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Abstract

Background: Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator
to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is
one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases.

Objective: The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19
outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina.

Methods: This longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to
November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases.
Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson
count time series model was employed for COVID-19 forecasting.

Results: Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the
top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time
window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and
81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties,
the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The
14-day prediction accuracy ranged from 60.3%-74.5%.

Conclusions: Using Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases
at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive
measures and resource relocations to curb disease outbreaks and their negative influences.
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Introduction

Since the first confirmed case of COVID-19 in the United States
on January 21, 2020, countrywide COVID-19 outbreaks have
surged. As of March 5, 2021, there were 28,580,198 cumulative
confirmed cases and 517,224 COVID-19–related deaths in the
United States [1]. South Carolina, a state located in the
southeastern United States, had its first confirmed cases on
March 6, 2020. From March to May 2020, the trend of daily
new cases was flat, with an average daily increase in cases of
less than 500. However, the daily new cases in South Carolina
have risen sharply since June 2020. On July 14, 2020,
COVID-19 cases in South Carolina surpassed 60,000, with more
than 2200 daily new cases, the second highest increase in one
day in the United States [2]. Between August and October 2020,
the transmission rate slowed down with the further
implementation of nonpharmaceutical interventions (NPIs),
such as dine-in service restrictions and face-covering
requirements, but increased steadily after October. By March
5, 2021, there were 448,275 reported cases and 7697 deaths in
South Carolina [3].

Given the rapid transmission of COVID-19 and limited options
in terms of medical interventions, forecasting is of critical
importance as it could predict the spread of disease, estimate
the impacts of NPIs, and inform further decision making
regarding public health interventions [4]. During the COVID-19
pandemic, decision makers in the United States need to balance
the net losses arising from social interruptions, economic
damage, and indirect effects on health caused by NPIs with the
direct health benefits of disease control [5]. Accurate and
reasonable forecasting of COVID-19 could minimize the disease
burden in health care settings and the loss of health and life in
different phases of reopening plans [5,6].

Existing literature has suggested that population mobility may
reflect the influences (both positive and negative) of NPIs,
reopening actions, and public holidays [7-9]. For instance, in
the early stages of the COVID-19 pandemic, the governor of
South Carolina issued a series of NPIs, such as shelter-in-place
and the closure of schools and nonessential businesses, to reduce
social interaction. These NPIs showed positive effects in
suppressing the statewide spread of COVID-19. Later, in May
2020, reopening policies and public holidays diluted the
implementation of NPIs, leading to increased social interactions
and statewide COVID-19 spread [10,11]. At present, it may be
difficult to directly measure the real-time impact of reopening
policies, public holidays, and NPI implementation fidelity.
Therefore, population mobility may be a proximal indicator
allowing for real-time COVID-19 transmission forecasting.

Social media platforms, such as Twitter, collect geospatial
information and closely monitor changes in population mobility
[12,13]. Indeed, the tremendous volume of user-generated
geoinformation from social media enables the real-time or near
real-time surveillance of population mobility and provides timely
data on how population mobility changes in response to different

phases of the COVID-19 outbreak, policy reactions, and public
holidays [14-16]. Several studies have leveraged mobility data
from social media (eg, Google, Facebook, Twitter) to investigate
the relationship between population mobility and COVID-19
transmission [9,11,17-19]. These studies identified a consistently
positive relationship between population mobility and
COVID-19 incidence. However, few studies used population
mobility as a predictor to forecast further outbreaks and to
evaluate prediction accuracy in addition to performing
correlation analysis. A study by Wang and Yamamoto [19]
predicted COVID-19 daily new cases in Arizona using disease
surveillance data, the Google Community Mobility report, and
partial differential equations. They found an acceptable
prediction accuracy for the next 3 days, but the time window
of prediction did not cover the duration of viral incubation (ie,
14 days). Furthermore, this study only split Arizona into three
regions (ie, central, northern, and southern) rather than
examining prediction accuracy at both the state and county level.
In fact, there may be geospatial differences in population
mobility due to the plausible differential implementation fidelity
of NPIs and reactions to reopening policies by county [20,21].
Additionally, there may be geospatial differences in the
estimation of population mobility on social media as the number
of users and their demographic characteristics may differ by
county. All these differences may result in variations in
prediction accuracy at the county level, and further studies are
needed in this regard.

