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Abstract

Background: More than 79.2 million confirmed COVID-19 cases and 1.7 million deaths were caused by SARS-CoV-2; the
disease was named COVID-19 by the World Health Organization. Control of the COVID-19 epidemic has become a crucial issue
around the globe, but there are limited studies that investigate the global trend of the COVID-19 pandemic together with each
country’s policy measures.

Objective: We aimed to develop an online artificial intelligence (AI) system to analyze the dynamic trend of the COVID-19
pandemic, facilitate forecasting and predictive modeling, and produce a heat map visualization of policy measures in 171 countries.

Methods: The COVID-19 Pandemic AI System (CPAIS) integrated two data sets: the data set from the Oxford COVID-19
Government Response Tracker from the Blavatnik School of Government, which is maintained by the University of Oxford, and
the data set from the COVID-19 Data Repository, which was established by the Johns Hopkins University Center for Systems
Science and Engineering. This study utilized four statistical and deep learning techniques for forecasting: autoregressive integrated
moving average (ARIMA), feedforward neural network (FNN), multilayer perceptron (MLP) neural network, and long short-term
memory (LSTM). With regard to 1-year records (ie, whole time series data), records from the last 14 days served as the validation
set to evaluate the performance of the forecast, whereas earlier records served as the training set.

Results: A total of 171 countries that featured in both databases were included in the online system. The CPAIS was developed
to explore variations, trends, and forecasts related to the COVID-19 pandemic across several counties. For instance, the number
of confirmed monthly cases in the United States reached a local peak in July 2020 and another peak of 6,368,591 in December
2020. A dynamic heat map with policy measures depicts changes in COVID-19 measures for each country. A total of 19 measures
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were embedded within the three sections presented on the website, and only 4 of the 19 measures were continuous measures
related to financial support or investment. Deep learning models were used to enable COVID-19 forecasting; the performances
of ARIMA, FNN, and the MLP neural network were not stable because their forecast accuracy was only better than LSTM for
a few countries. LSTM demonstrated the best forecast accuracy for Canada, as the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) were 2272.551, 1501.248, and 0.2723075, respectively. ARIMA
(RMSE=317.53169; MAPE=0.4641688) and FNN (RMSE=181.29894; MAPE=0.2708482) demonstrated better performance
for South Korea.

Conclusions: The CPAIS collects and summarizes information about the COVID-19 pandemic and offers data visualization
and deep learning–based prediction. It might be a useful reference for predicting a serious outbreak or epidemic. Moreover, the
system undergoes daily updates and includes the latest information on vaccination, which may change the dynamics of the
pandemic.

(J Med Internet Res 2021;23(5):e27806) doi: 10.2196/27806
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Introduction

In December 2019, the first cases of a new respiratory disease
caused by a novel coronavirus were reported in Wuhan, Hubei
province, China [1]. The novel coronavirus was subsequently
identified and named SARS-CoV-2, and the disease caused by
SARS-CoV-2 was named COVID-19 by the World Health
Organization (WHO) [2,3]. Since the time the first cases were
reported, many confirmed cases have been reported in various
other countries. By March 11, 2020, more than 118,000
confirmed cases and 4291 deaths had been reported across 114
countries. The WHO declared the COVID-19 outbreak a
pandemic [4], which continues to worsen. As of December 27,
2020, there were more than 79.2 million confirmed cases and
1.7 million deaths [5]. COVID-19 management has emerged
as an urgent global issue. Many studies have investigated the
factors that contribute to the spread of COVID-19.
Demographic, geographic, and economic factors have influenced
the spread of the disease. However, social factors, especially
governmental response to the pandemic, have significantly
influenced disease severity within certain countries [6-11]. Some
countries have shown that implementing rigorous public health
care management strategies can successfully control infection
spread and maintain normal societal functioning [11].

The rapid development of artificial intelligence (AI) in the health
care field offers new opportunities to medical researchers. There
are many studies that employ AI techniques in disease
predictions, such as Yu et al, who have established an online
machine learning health assessment system for metabolic
syndrome and chronic kidney diseases [12]. Lin et al utilized
multicenter data to develop an end-stage liver disease mortality
prediction scoring system [13]. Ayyoubzadeh et al analyzed the
rate of COVID-19 incidence in Iran using Google Trends data
and deep learning methods [14]. Yeung et al combined several
online COVID-19 data to train and evaluate five non–time series
machine learning models in predicting confirmed infection
growth [15]. These studies have shown that AI is suitable for
evaluating disease trends and can provide governments with
information that can be used to prevent outspread. There are
abundant research findings on COVID-19–related AI prediction

and the utilization of mobile sensor data with cell broadcast to
identify and manage potential contacts [14,16-20].

