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Abstract

Background: Undifferentiated type of early gastric cancer (U-EGC) is included among the expanded indications of endoscopic
submucosal dissection (ESD); however, the rate of curative resection remains unsatisfactory. Endoscopists predict the probability
of curative resection by considering the size and shape of the lesion and whether ulcers are present or not. The location of the
lesion, indicating the likely technical difficulty, is also considered.

Objective: The aim of this study was to establish machine learning (ML) models to better predict the possibility of curative
resection in U-EGC prior to ESD.

Methods: A nationwide cohort of 2703 U-EGCs treated by ESD or surgery were adopted for the training and internal validation
cohorts. Separately, an independent data set of the Korean ESD registry (n=275) and an Asan medical center data set (n=127)
treated by ESD were chosen for external validation. Eighteen ML classifiers were selected to establish prediction models of
curative resection with the following variables: age; sex; location, size, and shape of the lesion; and whether ulcers were present
or not.

Results: Among the 18 models, the extreme gradient boosting classifier showed the best performance (internal validation
accuracy 93.4%, 95% CI 90.4%-96.4%; precision 92.6%, 95% CI 89.5%-95.7%; recall 99.0%, 95% CI 97.8%-99.9%; and F1
score 95.7%, 95% CI 93.3%-98.1%). Attempts at external validation showed substantial accuracy (first external validation 81.5%,
95% CI 76.9%-86.1% and second external validation 89.8%, 95% CI 84.5%-95.1%). Lesion size was the most important feature
in each explainable artificial intelligence analysis.

Conclusions: We established an ML model capable of accurately predicting the curative resection of U-EGC before ESD by
considering the morphological and ecological characteristics of the lesions.
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Introduction

Endoscopic submucosal dissection (ESD) is indicated for the
treatment of patients with early gastric cancer (EGC) satisfying
prespecified criteria, including histology, according to the
differentiation, specific lesion size, morphology, and whether
ulcers are present or not in the target lesion. The long-term
prognosis following ESD for cases of EGC meeting the ESD
criteria (achievement of curative resection) is comparable to
that achieved with surgical resection [1,2]. In the context of
histology, the undifferentiated type of EGC (U-EGC) generally
refers to poorly differentiated adenocarcinoma, signet-ring cell
carcinoma, or mucinous adenocarcinoma [3,4]. Although
U-EGC is included among the expanded indications of ESD
(mucosal U-EGC<2 cm without ulceration and without evidence
of lymphovascular invasion), the rate of curative resection in
U-EGC has remained very low—reported previously as 61.4%
in a meta-analysis and 36.4% in a nationwide cohort study in
Korea [5,6]. This implies that an unmet need persists regarding
the accurate prediction of curative resection in U-EGC (ie,
difficulty in adopting a precise ESD indication). Therefore,
proper candidate selection prior to ESD is important.

Endoscopists predict the probability of curative resection by
considering the size and shape of the lesion and whether ulcers
are present or not. These components together compose the
indications of ESD. In addition, lesion location, which can
suggest the expected technical difficulty during the procedure
and hint at the general condition of the patient, is also considered
prior to conducting ESD. However, U-EGC has distinctive
growth patterns relative to differentiated-type EGC [3,4,6,7].
U-EGC is known to extend laterally along the proliferative zone
in the intermediate layer of the mucosa (subepithelial spreading),
and the development pattern from the intermediate layer could
lead to nonexposure to the surface mucosa, limiting the precise
measurement of lesion size [5,8]. Subepithelial-spreading
signet-ring cell carcinoma is more prevalent than the
epithelial-spreading type in cases with background atrophy or
intestinal metaplasia of the gastric mucosa [9,10]. Further, ESD
of poorly differentiated adenocarcinoma presents a stronger
association with submucosal invasion relative to that of
signet-ring cell carcinoma [6]. Although adopting a precise
indication is a key ability of endoscopists, U-EGC itself is a
risk factor for a greater out-of-indication rate, leading to
noncurative resection [11,12].

