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Abstract

Background: With the rapid growth of the older adult population worldwide, car accidents involving this population group
have become an increasingly serious problem. Cognitive impairment, which is assessed using neuropsychological tests, has been
reported as a risk factor for being involved in car accidents; however, it remains unclear whether this risk can be predicted using
daily behavior data.

Objective: The objective of this study was to investigate whether speech data that can be collected in everyday life can be used
to predict the risk of an older driver being involved in a car accident.

Methods: At baseline, we collected (1) speech data during interactions with a voice assistant and (2) cognitive assessment
data—neuropsychological tests (Mini-Mental State Examination, revised Wechsler immediate and delayed logical memory,
Frontal Assessment Battery, trail making test-parts A and B, and Clock Drawing Test), Geriatric Depression Scale, magnetic
resonance imaging, and demographics (age, sex, education)—from older adults. Approximately one-and-a-half years later, we
followed up to collect information about their driving experiences (with respect to car accidents) using a questionnaire. We
investigated the association between speech data and future accident risk using statistical analysis and machine learning models.

Results: We found that older drivers (n=60) with accident or near-accident experiences had statistically discernible differences
in speech features that suggest cognitive impairment such as reduced speech rate (P=.048) and increased response time (P=.040).
Moreover, the model that used speech features could predict future accident or near-accident experiences with 81.7% accuracy,
which was 6.7% higher than that using cognitive assessment data, and could achieve up to 88.3% accuracy when the model used
both types of data.

Conclusions: Our study provides the first empirical results that suggest analysis of speech data recorded during interactions
with voice assistants could help predict future accident risk for older drivers by capturing subtle impairments in cognitive function.

(J Med Internet Res 2021;23(4):e27667) doi: 10.2196/27667
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Introduction

As the world's older adult population increases, car accidents
involving older adults have become an increasingly serious

social problem. While it has been reported that older drivers
have an increased risk of car accident involvement per unit
distance travelled [1-4], they also showed a substantially higher
rate of serious injury than that of middle-age car drivers [5,6].
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Even in normal aging, there is a decline in many cognitive
abilities related to driving, and this cognitive decline is known
to be one of the risk factors for older adults being involved in
car accidents [7-9]. Associating cognitive assessment scores
with either self-reported car accidents, crash records, or on-road
driving measures has been investigated to identify predictors
of driving safety (in previous empirical studies [7]). In particular,
cognitive abilities such as visual attention, short-term memory,
and executive functions (evaluated with neuropsychological
tests) were consistently shown to have associations with driving
safety [7,10-12]. In this respect, if cognitive impairments
relevant to driving safety in older adults can be inferred solely
from behavior data in everyday situations in a passive way, this
would be beneficial for accident prevention.

Speech in daily life can be used a potential data sources for
determining cognitive impairments related to driving safety.
Speech involves multiple interacting cognitive abilities including
attention, memory, and executive functions [13,14]. Many
empirical studies have used speech data to identify cognitive
impairments resulting from aging and diseases such as
Alzheimer disease [15-18] and characterized speech changes
related to cognitive impairments by extracting linguistic and
paralinguistic features from speech data [19-25]. For example,
difficulties with word finding and word retrieving have been
quantified by tallying pronoun frequency and pause durations
[19,20,24,26-28]. A reduction in speech expressiveness has also
been quantified by measuring lexical diversity and speech rate
[19,23,29-31]. Using a combination of these features, previous
studies [19-25,29] have succeeded in differentiating individuals
with cognitive impairments from healthy controls. Although no
study has investigated the relationship between speech data and
driving safety, it is reasonable to explore the possibility that
speech data could be used for inferring ability to drive safely
from changes in cognitive functioning in older drivers.