However, most of these studies have been conducted in a
specific region or single country. There is public health
consensus that vaccination is an effective prevention strategy.
However, with regard to its efficiency and medical expenditure,
long-term follow-up investigation is needed to evaluate the
clinical effects of vaccines that have not undergone the standard
approval process and tests of their mid- and long-term side
effects on different groups [21]. Moreover, different studies
have focused on different time frames in pandemic trend
prediction. They have drawn the same conclusion: there is a
high possibility that COVID-19 will remain a common illness
or become endemic in the future, and we must learn to coexist
with it. Many factors influence how the pandemic will progress
(eg, herd immunity), and governmental and individual responses
vary widely across nations [22,23]. Successful epidemic
prevention and control measures remain the most efficient
solution for public health problems. However, there is limited
literature on the relationship between governmental responses
and the severity of the domestic spread of COVID-19 [24,25].

Therefore, we constructed an online AI system that contains
worldwide COVID-19–related data, each country’s
governmental responses to the COVID-19 pandemic, and each
country’s population data [26]. The COVID-19 Pandemic AI
System (CPAIS) can be used to analyze the dynamic trend of
the COVID-19 pandemic, facilitate forecasting and predictive
modeling, and produce heat map visualization of policy
measures in different countries.

Methods

Data Acquisition and System
The CPAIS integrated two data sets: the data set from the Oxford
COVID-19 Government Response Tracker (OxCGRT) from
the Blavatnik School of Government, which is maintained by
the University of Oxford, and the data set from the COVID-19
Data Repository, which was established by Johns Hopkins
University Center for Systems Science and Engineering (CSSE).
The COVID-19 Data Repository also contains each country’s
population data, which are obtained from the United Nations
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World Population Prospects [27-31]. A total of 171 countries
that featured in the databases were included in the system.

The CPAIS was placed on a sever and embedded with time
series deep learning models to provide forecasting analyses by
the statistical program R, version 3.6.3 (The R Foundation). We
used the React.js, version 16.14.0, framework; the styling
language Sass (Syntactically Awesome Style Sheets), version
4; and the programming language JavaScript ES6 for front-end
implementation. As for back-end implementation, we used Java
8; Spring Boot, version 2.0.2 (VMware, Inc); and R as the
programming languages, and we used the MySQL (Structured
Query Language), version 5.7.21, database as the storage system.
In addition, this AI-based system has been programmed to
update itself by auto-retrieving information from all data sets
each morning at 9 AM (GMT + 8). The auto-retrieval can be
summarized in the following three steps: (1) setting the crawler
to fetch the data from the source databases, (2) integrating the
updated data into our own MySQL database, and (3) conducting
statistical analysis using the database-stored procedure.

The COVID-19 Data Repository established by Johns Hopkins
University CSSE contains three categories of data concerning
COVID-19 incidence—confirmed cases, recovered cases, and
number of deaths—with country geolocation retrieved from
192 affected countries since January 21, 2020. For most of the
countries, country-level data concerning the numbers of reported
cases are available. Province- and city-level data concerning
reported cases are available for some countries. To depict the
COVID-19 pandemic comprehensively, we archived
country-level data. The number of reported cases was updated
daily using data retrieved from multiple online sources. The
number of cases was retrieved from the WHO and the regional
and local health departments of the affected countries, including
their centers for disease control and prevention. All data were
shared freely through GitHub.

OxCGRT has been collecting and documenting governmental
responses to the COVID-19 pandemic based on several
parameters since January 1, 2020. The data set includes 183
countries and 20 items (19 indicators and 1 free response) that
characterize governmental responses. There are three types of
items: (1) ordinal scale for severity or intensity, (2) numeric
scale for specific numbers, and (3) text for other information
types. These items can be further classified into four groups:
(1) containment and closure policies (8 indicators), (2) economic
policies (4 indicators), (3) health system policies (7 indicators),
and (4) miscellaneous policies (1 free response). Miscellaneous
policies were not included in this system because they were
assessed using a free-text response format and limited data were
available. OxCGRT data were retrieved from publicly available
sources and regularly updated on GitHub.