With the extensive production and collection of ongoing medical
data, the application of artificial intelligence has been attempted
in clinical practice [13]. Machine learning (ML) is a
mathematical artificial intelligence algorithm automatically
built from given data to predict precise outcomes in uncertain
conditions without being explicitly programmed [14]. Examples
of ML include Bayesian inferences, decision trees, support
vector machines, deep neural networks, or ensemble methods

(bagging or boosting) [14]. In short, ML is a type of applied
statistical technique and is characterized by high accuracy. We
aimed to establish an ML model to better predict the possibility
of curative resection in U-EGC prior to ESD.

Methods

Ethical Statement
This study was approved by the Institutional Review Board of
the Chuncheon Sacred Heart Hospital, Korea (no. 2020-07-019).
It adhered to the principles expressed in the Declaration of
Helsinki.

Data Sets
A nationwide cohort of 2703 U-EGCs treated by ESD (n=967)
or surgery (n=1736) from 2006 to 2015 composed the training
and internal validation groups. Eligible subjects were
retrospectively enrolled from 18 university hospitals in Korea.
Separately, an independent data set involving the Korean ESD
registry with 275 U-EGCs and an Asan medical center data set
with 127 U-EGCs treated by ESD were used for external
validation. Subjects in the Korean ESD registry data set were
retrospectively identified from 8 institutions of Korea [6], having
been treated with ESD from 2006 to 2015, while subjects in the
Asan medical center data set were treated by ESD from 2007
to 2013. All these data sets were mutually exclusive.

ML Models
All the currently available types of supervised ML classifiers
were tested for the establishment of a curative resection
prediction model in U-EGC. In total, 18 ML classifiers were
assessed, including naïve Bayes in Bayesian inferences,
linear-discriminant analysis, logistic regression in generalized
linear modeling, linear support vector machine, stochastic
gradient descent, decision tree, k-nearest neighbors, deep neural
networks, bagging ensemble methods (bagging classifier,
random forest, and voting classifier), boosting ensemble methods
(gradient boosting, adaptive boosting, categorical Boosting,
extreme gradient boosting [XGBoost], light gradient boosting
machine, histogram-based gradient boosting), and a stacking
ensemble method (stacking classifier). The Gaussian Naïve
Bayes classifier is a model based on the Bayes’ theorem
encompassing the assumption that there is independence
between the features. A generalized linear model is the extension
of a linear model set up to include cases where the dependent
variable is not normally distributed. We adopted the logistic
regression classifier for this study. The support vector machine
is a model that defines a decision boundary (hyperplane), that
is, a reference line for classification. The stochastic gradient
descent is a model for linear classifiers under convex loss
functions such as support vector machine and logistic regression
[15]. The decision tree is an algorithm that automatically finds
rules in the data and creates tree-based classification rules.
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k-nearest neighbors is a classification or clustering algorithm
that relies on distance metrics measures for similarity. Deep
neural networks refer to an artificial neural network with
multiple hidden layers between the input and output layers that
learns from input data and optimizes the output classification
with mathematical calculations. Ensemble algorithms combine
multiple classification models to achieve better performance
and can be classified as either bagging, boosting, or stacking
methods. Bagging is a parallel ensemble method that fits
individual random samples of the data set and aggregates the
predictions of each model for the final classification (bootstrap
aggregation) [15]. This meta-estimator can reduce the variance
of each classification model by introducing randomization for
the model establishment and then creating an ensemble out of
it. As such, bagging reduces overfitting of the ML model [15].
Separately, boosting algorithms attempt to conduct ensemble
modeling sequentially by learning from the errors of the previous