Prior research has predicted COVID-19 incidence using disease
surveillance data and several different time series methods.
Most of the studies successfully incorporated the association
of the current incidence with the previous incidence using time
series methods such as autoregressive, moving average,
autoregressive integrated moving average (ARIMA), and
Holt-Winters [22]. Some studies used generalized linear
regression with continuous outcomes (eg, rate and count),
without including time series [23]. However, there were few
studies that simultaneously considered time-varying population
mobility. Recently, Liboschik and colleagues [24] suggested
that count time series following generalized linear models could
overcome the limitations of classic time series methods. Based
on the generalized linear model methodology, a suitable
distribution for count data and appropriate link function could
be specified, and the effect of the time-varying covariate could
be tested and integrated into forecasting. In this study, we
adopted the Poisson count time series model and time-varying
population mobility data extracted from Twitter, which may
increase the accuracy of COVID-19 prediction.

To address these knowledge gaps, by leveraging disease
surveillance data and Twitter-based population mobility, this
study aimed to construct Poisson count time series models of
COVID-19 daily new cases, investigate the relationship between
them, and evaluate the prediction accuracy of daily new cases
for the next two-week window at both the state and county level
in South Carolina.
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Methods

COVID-19 Incidence Data
Cumulative confirmed cases of COVID-19 through November
11, 2020, at both the state and county level in South Carolina
were collected from The New York Times data set, which was
deposited in GitHub [25]. The data set was compiled using data
from state and local governments and health departments,
ensuring its accuracy. Within the study period (March 6, 2020
[date of first COVID diagnosis in South Carolina] to November
11, 2020 [251st day]), daily new cases were calculated by
subtracting the cumulative confirmed cases of the previous day
from the total cases for the entire state and its five counties with
the largest numbers of cumulative confirmed cases (ie,
Charleston, Greenville, Horry, Spartanburg, and Richland). The
study protocol was approved by the Institutional Review Board
at the University of South Carolina.

Population Mobility
Population mobility was determined using the number of people
(Twitter users) with a moving distance greater than 0.5 miles
per day in South Carolina and the selected counties. The
methodology of extracting daily population movement
(origin-destination flows) from geotagged tweets is discussed
elsewhere [26,27]. Briefly, geotagged tweets during the study
periods were collected and used for calculation. Only users who
posted at least twice per day or posted tweets on at least two
consecutive days were included in the calculation. Daily travel
distance was calculated for each user based on the derived
origin-destination flows and used to generate a variable of how
many people moved each day (with a travel distance greater
than 0.5 miles). This method of capturing population mobility
using Twitter has been previously validated [16,26].

Statistical Analysis
First, daily new cases of COVID-19 and population mobility
at both the state and county level were described using line
charts in R (version 3.6.3; R Foundation for Statistical
Computing; “ggplot” package). Daily new cases and mobility
were also described using five quantiles (ie, minimum, 25th
percentile, 50th percentile, 75th percentile, and maximum) for
each month.

Second, a Poisson count time series model was used to model
the impact of population mobility on the daily new cases of
COVID-19 at the state level. Time series models were built at
various time windows. For the first-round selection, a total of
17 time windows (by 7-day increments) were considered,
including 1-7 days, 1-14 days,…, and 1-119 days. The daily
new cases from the first to the 234th day were used as the

training data set, and those from the next 3 days (days 235-237)
were used as a testing data set for the purpose of model
evaluation. With the smallest prediction error (equation 1) and
good interpretation, the predictive model with the best time
window was selected. After the best time window in the first
round selection was determined, second- and third-round
selections were conducted to narrow down the time window
and obtain the final model with the smallest prediction error.
The final model was used to predict the COVID-19 daily new
cases for the next 3, 7, and 14 days (days 238-251). The
cumulative difference (equation 2) between observed and
predicted cases and mean absolute percentage accuracy
(equation 3) for each time frame were reported [19]. The
equations used are as follows:

In equations 1-3, d represents the day; n is the next 3, 7, or 14
days; o is the observed value, p is the predicted value, and x
represents the daily new cases.

Finally, a similar analytic procedure was performed to construct
the final model at the county level for each of the top five
counties (ie, Charleston, Greenville, Horry, Spartanburg, and
Richland) in South Carolina. A Poisson count time series model
was conducted using an R package (“tscount”). Table S1 in
Multimedia Appendix 1 provides a detailed description of the
data acquisition process, scripts for analysis and figures, and a
link to data resources.