Statistical Analysis and Deep Learning Techniques

Overview
Four time series models were considered for this study. Each
model was applied to all the countries in our system to facilitate
forecasting. With regard to 1-year records (ie, whole time series
data), records from the last 14 days served as the validation set,
whereas earlier records served as the training set. Using records
from the last 14 days, forecasting performance was evaluated
based on the following five indices: mean error (ME), root mean
square error (RMSE), mean absolute error (MAE), mean
percentage error (MPE), and mean absolute percentage error
(MAPE) [32,33]. RMSE, MAE, and MAPE are always positive
values, whereas RMSE, MPE, and MAPE are scaled measures.
The hyperparameters for each model can be found in Table S1
in Multimedia Appendix 1, and the diagram of the neural
networks can be found in Figure 1. R, version 3.6.3 (The R
Foundation), was used to conduct statistical analysis and apply
deep learning techniques.
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Figure 1. The structure of the COVID-19 Pandemic AI System (CPAIS). ARIMA: autoregressive integrated moving average; CSSE: Center for Systems
Science and Engineering; FNN: feedforward neural network; LSTM: long short-term memory; MLP: multilayer perceptron; NN: neural network.

Autoregressive Integrated Moving Average
An autoregressive integrated moving average (ARIMA) model
is a statistical regression analysis that utilizes time series data
to either understand the data set better or predict future trends.
The purpose of ARIMA is to forecast future trends by examining
differences between values in the series rather than by using
actual values [34,35]. The three main components of ARIMA
are autoregression, integration, and moving average.
Autoregression refers to a model with a changing variable that
regresses on its lag values. Integration represents the differences
between data values and their previous values for stationary
time series. Moving average incorporates the dependence
between an observation and an error term from a moving
average model. An ARIMA model can be comprehended by
outlining each component, which serves as a parameter with a
standard notation. For ARIMA models, there are three standard
notations, wherein integer values serve as substitutes for the
parameters to indicate the type of ARIMA model used.

The parameters can be defined as follows:

• p: the number of time lags
• d: the degree of differencing
• q: the size of the moving average window.

In this study, we used the auto.arima function for R, which
returns the best ARIMA model based on either the Akaike
information criterion value or Bayesian information criterion
value. The function searches for possible models within the
order constraints provided in the forecast package for R [36,37].

Feedforward Neural Network
A feedforward neural network (FNN) is the simplest type of
artificial neural network [38]. The FNN algorithm is biologically
inspired. It consists of several simple neuron-like units that are
organized in layers. In FNN, information moves in one
direction—from the input nodes, through the hidden nodes, and
to the output nodes. The mechanism of an FNN is different from
that of recurrent neural networks (RNNs) in that connections
between the units do not form cycles or loops in FNNs [38,39].
In this study, we used the nnetar function for R, which
constructs FNNs with a single hidden layer and lagged inputs
for the purpose of forecasting univariate time series. Also, in
the forecast package, the function fits into a single hidden-layer
neural network for forecasting, with the nnet function included
in the nnet package for R [40,41].

Multilayer Perceptron Neural Network
Like FNNs, multilayer perceptron (MLP) neural networks are
common deep learning feedforward networks. An MLP neural
network is also a supervised learning algorithm used for
classification. The main difference is that between the input and
output layer, there can be multiple nonlinear layers, called
hidden layers, which are the true computational engine of the
MLP neural network. MLP neural networks use a learning
technique called back-propagation for training. Their multiple
layers and nonlinear activation distinguish MLP neural networks
from a linear perceptron [42-44]. In other words, MLP neural
networks are designed to solve nonlinearly separable problems.
Specifically, the units of MLP neural networks apply a sigmoid
function as an activation function. In the back-propagation
technique, the difference between the output values and the
ground truth answer are calculated using predefined error
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functions. The error is fed back through the network. Using this
information, the algorithm can adjust the weights of each
connection to significantly reduce the value of the error function.
In this study, the mlp function fits MLP neural networks for
time series forecasting executed using the nnfor package [45-47].