model and updating the weight of subsequent models to optimize
the loss functions and reduce the overall bias. In contrast with
learning from homogenous weak models in the bagging and
boosting algorithms, stacking algorithms learn from
heterogeneous models, creating a meta-model for the final
classification. For the current ML analysis of this study, we
used bagging classification, random forest, and voting
classification for the bagging ensemble methods and gradient
boosting, adaptive boosting, categorical boosting, XGBoost,
light gradient boosting machine, and histogram-based gradient
boosting for the boosting methods. For the stacking algorithm,
we chose stacking classification. All the ML classifiers were
imported from the scikit-learn package version 0.23.2 using the
Python programming language (version 3.8.5, Python Software
Foundation). Figure 1 shows the types of ML classifiers
examined in this study.

Figure 1. Machine learning classifiers used in this study. AdaBoost: adaptive boosting; CatBoost: categorical boosting; DNN: deep neural network;
HistGradientBoosting: histogram-based gradient boosting; kNN: k-nearest neighbors; ML: machine learning; LightGBM: light gradient boosting
machine; LDA: linear discriminants analysis; SGD: stochastic gradient descent; SVM: support vector machine; XGBoost: extreme gradient boosting.

Variables, Primary Outcome, and Data Splitting
A total of 18 ML classifiers were used for the establishment of
prediction models of curative resection with the following
variables: age; sex; location, size, and shape of the lesion; and
whether ulcers were present or not. The primary outcome was
the accuracy of the established ML models for the prediction
of curative resection with the given variables of the lesions.
Thus, the main metric was the classifying accuracy. Each data
set was prepared in the .csv file format. After uploading .csv
files to the Google Colaboratory analysis platform, 2703 U-EGC
data points were randomly split into training and internal
validation sets according to a ratio of 9:1.

Definitions of the Variables
Among the variables used in this study, patient age and the size
of the lesion were the continuous variables and the others were
considered as categorical variables. The location of the lesion
was categorized by both longitudinal location (lower-third,
mid-third, and upper-third) and circular location (lesser
curvature, greater curvature, posterior wall, and anterior wall).
The shape of the lesion was defined in accordance with the
Japanese classification: elevated, flat, or depressed according
to the morphological characteristics. According to this system,

type I (protruded) and type IIa (superficial elevated) were
considered as elevated, type IIb (flat) and type IIc (superficial
depressed) were considered as flat, and type III (excavated) was
considered as depressed [4]. Curative resection was defined as
complete resection of U-EGC with a diameter of 2 cm or less
and a lesion confined to the mucosa, with negative lateral and
deep resection margins and lymphovascular invasion.
Noncurative resection referred to cases in which the resected
lesion did not fulfill these criteria.

Statistical Analysis and Explainable Artificial
Intelligence
Continuous variables were expressed as mean (SD) and
categorical variables were expressed as numbers and
percentages. Descriptive synthesis was conducted to reveal the
baseline characteristics of the training and internal validation
data set and external validation data set. To add to the
interpretability of the established ML model, we performed an
explainable artificial intelligence analysis. To elucidate the
variables associated with lesions either accurately or inaccurately
determined by the ML model, univariable analysis was
conducted (Student t test and Fisher exact test for continuous
and categorical variables, respectively). A two-tailed P value
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of less than .05 was adopted as the threshold for statistical
significance. These analyses were performed using SPSS version
24.0. (IBM Corporation). Additionally, a feature importance
(or permutation importance) analysis was completed to reveal
which variables primarily contributed to the model’s decision
process [16,17]. This assessment measures the predictive error
when a certain feature value is randomly shuffled; therefore,
insignificant features do not affect the performance of the model
[15]. Feature importance is measured by the F-score, which
represents the ratio between the explained and the unexplained
variance [17]. A decision process tree was plotted to visualize
the step-by-step process of the decision making of the
established ML model using the Graphviz package (version
0.14.1; AT&T Labs Research). A partial-dependence plot tool
box (version 0.2.0) in the scikit-learn package to visualize the
important features for the ML model was adopted and the target
plot and interaction plot were visualized [18,19]. A Shapley
additive explanations (version 0.35.0) analysis is an approach
used to explain the output of any ML model using Shapley
values and the degree of independence between features. The
Shapley value expresses how much each feature contributes to
creating the overall performance and represents feature
importance while maintaining consistent and locally accurate
additive feature attribution for a particular prediction [20].