At the same time, there is growing interest in using speech data
that can be collected in everyday situations for applications in
health care owing to the popularity of voice-based interaction
systems such as voice assistants in smart speakers and
smartphones [32-34]. One approach is to provide various types
of voice-based tests via a smart-speaker platform. For example,
previous studies [35,36] have used mobile apps for collecting
speech responses to neuropsychological tasks such as verbal
fluency and picture description tasks; they showed accurate
classification rates in detecting patients with Alzheimer disease
[35] and dementia [36]. Another approach is to analyze

health-related insights from speech data collected during daily
voice-based interactions. For example, vocal characteristics in
speech data during typical tasks on smart speakers appeared to
be associated with neuropsychological test scores [37], while
linguistic features extracted from phone conversation data were
significant indicators for differentiating patients with Alzheimer
disease from older adults with normal cognition [38]. This
approach, focusing on speech data that can be collected in
everyday situations, would increase opportunities for frequent
assessment by facilitating passive and unobtrusive monitoring.

In this study, we aimed to investigate the relationship between
speech data and future driving experiences related to car
accidents in healthy older adults by collecting speech data during
interactions with a voice assistant with simulated tasks on smart
speakers and smartphones. We hypothesized that these speech
data could be used for predicting accident risk for older drivers.

Methods

Participants
We recruited healthy older adults aged 60 years or older through
recruiting agencies and advertisements in the local community
in Ibaraki, Japan. All examinations were conducted in Japanese.
Older adults met the inclusion criteria if they were in good
physical and mental health and had no serious diseases,
disabilities, mental illness (eg, major depression, bipolar
disorder, and schizophrenia), or neurodegenerative diseases (eg,
Parkinson disease and dementia). This study was conducted
with the approval of the University of Tsukuba Hospital Ethics
Committee (H29-065). All participants provided written consent
after the procedures of the study had been fully explained.

A total of 71 older individuals participated in the cognitive
assessments and speech data collection (women: 38/71, 53.5%;
age: range 61-80 years, mean 71.1, SD 4.9). Of the original 71
participants, 60 consented to the follow-up study about their
driving experiences (women: 33/60, 55.0%; age: range 61-80
years, mean 70.8, SD 5.1; Table 1). They were contacted again
approximately one-and-a-half years after the speech data
collection (mean 17.3 months, SD 2.7) and answered a
questionnaire on their driving experiences within the past year.
The questionnaire included free-form questions about accidents
and near accidents; near accidents were described as infractions
and any other incidents while driving that they deemed to be
dangerous regardless of severity and culpability.
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Table 1. Demographic and assessment data for study participants.

P valueIndividuals with accident or near-
accident experiences (n=26)

Individuals without accident or
near-accident experiences (n=34)

Total (N=60)Variable

.4571.3 (5.3)70.5 (4.9)70.8 (5.1)Age (years), mean (SD)

.9313.6 (2.1)13.7 (2.2)13.7 (2.2)Education (years), mean (SD)

.53Sex, n (%)

10 (38)17 (50)27 (45)Men

16 (62)17 (50)33 (55)Women

.2827.9 (1.8)27.4 (1.8)27.6 (1.8)Mini-Mental State Examinationa, mean (SD)

.4310.2 (4.0)9.1 (3.7)9.6 (3.8)LM IAb, mean (SD)

.747.6 (3.6)7.3 (3.7)7.5 (3.6)LM IIAc, mean (SD)

.4514.2 (2.7)13.4 (2.7)13.7 (2.7)Frontal Assessment Batteryd, mean (SD)

.7232.6 (10.1)33.6 (9.7)33.2 (9.8)Trail making test-part A (seconds), mean (SD)

.7181.3 (28.2)95.7 (60.9)89.5 (49.7)Trail making test-part B (seconds), mean (SD)

.366.7 (1.0)6.7 (0.7)6.7 (0.8)Clock Drawing Teste, mean (SD)

.623.1 (2.4)2.8 (2.4)2.9 (2.4)Geriatric Depression Scalef, mean (SD)

.860.9 (0.7)0.8 (0.4)0.9 (0.6)Severity scores for atrophy in medial temporal
structures, mean (SD)

aThe total possible score ranges from 0 to 30.
bLM IA: immediate recall of the logical memory-story A of the Wechsler memory scale-revised for episodic memory; the total possible score ranges
from 0 to 25.
cLM IIA: delayed recall of the logical memory-story A of the Wechsler memory scale-revised for episodic memory; the total possible score ranges from
0 to 25.
dThe total possible score ranges from 0 to 18.
eThe total possible score ranges from 0 to 7.
fThe total possible score ranges from 0 to 15.