Long Short-term Memory
Long short-term memory (LSTM) networks are a special type
of recurrent deep learning neural network that learns order
dependence in sequence prediction problems. LSTM was
introduced by Hochreiter and Schmidhuber in 1997, and it is
now widely used in a variety of studies and projects [48,49]. A
typical RNN makes use of sequential information. These
networks are described as recurrent because they use their
internal state to process the variable length sequences of inputs.
It is difficult for a standard RNN to carry forward information
from prior time steps to later ones if a sequence is too long,
because it may exclude important information from the
beginning. Therefore, LSTM has an advantage in that
information can be remembered for long periods of time. Unlike
traditional FNNs, LSTM has feedback connections, whereby
the output from the previous step is supplied as input in the
current step [50]. A common LSTM unit includes a cell, an
input gate, an output gate, and a forget gate. The cell recalls
values over an arbitrary time interval, and the three gates
regulate the flow of information in and out of the cell. In this
study, we used the keras R package to recall TensorFlow for
conducting the LSTM analysis [51]. TensorFlow was developed
by the Google Brain team and released in 2015. It is a free
open-source software library for machine learning techniques,
particularly deep neural networks [52].

Data Visualization of Time Series Data Sets
Heat maps can be generated to depict variations in policy
measures for the COVID-19 pandemic across time. Gradient
color bars represent changes in measures across different levels
and the support received in the form of financial assistance and
investments. The time schedule presented along the horizontal
axis will be updated daily. Cumulative and monthly records are
represented using histograms and line charts, respectively. This
system also provides a download option to interested countries
and comparable services with dynamic rankings of the total
number of confirmed cases and deaths and declining trends for
the COVID-19 pandemic. The following simple regression
formula is used to examine declining trends with dynamic time
intervals:

yi = α + βxi

where β is the slope that represents an increasing or decreasing
trend.

Results

In this study, the CPAIS was developed to explore variations,
trends, and forecasts related to the COVID-19 pandemic across
several counties. A drop-down list for country selection is
available. The framework of the CPAIS—from data acquisition
and preprocessing to deep learning model application,
forecasting, and data visualization—is presented in Figure 1. It
includes a combination of two data sets, construction of

databases for deep learning prediction and statistical analysis,
four statistical or deep learning models for forecasting, and
front-end functions for data visualization.

The numbers of confirmed cases, recovered individuals, and
deaths in 15 countries are listed by month in Table 1. The
number of confirmed monthly cases in the United States reached
a local peak in July 2020 and another peak of 6,368,591 in
December 2020. Regarding the United States, the number of
recovered cases after December 14, 2020, is not recorded in the
COVID-19 Data Repository database. The total population for
each of the 15 countries in 2020 is also mentioned in the table.
The dynamic heat map with policy measures is shown in Figure
2, which depicts changes in COVID-19 measures for each
country, with Australia used as an example. A total of 19
measures were embedded within the three main policy sections
(ie, containment and closure policies, economic policies, and
health system policies). Economic policies have the least number
of measures, and only 4 of the 19 measures are continuous
measures related to financial support or investment.

Deep learning and statistical learning models were used to
enable COVID-19 forecasting. The function facilitates 14-day
forecasting using four powerful algorithms (Figure 3). ARIMA
is the statistical learning model with time series regression; the
other models are deep learning neural network algorithms with
a single hidden layer, multiple hidden layers, or recurrent
techniques. The performance of forecasting for each model for
the 15 countries listed in Table 1 is shown in Table 2. A small
error value indicates a perfect fit for the data, but the comparison
between the different countries was not meaningful because
they had different baselines based on their populations. For
most of the countries, LSTM demonstrated better forecast
accuracy with fewer errors than the other models. The
performances of ARIMA, FNN, and the MLP neural network
were not stable because their forecast accuracy was only
competitive with LSTM for some specific countries. For
example, LSTM demonstrated the best forecast accuracy for
Canada. The RMSE, MAE, and MAPE were 2272.551,
1501.248, and 0.2723075, respectively. ARIMA
(RMSE=317.53169; MAPE=0.4641688) and FNN
(RMSE=181.29894; MAPE=0.2708482) demonstrated better
performance for South Korea.

Figure 4 presents descriptive statistics for specific countries.
On the website, three countries can be simultaneously compared,
and the period can be customized. Users can select the countries
that are of interest to them and compare the COVID-19–related
data. For each respective country, a line chart showing the
number of confirmed cases, recoveries, and deaths per month
is generated. In addition, a global comparison is also provided
on the website.

Users can rank 171 countries based on five different parameters:
(1) the number of confirmed cases, (2) confirmed cases by
percentage of population, (3) the number of confirmed deaths,
(4) confirmed deaths by percentage of population, and (5)
declining trend. Figure 5 shows an example of how the top 20
countries can be ranked using confirmed cases by percentage
of population. With regard to customization, the ranking
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function is flexible. The selected countries and specific time period can be changed by the user.
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Table 1. The numbers of confirmed cases, recovered individuals, and deaths in 15 countries by month in 2020.