Results

Characteristics of the Training, Internal Validation,
and External Validation Data Sets
The training and internal validation data sets contained not only
endoscopically resected cases but also surgically removed cases

of U-EGC. The first external validation data set was composed
of a nationwide cohort of cases of ESD performed for U-EGC,
while the second external validation data set consisted of cases
of ESD performed for U-EGC from a single hospital with the
largest degree of ESD experience to date in Korea. Therefore,
the included data sets were marked by different clinical
characteristics. Table 1 presents the detailed clinical
characteristics of the included lesions in this study. A male sex
predominance was consistently observed in all data sets. Patient
age ranged from 64.1 (SD 13.0) years to 67.8 (SD 12.0) years.
In the context of endoscopic findings, the lower-third part in
the longitudinal location (2069/2703, 76.5% and 214/275,
77.8%) and lesser curvature in the circular location (97/275,
34.5% and 945/2703, 34.9%) were the most frequent lesion
positions in the training and internal validation dataset and first
external validation data set, respectively. Meanwhile, the
mid-third part was the most frequent lesion location in the
longitudinal location (61/127, 48.1%) for U-EGC in the second
external validation data set. The mean endoscopic size of the
included lesions ranged from 21.7 (SD 12.5) mm to 27.9 (SD
16.2) mm. Depressed lesions (type IIc) were observed as the
most frequent morphological type in the training and internal
validation data set and second external validation data set
(1762/2703, 65.2% and 62/127, 48.8%, respectively), while the
first external validation presented an even distribution of
elevated, flat, and depressed lesion morphologies. Meanwhile,
63 (22.9%) and 16 (12.6%) cases had ulcers in the first and
second external validation data sets, respectively. The overall
rate of curative resection ranged from 36.4% (100/275) to 74.4%
(2010/2703).
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Table 1. Baseline characteristics of the included data sets.

Second external validation
set (n=127)

First external validation set
(n=275)

Training and internal valida-
tion set (n=2703)

Characteristics

Sex, n (%)

80 (62.9)165 (60.0)1427 (52.8)Male

47 (37.0)110 (40.0)1276 (47.2)Female

64.1 (13.0)67.8 (12.0)65.9 (12.4)Age (years), mean (SD)

Longitudinal location, n (%)

53 (41.7)214 (77.8)2069 (76.5)Lower-third

61 (48.1)28 (10.2)336 (12.4)Mid-third

13 (10.2)33 (12.0)298 (11.0)Upper-third

Circular location, n (%)

49 (38.6)95 (34.5)945 (34.9)Lesser curvature

27 (21.3)58 (21.1)557 (20.6)Greater curvature

22 (17.3)68 (24.7)585 (21.6)Posterior wall

29 (22.8)54 (19.6)607 (22.5)Anterior wall

0 (0)0 (0)9 (0.3)More than 2 areas involved

21.7 (12.6)27.9 (16.2)21.7 (12.5)Endoscopic size of the lesion (mm), mean (SD)

Morphology, n (%)

28 (22.1)101 (36.7)375 (13.9)Elevated

37 (29.1)98 (35.6)566 (20.9)Flat

62 (48.8)76 (27.6)1762 (65.2)Depressed

Ulcer, n (%)

16 (12.6)63 (22.9)504 (18.6)Present

111 (87.4)212 (77.1)2199 (81.4)None

Curative resection, n (%)