Cognitive Assessments
Cognitive assessments and examinations were those typically
used for the diagnosis of dementia and comprised 12 variables:
age, sex, education, 7 neuropsychological test scores
(Mini-Mental State Examination for global cognition; immediate
and delayed recall of the logical memory-story A of the
Wechsler memory scale-revised for episodic memory; the
Frontal Assessment Battery for executive function; the trail
making test-part A and B for executive function and attention;
and the clock drawing test for visuospatial function), and 2
clinical scores (Geriatric Depression Scale and the severity of
medial temporal lobe atrophy). The severity of medial temporal
lobe atrophy was evaluated using structural magnetic resonance
imaging (MRI) scans—1.5 T, T1-weighted images and a 3D
gradient-echo sequence—with the following parameters: sagittal
orientation with 1.2-mm thick sections; time repetition/time
echo: 2400/3.52 milliseconds; flip angle: 8°; field of view:
192×192. We expressed the severity of medial temporal lobe
atrophy as a Z score relative to cognitively healthy adults by
using a standalone, voxel-based specific regional analysis system
for Alzheimer disease [39]. Two psychiatrists (KN and TA)
reviewed the results of the cognitive assessments and confirmed
that participants did not meet the criteria for dementia based on
those of the National Institute on Aging and Alzheimer's

Association and Alzheimer disease Neuroimaging Initiative 2
[40].

Speech Data Collection
We simulated conversations with a voice assistant on modern
smart speakers and smartphones and collected the speech data
while performing 3 typical task scenarios: information retrieval
(asking for tomorrow’s weather), shopping online (booking a
movie ticket), and personal schedule management (creating a
calendar event). The tasks began with a simple scenario and
then advanced to the more complicated ones. Each task started
with an initiating question from the system (“what can I help
you with?”), with follow-up questions that asked for detailed
information related to the task. The follow-up questions were
presented in a fixed order. The questions consisted of four
categories—open-ended, to which participants responded with
a free-form sentence (Multimedia Appendix 1: Table S1);
multiple choice, to which participants responded by choosing
one of the options stated in the question; prepared input, to
which participants responded with information (eg, passcode)
specified by the experimenter; and confirmation, to which
participants responded by accepting or rejecting a statement
made by the system. The system presented at least 22 questions
in total to each participant for the 3 tasks.
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To simulate conversations, we took a Wizard-of-Oz [41]
approach, in which the participants were told that they were
talking with a computer system, though in fact the interaction
was mediated by an experimenter (ie, the wizard). We chose
this approach so that we could avoid uncertain factors such as
errors in automatic speech recognition. During the tasks, the
experimenter made the system present a question. After the
participant responded, the experimenter prompted the system
to move onto the next question if the response contained the
necessary information corresponding to the question; otherwise,
they would repeat the same question. Each open-ended, multiple
choice, and prepared input question presented by the system
was scripted in advance and the same for all participants. For
confirmation questions, we prepared several variations for each
question and the experimenter chose one, depending on the
participant’s previous response. For example, the experimenter

chose “you are purchasing one ticket, is it OK?” or “you are
purchasing two tickets, is it OK?” to have the participant confirm
the number of tickets to book.

The interface for speech data collection was implemented as a
tablet-based app on an Apple iPad Air 2. In the experiment,
participants sat down in front of the tablet and talked with the
system (Figure 1a). During the tasks, the tablet showed a screen
indicating whether it was speaking (Figure 1b) or listening
(Figure 1c). The experimenter sat behind the participant and
operated the system by using a separate interface hidden from
the participants. Speech data were recorded in raw format with
a sampling rate of 44.1 kHz through the embedded microphone
in the tablet. Each experimental session took approximately 30
minutes per participant, including instructions and wrap-up.
Additional details about our apparatus and procedure have been
previously published [37].