DecNovOctSeptAugJulyJuneMayAprMarFebJanCountry (total

populationa)
and cases

United States (N=329,466,283)

6,368,5914,466,4511,914,9931,201,8221,464,6761,922,730834,359718,241884,047192,152177Confirmed

77,57237,03823,92823,51529,59126,30620,11341,70360,699527110Deaths

1,151,763b1,533,841771,790655,863746,665717,529275,873290,811146,923701770Recovered

Canada (N=37,855,702)

202,852144,24476,20630,18912,63712,18413,61838,02245,9308507164Confirmed

3485196084117319333012764064320910100Deaths

189,043105,64361,77121,16113,11433,78619,90727,78919,832158600Recovered

Mexico (N=127,792,286)

312,551181,746181,746143,656174,923198,548135,42571,44018,009121140Confirmed

19,86714,10714,10713,23217,72618,91917,839807118302900Deaths

251,209151,364151,364131,785169,107152,577110,76652,34911,3883500Recovered

Brazil (N=212,559,409)

1,340,095800,273724,670902,6631,245,7871,260,444887,19281,47081,470571520Confirmed

21,82913,23615,93222,57128,90632,88130,2805805580520100Deaths

1,251,042592,641730,3871,006,1831,259,7371,220,536581,76335,80835,80812700Recovered

Argentina (N=45,195,777)

200,981257,609415,923333,266226,433126,77247,67912,4233374105400Confirmed

4515772814,0658277511722367683211912700Deaths

169,449283,288379,294293,450217,41561,75216,6924080101624000Recovered

Chile (N=19,116,209)

57,23041,48747,26551,26556,05976,274155,843105,84814,858284220Confirmed

11981203146614521832376946348272151200Deaths

50,77839,96250,05352,71055,55287,098198,50234,147842415600Recovered

United Kingdom (N=67,886,004)

862,498618,940558,947117,76333,29019,57727,67778,768139,95638,754592Confirmed

15,07711,9004412644315795295210,77324,297245700Deaths

19097314666912436918033168017180Recovered

France (N=65,273,512)

400,792864,165808,678285,04593,78923,13413,05421,710114,47252,727955Confirmed

11,94015,993484013463724221041442620,847353020Deaths

32,22944,81824,46311,84250265365792618,99739,9639501120Recovered

Greece (N=10,423,056)

33,57966,02020,7768158584010684923261277131040Confirmed

2432178023512560141735914900Deaths

70,690011,3887882243000013225200Recovered

Taiwan (N=23,816,775)

12412041262120513107283299Confirmed

000000011410Deaths

106503221223141012833090Recovered
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DecNovOctSeptAugJulyJuneMayAprMarFebJanCountry (total

populationa)
and cases

Thailand (N=69,799,978)

315522421515210713990127130316092317Confirmed

31010013441000Deaths

46221921310514969932792342314235Recovered

South Korea (N=51,269,183)

27,1178017274637075846148613477299886636313910Confirmed

3916051912319112386146160Deaths

15,068352826916468196516201191135036645381270Recovered

India (N=1,380,004,385)

803,8651,278,7271,871,4982,621,4181,995,1781,110,507394,872155,74633,466139421Confirmed

11,11715,51023,43333,39028,77719,11111,992425411193500Deaths

970,6951,398,0722,218,3122,433,3191,745,508746,462256,06082,784894512030Recovered

Australia (N=25,459,700)

51331749912778539936071843622074534169Confirmed

111923145697110751800Deaths

160266552343411,3672943422876538434792Recovered

Egypt (N=102,334,403)

22,151835643574259486125,76743,3264827482770910Confirmed

981384336509616185219943463464600Deaths

93873266295823,56533,29121,17812,4231224122415610Recovered

aTotal population in 2020.
bThe number of recovered cases after December 14, 2020, were not recorded in the COVID-19 Data Repository database (the record only includes
cases from December 1 to 14, 2020); therefore, this value was underreported.
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Figure 2. The interface of the dynamic heat map with policy measures on the COVID-19 Pandemic AI System (CPAIS) website.
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Figure 3. The COVID-19 Pandemic AI System (CPAIS) interface for machine learning prediction models facilitating 14-day COVID-19 forecasting.
The plot shows the curve for deep learning modeling of total cumulative confirmed cases.
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Table 2. Forecasting performance for each model in the validation set for the 15 countries.