87 (68.5)100 (36.4)2010 (74.4)Yes

40 (31.5)175 (63.6)693 (25.6)No

Internal Validation Performance
Table 2 shows the prediction performance of 18 ML classifiers
for internal validation. The XGBoost classifier demonstrated
the best performance as follows: internal validation accuracy
93.4%, 95% CI 90.4%-96.4%; precision 92.6%, 95% CI
89.5%–95.7%; recall 99.0%, 95% CI 97.8%-99.9%; and F1
score 95.7%, 95% CI 93.3%-98.1%. In detail, the XGBoost
classifier required several parameter settings for the
establishment of the ML model. The initial classifying
performance of the XGBoost classifier established by us was
as follows: internal validation accuracy 79.0%, 95% CI

74.1%-83.9%; precision 80.9%, 95% CI 76.2%-85.6%; recall
94.1%, 95% CI 91.3%-96.9%; and F1 score 87.0%, 95% CI
83.0%-91.0%. To discern the optimal hyperparameter setting
for the establishment of the ML model, we relied on the
GridSearchCV library (version 0.22) [15] to automatically
search among multiple optimal parameter values to fit estimators
of an ML model. By using the GridSearchCV analysis, we found
the optimal hyperparameters for the best performance as follows:
learning rate 0.4, maximum depth 6, and number of estimators
100. Figure 2 shows the confusion matrix for the XGBoost
classifier in the internal validation data set.
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Table 2. Internal validation performance for the prediction of curative resection of undifferentiated type of early gastric cancer by using 18 machine
learning classifiers.

F1 score (%) (95% CI)Recall (%) (95% CI)Precision (%) (95% CI)Accuracy (%) (95% CI)Machine learning classifier

81.5 (76.9-86.1)77.2 (72.2-82.2)86.2 (82.1-90.3)73.8 (68.6-79.0)Gaussian Naïve Bayes

85.9 (81.8-90.0)96.5 (94.3-98.7)77.4 (72.4-82.4)76.4 (71.3-81.5)Linear discriminant analysis classifier

85.9 (81.8-90.0)92.1 (88.9-95.3)80.5 (75.8-85.2)77.5 (72.5-82.5)Logistic regression classifier

85.4 (81.2-89.6)99.9 (98.8-99.9)74.5 (69.3-79.7)74.5 (69.3-79.7)Linear support vector machine classifier

84.4 (80.1-88.7)92.6 (89.5-95.7)77.6 (72.6-82.6)74.5 (69.3-79.7)Stochastic gradient descent classifier

85.4 (81.2-89.6)99.9 (98.8-99.9)74.5 (69.3-79.7)74.5 (69.3-79.7)Decision tree classifier

82.2 (77.6-86.8)86.6 (82.5-90.7)78.1 (73.2-83.0)72.0 (66.7-77.3)k-nearest neighbors classifier

86.2 (82.1-90.3)92.6 (89.5-95.7)80.6 (75.9-85.3)77.9 (73.0-82.8)Deep neural network

Ensemble (bagging)

81.2 (76.5-85.9)81.2 (76.5-85.9)81.2 (76.5-85.9)72.0 (66.7-77.3)Bagging classifier

82.1 (77.5-86.7)84.2 (79.9-88.5)80.2 (75.5-84.9)72.7 (67.4-78.0)Random forest classifier

89.8 (86.2-93.4)91.6 (88.3-94.9)88.1 (84.2-92.0)84.5 (80.2-88.8)Voting classifier

Ensemble (boosting)

85.9 (81.8-90.0)92.1 (88.9-95.3)80.5 (75.8-85.2)77.5 (72.5-82.5)Gradient boosting classifier

86.0 (81.9-90.1)91.6 (88.3-94.9)81.1 (76.4-85.8)77.9 (73.0-82.8)Adaptive boosting classifier

90.2 (86.7-93.7)97.5 (95.6-99.4)83.8 (79.4-88.2)84.1 (79.7-88.5)Categorical boosting classifier