Results

Descriptive Statistics
Figure 1 shows the changes in COVID-19 daily new cases at
both the state and county level. By October 31, 2020, there were
176,612 cumulative confirmed COVID-19 cases in South
Carolina. The cumulative confirmed cases in Charleston,
Greenville, Horry, Spartanburg, and Richland were 17,384,
18,021, 12,591, 9290, and 17,531, respectively. At the state
level, the daily new cases from March to the end of May were
less than 500. From June to the middle of July, the number of
daily new cases rose, with 2217 new patients with confirmed
COVID-19 on July 14. After that, the transmission rate
decreased, with most daily new case counts staying under 1500.
However, since October 2020, the daily new cases have steadily
increased.
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Figure 1. Daily COVID-19 new cases at both state and county level in South Carolina. SC: South Carolina.

At the county level, the top five counties showed a similar trend
of COVID-19 outbreaks and accounted for more than 40% of
the total cases in South Carolina. The daily new cases increased
earlier in Greenville than in the other four counties (ie,
Charleston, Horry, Spartanburg, and Richland).

Trends for population mobility at both the state and county level
were similar. The number of people in South Carolina (Twitter
users in our data) with a moving distance of more than 0.5 miles
decreased from 1400 to 550 between March 6 and April 9, 2020.

Although there were slight increases from the middle of April
to that of June, the numbers were consistently around 1000 after
this timeframe. At the county level, each of the five counties
had less than 200 people with a moving distance greater than
0.5 miles after the middle of March. Figure 2 shows the changes
in population mobility at both the state and county level. Table
S2 in Multimedia Appendix 1 presents the descriptive statistics
of population mobility and COVID-19 new cases at both the
state and county level.

Figure 2. Daily population mobility at both state and county level in South Carolina.
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Model Selection of Time Series Analyses
Following the model selection procedure, a Poisson count time
series model of COVID-19 incidence at the state level was
constructed using daily new cases and population mobility.
Population mobility was positively associated with state-level
COVID-19 daily new cases (β=.818, 95% CI .761-.876), and
the model using the past 7 days (1-7 days) as the time window
had the smallest prediction error (Table 1). The prediction error
of new cases in the next 3 days (days 235-237) was 0.294.

At the county level, a similar modelling procedure was
employed. Population mobility was consistently and positively
associated with new cases of COVID-19 across the top five
counties. The best time windows for Charleston, Greenville,
Horry, Spartanburg, and Richland were 9, 14, 28, 20, and 9
days, respectively. Table 1 displays the detailed results of the
final model, the correlation analysis, and the 3-day prediction
error at both the state and county level.

Table 1. The impacts of population mobility on COVID-19 outbreaks in South Carolina.

County levelState levelParameters

RichlandSpartanburgHorryGreenvilleCharleston

Model training

1-91-201-281-141-91-7Time windows (days)

0.157 (0.067-
0.246)

0.270 (0.118-
0.422)

0.395 (0.275-
0.515)

0.278 (0.165-
0.390)

0.486 (0.338-
0.634)

0.818 (0.761-
0.876)

Coefficient of population mobil-
ity (95% CI)

0.3960.4273.1460.2142.0320.294Model evaluation (3-day predic-
tion error)

3-day forecasting

816640283042Cumulative difference

72.27669.093.385.198.7Accuracy (%)

7-day forecasting

14417545147110670Cumulative difference

76.868.385.985.276.790.9Accuracy (%)

14-day forecasting

3294522175412722858Cumulative difference

73.660.372.674.572.181.6Accuracy (%)

COVID-19 Daily New Cases Forecasting
Table 1 also presents the results of forecasting and prediction
accuracy. Using the final models with the selected time
windows, COVID-19 daily new cases were forecasted for the
next 14 days at both the state and county level. At the state level,
the 3-day cumulative difference and prediction accuracies were
42 and 98.7%, respectively. As compared to the 3-day prediction
accuracy, the 7- and 14-day accuracies reduced to 90.9% and
81.6%, respectively. At the county level, among the top five
counties, the 3-day prediction accuracy ranged from
69.0%-93.3%. The prediction accuracy deceased in Charleston,
Greenville, and Spartanburg with increased time span. In
contrast, the prediction accuracy in Horry and Richland
increased in the 7-day prediction but decreased in the 14-day
prediction. The 14-day prediction accuracies for Horry and
Richland were closer to their values in the 3-day prediction.
Table S2 in Multimedia Appendix 1 presents the predicted and
observed cases of COVID-19 in the final models.