Mean absolute percent-

age errorb
Mean percentage errorbMean absolute errorbRoot mean square

errorb
Mean errorbCountry (total populationa)

and methods

United States (N=329,466,283)

0.9562102–0.9538265183,888.691229,501.345–183,472.5153ARIMAc

1.048648–1.027988201,574.807251,014.19–197,967.69975FNNd

0.18627490.177482135,569.56145,932.60934,016.71589MLPe

0.1664009–0.0940904531,092.0641,667.98 g–17,670.38LSTMf

Canada (N=37,855,702)

0.6828342–0.68283423786.81464953.7659–3786.81463ARIMA

0.3898707–0.35030412133.57213146.8161–1902.8218773FNN

1.094643–1.0946436056.71047294.1933–6056.7104430MLP

0.27230750.048961961501.2482272.551306.1702LSTM

Mexico (N=127,792,286)

1.23913470.35012434841.25446281.987–3776.6237ARIMA

1.165534–1.14552416,156.129019,622.066–15,894.200241FNN

0.3969063–0.25176125455.2816534.119–3551.381635MLP

0.1716616–0.083864552334.1782883.836–1137.118LSTM

Brazil (N=212,559,409)

0.7228866–0.703216454,328.5569,053.95–52,913.8661ARIMA

2.240681–2.240681168,251.544204,577.061–168,251.54394FNN

0.412664–0.379722531,117.85643,395.965–28,723.33938MLP

0.1931052–0.0376876514,347.7316,085.02–2746.457LSTM

Argentina (N=45,195,777)

0.64339340.643393410,240.495912,832.603510,240.495912ARIMA

1.4020421.40204222,285.962426,555.12822,285.962404FNN

0.68679190.685776910,929.687413,689.553910,914.143275MLP

0.20246430.078034853202.6073920.9611253.045LSTM

Chile (N=19,116,209)

0.30485020.30485021823.55221992.351823.55216ARIMA

1.3639511.3639518171.77239157.98818171.7723060FNN

0.36226280.36226282169.70232435.45402169.702307MLP

0.10906340.1001373648.5224790.8397595.9308LSTM

United Kingdom (N=67,886,004)

1.7763311.705394441,580.215555,436.73540,161.7481ARIMA

0.7304511–0.730451117,129.95123,936.144–17,129.950943FNN

3.4821553.48215581,031.841102,155.323881,031.84MLP

0.68328040.683280415,560.9817,735.2915,560.98LSTM

France (N=65,273,512)

0.25652540.072872666633.6658181.3841807.5070ARIMA

2.3408442.34084461,075.99067,684.57561,075.99023FNN

0.39690220.372664810,239.30811,456.3829601.594851MLP

0.30006270.2415497784.8049254.2646262.693LSTM
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Mean absolute percent-

age errorb
Mean percentage errorbMean absolute errorbRoot mean square

errorb
Mean errorbCountry (total populationa)

and methods

Greece (N=10,423,056)

4.0033384.0033385423.21436072.07735423.2143ARIMA

0.2937978–0.01977488400.61927561.98452–21.8694361FNN

0.844399–0.8443991145.16541341.1596–1145.165405MLP

0.3821559–0.3821559512.1191565.7909–512.1191LSTM

Taiwan (N=23,816,775)

2.037997–2.037996915.9743417.288501–15.97434477ARIMA

0.8460623–0.846062326.5710077.379679–6.571007146FNN

1.257011–1.20057069.916202312.925238–9.485179MLP

0.3820354–0.32270332.9781513.322996–2.059649LSTM

Thailand (N=69,799,978)

23.78422423.78422381471.0821531620.870091471.082153ARIMA

23.65952423.6595241463.1099101611.2395731463.109910FNN

24.51650224.51650251517.2198411674.5850041517.21984066MLP

3.4352092.950519202.2714308.695173.2286LSTM

South Korea (N=51,269,183)

0.4641688–0.4540395265.29603317.53169–260.265311ARIMA

0.2708482–0.1226205154.2065181.29894–75.7162332FNN

1.978379–1.9631961145.576061419.83911–1138.0352476MLP

0.59787930.5978793323.9709342.9156323.9709LSTM

India (N=1,380,004,385)