Figure 1. Overview of experimental setup: (a) setup for collecting speech data, (b) screen showing participant's turn, and (c) screen showing the tablet's
turn.

Data Analysis
From each participant’s speech data, we automatically extracted
84 paralinguistic speech features used in previous studies on
inferring cognitive impairments and detecting early signs of
Alzheimer disease [19,20,23,27-29,31,42,43]. They consisted
of 56 acoustic features and 28 prosodic features.

The acoustic features consisted of features related to
mel-frequency cepstral coefficients (MFCCs), jitter, and
shimmer. We used the mean and first-order derivatives of the
first 12 MFCCs, which represent the short-term power spectrum
of the speech signal. Jitter and shimmer features measure
cycle-to-cycle variations of fundamental frequency and
amplitude [44]. Prosodic features included speech rate, pitch
variability, phonation time, number of phonemes needed for
completing tasks, response time, total pause duration, and
proportion of long pauses (pauses >0.8 seconds). Both acoustic
and prosodic features were extracted from each task’s speech
data separately. We used Python (version 3.8) audio-processing
libraries (librosa, version 0.8.0 [45]; Signal_Analysis, version
0.1.26 [46]).

Statistical analyses were performed using Statistics and Machine
Learning Toolbox (version 11.1) for MATLAB (version R2017a,
The MathWorks Inc) environment. To assess the differences in
each variable between participants with and without accident
or near-accident experiences, we used 2-sided Mann-Whitney
tests for continuous data and chi-square tests for categorical

data. We did not correct for multiple comparisons, and P values
<.05 were considered significant.

The prediction models for differentiating individuals with and
without accident or near-accident experiences were built using
multiple types of binary classifiers with automatic sequential
forward selection of features. Model performance was evaluated
with both leave-one-subject-out cross validation and 100
iterations of 10-fold cross-validation methods. The classifiers
included k-nearest neighbors [47], random forest [48] and
support vector machine [49]. The parameters that we studied
were as follows: the number of neighbors for the k-nearest
neighbors; the number and the maximum depth of trees for
random forest; kernel functions, penalty parameter, and the
parameter associated with the width of the radial basis function
kernel for the support vector machine. We performed an
exhaustive grid search to determine these parameters. The
algorithms were implemented using the Python scikit-learn
package (version 0.23.2).

Results

For speech data collection (the 30-minute sessions), we obtained
an average of 23.8 responses within 100.2 seconds (SD 28.6)
from each participant. The average response duration of each
task scenario ranged from 17.4 to 59.6 seconds (mean 33.41,
SD 9.5). The average duration of a single response for each
participant ranged from 1.1 to 7.6 seconds (mean 4.2, SD 1.1).
At follow-up, 26 of the 60 participants (43.3%) reported car
accident or near-accident experiences within the previous year.
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Of those, 23 participants reported a near-accident experience,
2 reported accidents, and 1 reported both. The near-accidents
consisted of near-misses with a car or pedestrian resulting in a
sense of fear and anxiety (eg, from failure to notice a crossing
pedestrian), errors in operation (eg, stepping on the accelerator
instead of the brake), and unintentional violations (eg, entering
the opposite lane).

In comparisons between individuals with and without accident
or near-accident experiences, there were no significant
differences in any cognitive assessment variables (age: P=.45;
education year: P=.93; sex: P=.53; Mini-Mental State
Examination: P=.28; immediate and delayed recall of the logical
memory-story A of the Wechsler memory scale-revised: P=.43,
P=.74; the Frontal Assessment Battery: P=.45; the trail making
test-part A and B: P=.72, P=.71; the clock drawing test: P=.36;
Geriatric Depression Scale: P=.62; severity scores for atrophy
in medial temporal structures: P=.86; Table 1); however, we
found 10 speech features with significant
differences—ΔMFCC1: P=.005, ΔMFCC4: P=.043, ΔMFCC5:
P=.011, ΔMFCC7: P=.035, ΔMFCC12: P=.023; jitter: P=.034;
response time: P=.040; proportion of long pauses: P=.044;
speech rate: P=.048; and number of phonemes needed for
completing tasks: P=.049 (Figure 2; Multimedia Appendix 1:
Table S2). Those with accident or near-accident experiences
showed decreased speech rate and jitter as well as increased
response time and long pauses. These speech features were
reported in previous studies as significant indicators of changes
in cognitive function, and the trends in their changes were
consistent with those observed in individuals with cognitive
impairments and patients with Alzheimer disease and mild