95.7 (93.3-98.1)99.0 (97.8-99.9)92.6 (89.5-95.7)93.4 (90.4-96.4)Extreme gradient boosting classifier

84.4 (80.1-88.7)88.1 (84.2-92.0)80.9 (76.2-85.6)75.6 (70.6-80.8)Light gradient boosting machine

classifier

90.8 (87.4-94.2)97.5 (95.6-99.4)84.9 (80.689.2)85.2 (81.0-89.4)Histogram-based gradient boosting

classifier

85.0 (80.7-89.3)92.6 (89.5-95.7)78.6 (73.7-83.5)75.6 (70.5-80.7)Ensemble (stacking)
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Figure 2. Confusion matrix for the extreme gradient boosting classifier in the internal validation cohort. XGBoost: extreme gradient boosting.

External Validation Performance in the XGBoost
Classifier
For the first external validation data set, the XGBoost classifier
demonstrated its performance as follows: external validation
accuracy 81.5%, 95% CI 76.9%-86.1%; precision 83.6%, 95%
CI 79.2%-88.0%; recall 61.0%, 95% CI 55.2%-66.8%; and F1
score 70.5%, 95% CI 65.1%-75.9%. Then, for the second

external validation data set, the XGBoost classifier demonstrated
its performance as follows: external validation accuracy 89.8%,
95% CI 84.5%-95.1%; precision 90.2%, 95% CI 85.0%-95.4%;
recall 95.4%, 95% CI 91.8%-99.0%; and F1 score 92.7%, 95%
CI 88.2%-97.2%. Figure 3 and Figure 4 show the confusion
matrices for the XGBoost classifier in the first and second
external validation data sets, respectively.
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Figure 3. Confusion matrix for the extreme gradient boosting classifier in the first external validation cohort. XGBoost: extreme gradient boosting.

Figure 4. Confusion matrix for the extreme gradient boosting in the second external validation cohort. XGBoost: extreme gradient boosting.

Explainable Artificial Intelligence
Table 3 shows the univariable analysis for the associated factors
of lesions determined accurately or inaccurately in the curative

resection of U-EGC by the XGBoost classifier. Notably, there
was no single significant factor associated with lesions
determined either accurately or inaccurately by the XGBoost
classifier.
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Table 3. Univariable analysis of the associated factors of lesions determined accurately or inaccurately in the curative resection of undifferentiated
type of early gastric cancer by the extreme gradient boosting classifier.

Second external validation setFirst external validation setCharacteristics

P valueInaccurately deter-
mined by XGBoost
classifier (n=13)

Accurately deter-
mined by XGBoost
classifier (n=114)

P valueInaccurately deter-
mined by XGBoost
classifier (n=51)

Accurately deter-

mined by XGBoosta

classifier (n=224)

.37.06Sex, n (%)

10 (77)70 (61.4)37 (73)128 (57.1)Male

3 (23)44 (38.6)14 (28)96 (42.9)Female

.6665.5 (10.4)63.9 (13.3).0970.0 (9.2)67.3 (12.6)Age (years), mean (SD)

.33.22Longitudinal location, n (%)

3 (23)50 (43.9)41 (80)173 (77.2)Lower-third

8 (62)53 (46.5)7 (14)21 (9.4)Mid-third

2 (15)11 (9.6)3 (6)30 (13.4)Upper-third

.29.38Circular location, n (%)

3 (23)46 (40.4)21 (41)74 (33.0)Lesser curvature

4 (31)23 (20.2)13 (26)45 (20.1)Greater curvature

1 (8)21 (18.4)10 (20)58 (25.9)Posterior wall

5 (39)24 (21.1)7 (14)47 (20.9)Anterior wall

.1617.1 (11.4)22.2 (12.7).2525.5 (14.7)28.4 (16.4)Endoscopic size of the lesion (cm),
mean (SD)

.93.36Morphology, n (%)

3 (23)25 (21.9)23 (45)78 (34.8)Elevated (I, IIa, and IIa+IIc)

3 (23)34 (29.8)17 (33)81 (36.2)Flat (IIb)

7 (54)55 (48.2)11 (22)65 (29)Depressed (IIc)

.21.86Ulcer, n (%)

3 (23)13 (11.4)11 (22)52 (23.2)Present

10 (77)101 (88.6)40 (78)172 (76.8)None

aXGBoost: extreme gradient boosting.