0.18746880.187468819,113.77821,947.37519,113.77834ARIMA

0.09948717–0.0994581710,156.96313,612.018–10,156.962689FNN

0.200557180.205571820,964.35824,556.93620,964.3576266MLP

0.1281378–0.12817813,037.6414,480.91–13,037.64LSTM

Australia (N=25,459,700)

0.095420630.0954206326.9606030.4020826.9606020ARIMA

0.66370380.6634038187.89592205.6998187.8959192FNN

0.2197826–0.0547857662.26121076.48186–15.69085695MLP

0.042121320.0208699911.9199114.390235.898776LSTM

Egypt (N=102,334,403)

1.7844591.78445942392.285713239.047322392.285714ARIMA

1.450171.450171944.558692641.981681944.5586880FNN

0.49886670.4988667669.96031936.05245669.96030638MLP
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Mean absolute percent-

age errorb
Mean percentage errorbMean absolute errorbRoot mean square

errorb
Mean errorbCountry (total populationa)

and methods

0.33119790.3304228438.0092500.6487437.0412LSTM

aTotal population in 2020.
bFive commonly used measures for evaluation of forecasting include mean error, root mean square error (RMSE), mean absolute error (MAE), mean
percentage error, and mean absolute percentage error (MAPE), according to the records of the latest 14 days in 2020. The RMSE, MAE, and MAPE
are always positive values.
cARIMA: autoregressive integrated moving average.
dFNN: feedforward neural network.
eMLP: multilayer perceptron.
fLSTM: long short-term memory.
gThe values for best performances in each country are italicized.

Figure 4. The interface of descriptive statistics for selected countries with customization on the COVID-19 Pandemic AI System (CPAIS) website.
CSV: comma-separated values.
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Figure 5. The interface for the ranking of selected countries with customization on the COVID-19 Pandemic AI System (CPAIS) website.

Discussion

Principal Findings
A combination of data on COVID-19 incidence and policy
measures can be used to examine the relationship between the
progression of the COVID-19 pandemic and governmental
epidemic prevention efforts. The CPAIS can help users
determine whether policy measures are successful in preventing
COVID-19 transmission. According to a report published by
the Lowy Institute for International Policy [53], a ranked
comparison of the performance of countries in managing the
COVID-19 pandemic shows that New Zealand, Vietnam, and
Taiwan are the top three countries with the highest average
scores on their six indicators. Besides, New Zealand and Taiwan
successfully controlled the COVID-19 outbreak without
international financial support (Figures S1-S3 in Multimedia
Appendix 1). Specifically, New Zealand had immediately
implemented infection control and closure policies with a
flexible adaptation on measures; in addition, Taiwan had
enforced strict guidelines regarding international travel that not
only contributed to infection control but also rendered the strict
measures described in the containment and closure policies
unnecessary. Furthermore, both countries had taken great efforts
to maximize the implementation of testing and contact tracing
policies during 2020. In this regard, both countries are
outstanding examples. The vivid heat maps in the CPAIS
illustrate time-dependent fluctuations in the measures and help
users monitor variations in, and the effects of, policy measures
in each country.

Several time series AI learning techniques have been used for
forecasting purposes. Both statistical learning and deep learning
models demonstrated efficacious performance for different
countries. Although the values are not absolute, they are
comparable between countries with different total populations.
When compared to the results of a past study [19], performance
for the same model and country was better in this study because
more extensive time series data were included in our system.
In addition, 14-day COVID-19 trend forecasting can serve a
useful alert that will help governments and experts reduce the
incidence of COVID-19. Furthermore, different AI learning
techniques have unique advantages.

According to the Wold decomposition theorem [34,54,55], the
autoregressive moving average model is theoretically sufficient
to describe a regular stationary time series. It is possible to
change a nonstationary time series into a stationary one, such
as by using differencing. As noted earlier, ARIMA models have
three components: autoregression, integration, and moving
average. They are applied to data with evidence of
nonstationarity in the mean, whereby an initial differencing step
can be applied one or more times to eliminate the nonstationarity
of the mean function in the trend. We used the auto.arima
function for R to choose the best model according to either the
Akaike information criterion, corrected Akaike information
criterion, or Bayesian information criterion value; the auto.arima
function also conducts the model search within the order
constraints provided. FNN is similar to ARIMA because the
fitted model is analogous to an autoregression(p) model, where
p is the order but with nonlinear functions for nonseasonal data
in this study. Therefore, it is denoted as a neural network
autoregression(p,k) model called NNAR, where k represents the
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number of hidden nodes. That is why, for some countries,
ARIMA and FNN yielded similar outcomes for forecast
accuracy. Differences between the two models still exist; the
error can be reduced only for FNN by increasing the number
of iterations, but the iteration time will be increased as a result.