Discussion

Principal Findings
This study leveraged disease surveillance data and Twitter-based
population mobility data to test the relationship between

mobility and COVID-19 daily new cases and forecast
transmission during the next 14 days at both the state and county
level in South Carolina. Results revealed that population
mobility was significantly and positively associated with new
daily COVID-19 cases. Using the selected models to forecast
COVID-19 transmission, we found that although the prediction
accuracy at the state level and most of the selected counties
decreased as the time span increased, the prediction accuracy
remained acceptable. To the best of our knowledge, this is the
first study that combined correlation analysis and forecasting
together to investigate the impacts of population mobility on
COVID-19 transmission at both the state and county level.

Population mobility could reflect the impacts of NPIs, reopening
policies, and public holidays, and estimate social movement
during the current COVID-19 pandemic. It is closely related to
COVID-19 outbreaks, which is in accordance with the findings
of prior research [9,11,17-19]. This study adds value to previous
studies by examining the impacts of population mobility on
COVID-19 incidence at both the state and county level in South
Carolina. The results revealed a positive association of
population mobility with daily new COVID-19 cases. However,
it should be noted that the population mobility data used in our
study only reflected the mobility of people who used Twitter,
although such mobility data have been validated to be a good
proxy of actual human movement during the pandemic
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[16,26,27]. Additionally, those Twitter users tended to be young,
which might influence how much and what they tweet. The
sociodemographic characteristics of Twitter users may be
potential confounders, which were not controlled for in our
study. Thus, caution is needed when interpreting our findings.
Future studies are needed to consider and control for the
sociodemographic characteristics of Twitter users.

Using Twitter-based mobility data to predict daily new
COVID-19 cases could yield acceptable accuracy, which could
also justify the prediction efficacy of this indicator. The high
prediction accuracy at the state level was consistent with Wang’s
finding in Arizona [19]. However, such a high prediction
accuracy was not found at the county level. One possible
explanation for this finding is that we did not capture or account
for the influences of contextual factors (ie, population density)
and the roles of mitigating factors (eg, wearing a face mask,
practicing social distancing) [18,19,28]. Additionally, the
Twitter-based mobility data did not differentiate between social
movement at different locations, such as parks, workplaces, and
retail locations, which have different impacts on COVID-19
incidence [9]. Finally, in this study, we only captured population
mobility at the state and county level, while population mobility
at the zip code level might provide a more accurate prediction.
Nevertheless, the findings generated from our study confirmed
the spatial-temporal relationship between Twitter-based mobility
and COVID-19 outbreaks in South Carolina and the acceptable
prediction efficacy of population mobility.

Our findings provide empirical evidence to support the
application of Poisson count time series and time-varying
population mobility data in improving the accuracy of
COVID-19 forecasting. Compared with the existing literature,
our models yielded acceptable prediction accuracy for two-week
forecasting at both the state and county level. Time-varying
population mobility could be incorporated into other forecasting
models, such as classic time series methods and machine
learning [22,24]. Since we are particularly interested in count
data, we preferred the Poisson count time series model. When

modelling rate, ARIMA and Holt-Winters are more appropriate
than the Poisson count time series model. Regarding machine
learning, most models are applied to the prediction of binary or
categorical variables, and future studies are needed to apply
them to predicting the count outcome with time-varying
population mobility.

The use of population mobility data has potential implications
for future research and practices to curb COVID-19 outbreaks.
From a research perspective, research on mobility and
COVID-19 could be studied at the state, county, and/or zip code
level. In addition, mobility around different locations could
provide detailed information regarding COVID-19 transmission,
identify the most relevant mobility associated with daily new
cases, and inform tailored interventions on social distancing by
location to control disease outbreaks. Furthermore, the geospatial
difference in the prediction accuracy of population mobility for
daily new cases by county suggested that contextual
factors—such as demographic characteristics and the
implementation fidelity of NPIs at the county level—should be
accounted for in future research. Finally, since the incubation
and transmission of COVID-19 are closely associated with
time-varying factors, such as temperature and weather, such
impacts should be accounted for in forecasting studies [29].
Regarding the practice of disease control and prevention,
leveraging social media platforms to monitor daily population
mobility could improve predictions of further COVID-19
transmission, inform proactive NPIs, and guide the allocation
of health care resources to reduce disease morbidity and
mortality [30,31].

Conclusions
Population mobility was positively associated with COVID-19
transmission at both the state and county level in South Carolina.
Using Twitter-based mobility data could enable acceptable
predictions of COVID-19 daily new cases. The use of social
media data to monitor population mobility and predict
COVID-19 spread could inform proactive measures to curb
disease outbreaks and plan coordinated responses.
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