore, the results of this paper should be interpreted with
caution, as they only relate to the underlying data collection
conditions and period. As COVID-19 is an infection with
dynamic transmission and all the variables we use may variate
in the future, we do not think it would be appropriate to make
conclusions beyond May, as further data and analysis would be
required. To this extent, it should also be noted that this mixed
model analysis assumes that the impact of each relative mobility
pattern change has the equal relative impact among countries
and across time (as an additional adjustment to this extent was
not possible). Next, although our study adjusted for various
confounders, we could not consider physical distancing
recommendations (ie, 1 or 2 meters) or other precautionary
measures and conditions due to lack of data. In addition, some
of the mobility variables used in this analysis (eg, parks) may
be also affected from weather seasonality. The prospective
space–time scan statistic used case data for confirmed cases, so
suspected and probable cases were not considered due to the

unavailability of the WHO COVID-19 data set. In addition, the
prospective scan methodology does not allow for adjustment
of age and other covariates. These limitations may alter the true
magnitude of the COVID-19 spread as presented by using the
prospective scan statistic.

Conclusions
We used publicly available WHO daily reports to identify
emerging space–time clusters of COVID-19 at the country level
among Latin America, the Caribbean, and Africa for five
separate time periods. It was shown that the prospective scan
is a tool that LMICs could use to detect emerging clusters and
implement specific control policies and interventions to
slowdown COVID-19 transmission. In addition, we found that
different kinds of real-time population mobility patterns were
related with different magnitudes of COVID-19 spread
worldwide. The findings of this study give insights that may
help in COVID-19 screening and detection strategies as well
as in government–specific COVID-19 control planning.
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