The capabilities of neural networks are attributable to the
hierarchical or multilayered structure of the networks. The data
structure can include features at different scales or resolutions
and combine them into higher-order features. After repeating
the learning process for a sufficient number of training cycles,
the network will transition to some state where the error term
is small enough. Generalization and tolerance are the two main
characteristics. First, neural networks permit generalization
because they can classify both unknown and known patterns
with the same distinguishing features. Second, neural networks
are highly fault tolerant. Because of their distributed nature,
they will continue to function even if a significant fraction of
neurons and interconnections fail. In general, increasing the
number of hidden nodes may enhance the performance of
prediction, and increasing the number of networks to train may
result in an ensemble forecast.

The core idea of LSTM lies in the cell state—the horizontal line
that runs down the chain with information flowing alongside
(Figure 6). In addition, LSTMs have the ability to remove or
add information to the cell state, controlled by the gates, which
are a pathway through which information can be allowed to
pass. They consist of a sigmoid neural net layer and a pointwise
multiplication operation. LSTM networks are powerful in

promptly forecasting series data since there can be lags of
unknown duration between events in time series. Hence, when
compared to other traditional RNNs in this study, LSTM
networks do not have the vanishing gradient problem. Thus,
LSTM has the advantages of being relatively insensitive to time
intervals and of making fewer errors in prediction when
compared to other methods.

In the CPAIS, long-term cumulative records of confirmed cases,
recoveries, and deaths are included. In addition, daily figures
for these metrics are provided for each month. Thus, short-term
trends can be examined using this system. Users can compare
three or more countries and visualize the relative incidence of
COVID-19 within a specific time duration. Short-term and
long-term trends can be simultaneously viewed. In previous
studies [14,19,20], only a limited number of countries were
included for forecasting. Our system contains 171 countries and
provides information about policy measures. Further, data
visualization, statistical and deep learning for incidence
forecasting, and customized ranking are possible. Based on their
objectives, users can select country names and time periods.
Similar cultural backgrounds, neighboring geographical
characteristics, and high-frequency trading may also serve as
attractive features. In particular, a declined ranking is calculated
by our system to explore the effectiveness of COVID-19
management strategies implemented in 2020. Thus, the CPAIS
is a comprehensive AI-based service that is available on the
internet. It relies on big data and offers data visualization, deep
learning–based prediction, and customized comparison. This
system can be used to investigate COVID-19 progression trends.

Figure 6. Diagram of the long short-term memory neural network with three functional gates.

Limitations
To the best of our knowledge, this is the first web-based machine
learning system that can explore variations, trends, and forecasts
related to the COVID-19 pandemic across 171 countries. This
pilot system still has several limitations. First, this database
relies heavily on the source databases and shares similar
limitations with the source databases. For example, the source
databases did not consider the number of COVID-19 patients
that were traveling internationally, and this may result in
inaccurate analysis for a small number of countries. However,
we think that the number of COVID-19 patients who were
traveling internationally is small, as most countries imposed
COVID-19–negative tests or proof of vaccination before

allowing the traveler into the country. Second, the CPAIS cannot
be updated daily if the source databases are not updated. For
example, at present, the number of recoveries in the United
States was last updated on December 14, 2020. So the number
of recoveries in the United States may not be accurate. Finally,
since the main purpose of this platform is to consolidate raw
data retrieved from various databases and associated measures
of pandemic policy implementation, we remind the reader to
use text mining, local reports, and information retrieved from
the medical system of a given country for further assessment.

Conclusions
In general, the CPAIS collects and summarizes information
about the COVID-19 pandemic and offers data visualization
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and deep learning–based prediction. It may be a useful and
consequential reference resource for any serious outbreak or
epidemic that may occur in the future. In addition, information
about the vaccine is also stored in our system. It may be used
to evaluate the efficacy of the vaccine in different countries in
the future. Moreover, the 2-week machine learning forecasts

may serve as warning signs and highlight current trends in the
epidemic that have been made apparent by AI techniques. To
conclude, the CPAIS can be used to summarize several factors
that can influence the effectiveness of epidemic prevention and
predict the next serious outbreak.
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