cognitive impairment (for speech rate [23,27,31]; for jitter
[42,43]; for response time [20,27]; for proportion of long pause
[27,28]).

To visualize whether the variance seen among a variable set is
capable of discriminating between individuals with and without
potential future accident or near-accident experiences, we
performed principal component analysis on 2 variable sets: the
12 cognitive assessment variables and 10 speech features (Figure
3). The cognitive assessment variable set had little capability
to differentiate the groups; there was considerable overlap and
no clear separation. In contrast, the speech variable set enabled
some separation of the groups.

Input variables for the classification models were either or both
the 12 cognitive assessment variables and 10 speech features.
When model performance was evaluated with
leave-one-subject-out cross-validation, with only the cognitive
assessment variables, we obtained 75.0% accuracy (65.4%
sensitivity, 82.4% specificity, and 69.4% F1 score; Figure 4a),
with only the speech features, the model accuracy increased to
81.7% accuracy (65.4% sensitivity, 94.1% specificity, and
75.6% F1 score; Figure 4b), and with speech features and
cognitive assessment variables combined, performance improved
further (88.3% accuracy, 88.5% sensitivity, 88.2% specificity,
and 86.8% F1 score; Figure 4c). When we evaluated the model
using 10-fold cross validation, the results showed similar trends
(Multimedia Appendix 1: Table S3): the model using the
cognitive assessment variables achieved 75.5% accuracy (95%
CI 75.1-75.9), the model using speech features achieved 80.1%
accuracy (95% CI 79.7-80.5), and the model using both types
of features achieved 85.5% accuracy (95% CI 85.1-85.9).

Figure 2. Box plots (line and diamond represent median and mean, respectively) for speech features with significant differences between individuals
with and without accident or near-accident experiences—jitter: P=.034; response time: P=.040; speech rate: P=.048.

Figure 3. Principal component analysis plots using (a) cognitive assessment variables and (b) speech features, with confidence interval ellipsoid set to
0.95. PC: principal component.
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Figure 4. Confusion matrixes for predicting future accident risks of older drivers obtained using leave-one-subject-out cross-validation for models
with (a) cognitive assessment variables, (b) speech features, and (c) cognitive assessment variables and speech features combined. The number in
parentheses indicates the number of participants. wo: without; w: with.

Discussion

Principal Results
In light of the increasing demand for preventing car accidents
involving older adults, we investigated the possibility that future
accident risk related to cognitive impairments could be
automatically predicted with passive unobtrusive monitoring.
To this end, we focused on speech data because many previous
studies have succeeded in quantifying and detecting cognitive
impairments from speech data [19,20,23,27-29,31,42,43], speech
data are becoming more accessible, and voice-based interaction
systems such as voice assistants are becoming more popular
[32-34].

The statistical analysis showed that the speech data collected
during typical tasks on smart speakers and smartphones had
statistically discernible speech features between older drivers
with and without accident or near-accident experiences. These
speech features indicated that older drivers with these
experiences tended to show decreased speech rate and jitter as
well as increased response time and long pauses. These changes
in speech features were reported as statistically significant
signatures for cognitive impairments by previous studies on
patients with Alzheimer disease and mild cognitive impairment
[19,20,23,27-29,31,42,43]. The results suggest that speech
features could capture subtle impairments of cognitive function
in older drivers. On the other hand, we found no differences in
any cognitive assessment variables, but this could be explained
by the criteria for driving risks that differed from those in
previous studies [7,10,12,50-53]. While previous studies
compared older drivers with and without car-accident
experiences regardless of having near-car-accident experiences
and reported significant differences in cognitive assessment
scores between them [7,10,12,50-53], we focused on both
accident and near-accident experiences, and the majority of the
high-risk group in our study were individuals with near-accident
experiences but without actual car accidents. Speech data and
cognitive assessment results suggest that eliciting discernible
changes relevant to future near-accident experiences may require
cognitive assessment for subtle impairments, such as, test
batteries used for screening preclinical Alzheimer disease
[54,55]. Even so, if speech data during interactions with voice
assistants can be used for predicting future accident risk, it
would greatly increase the accessibility of early screening with
a relatively low burden.

The classification model using speech features achieved 81.7%
accuracy, which is 6.7% higher than that using cognitive
assessment data, and models achieved up to 88.3% accuracy

with both combined. Dimensional reduction and visualization
using principal component analysis, an unsupervised method,
showed that the feature space with speech data was better able
to separate those with and without accident or near-accident
experiences than the feature space with cognitive assessment
variables. These results and those of the statistical analysis
indicate that speech data during typical tasks with voice
assistants could have comparable (or possibly more) information
for predicting future accident risks of older drivers compared
with the standard cognitive assessments.

Our results show paralinguistic speech characteristics were
useful for predicting future accident risks of older drivers.
Previous user-interface studies reported that voice input was
effective and was preferable as an input modality for older adults
[56-58], while other studies reported that the performance of
automatic speech recognition tended to be worse in older adults
than in other age groups [59,60]. From this perspective, our
results suggest that models for predicting future accident risks
of older drivers can be made robust against errors of automatic
speech recognition by exploiting paralinguistic features.

Our results highlight the possibility that cognitive impairments
related to future car accident risks could be detected using
speech data collected in everyday life. Assistive and automated
driving systems are promising technologies that may help older
adults with cognitive challenges to safely continue driving [61].
Recent studies suggested the importance of individual
differences in cognitive abilities for assistive and automated
driving technologies for older adults [62,63] because literature
has suggested that cognitive abilities affect both performance
with automated technology and perceptions of automation (ie,
trust) [64,65]. Hence, our approach to detect cognitive
impairments associated with driving risks might provide useful
information for the personalization of assistive and automated
driving systems based on the cognitive abilities of older adults.

Limitations
Our work had several limitations. First, we collected speech
data in a lab setting. The controlled setting might affect the way
people interact with a voice assistant. In future work, data
collection in free-living situations using voice assistants would
be needed along with additional interaction scenarios. Second,
the sample size was limited. In spite of this limitation, our
statistical analysis of speech features showed consistent trends
indicating subtle cognitive impairments in older adults with
future accident or near-accident experiences, and the prediction
performance (to predict independent future accidents) using
speech features was as high as 88%, even when the classifier
was trained on a subsample. From these perspectives, we believe
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that our results can be confirmed by future studies. Third, our
definition of future car accident risks was based on self-reports
of accident and near-accident experiences. In future work, we
need to consider obtaining more objective measures for accident
risks by combining self-reports with on-road driving
assessments, informant reports, or drive recorder videos.

Conclusion
Given the increasing demand for car accident prevention
involving older adults, we explored the possibility of predicting
future accident risks associated with cognitive impairments by
using behavioral data that can be collected in everyday life. To
this end, we focused on speech data collected during interactions
with voice assistants in smart speakers and smartphones and
investigated the associations with future accident risks by

following up with older drivers. We found that (1) older drivers
with accident or near-accident experiences had statistically
discernible changes in speech features, implying cognitive
impairments, and (2) the machine learning model using speech
features could predict future accident or near-accident
experiences with up to 88.3% accuracy. Although further studies
with speech data collected in everyday life and objective data
for near-accidents are needed, our study provides the first
empirical results suggesting that speech data during interactions
with voice assistants in smart speakers and smartphones could
help predict future accident risks of older drivers by capturing
subtle impairments in cognitive function. We believe that our
results can be used in future efforts toward preventing driving
accidents of older adults through continuous passive unobtrusive
monitoring.
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