Figure 5 shows the feature importance plot for the XGBoost
classifier. Age, endoscopic size, and morphology of the lesions
were the three most significant factors for the establishment of
the ML model, in sequence. Multimedia Appendix 1 illustrates
the decision process tree for the XGBoost classifier prior to
adopting the GridSearchCV library. This simplified tree shows
the step-by-step determination process of the ML model. The
final leaf score is inserted in the following equation: p(x) = 1 /

1 + e–leaf score. Any value over 0.5 (50%) indicates curative
resection and any value less than 0.5 indicates noncurative
resection, as predicted by the XGBoost classifier [21].
Multimedia Appendix 2 shows the final decision process tree
for the XGBoost classifier after adopting the GridSearchCV
library, which presented the best performance in the internal
validation. Endoscopic size of the lesion, patient age, and
longitudinal location of the lesion were the important factors,
in sequence. Multimedia Appendix 3 shows the
partial-dependence target plot for the feature of endoscopic size
of the lesion in the first external validation assessment. The
probability of curative resection for the lesions with sizes
ranging from 4 mm to 10 mm reached 80%. Meanwhile, U-EGC

lesions with sizes ranging from 20.78 mm to 26.22 mm showed
the lowest probability of curative resection at 16.1%. Multimedia
Appendix 4 presents the two-way partial-dependence target plot
for the features of endoscopic size of the lesion and patient age
in the first external validation cohort. Given that the color of
the circle above the imaginary line of Y=X is darker than that
below the line, the endoscopic size and age are suggested to be
correlated with curative resection of U-EGC. Multimedia
Appendix 5 shows the partial-dependence interaction plot for
the features of endoscopic size of the lesion and age in the first
external validation group. Given that the contour lines are
generally parallel to the Y-axis, the probability of curative
resection is more dependent on the endoscopic size of the lesion.
Since the feature importance analysis measures the prediction
error after permutating the features’ values, the results can be
skewed when the said features exhibit dependency. However,
the Shapley value considers the influence of the features on
each other. Multimedia Appendix 6 and Multimedia Appendix
7 demonstrate the summary plot and bar plot of the Shapley
additive explanations analysis, respectively, where endoscopic
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size of the lesion and age are the important features for the model output.

Figure 5. Feature importance plot for the extreme gradient boosting classifier in the internal validation cohort. The average F-score was calculated
through 50 repetitions of five-fold cross-validation in the training data set.

Discussion

This study introduces the good performance of an ML model
applied to the prediction of curative resection of U-EGC prior
to ESD, suggesting the possibility of a beneficial effect of ML
modeling for decision making in this part of clinical practice
[22]. Moreover, thorough external validations confirmed the
higher rate of curative resection predicted by ML modeling as
compared with curative resection rates reported by clinicians.
To our knowledge, this is the first study to establish and confirm
the predictive performance of an artificial intelligence model
for the therapeutic outcomes of ESD for U-EGC. Indeed, ML
is characterized as a computer-aided prediction method and its
most important benefit in this context consists of the
improvement in predictive accuracy for curative resection prior
to ESD. The proper selection of candidates for ESD is essential
before beginning ESD. The most fundamental hypothesis is that
endoscopic resection can be performed with curative intent in
cases of EGC without lymph node metastasis. Therefore,
indications of ESD were established using a combination of
factors associated with a negligible lymph-node metastasis rate
from the retrospective analysis of surgically resected specimens
[3]. These indications are categorized by differentiated-type
EGC and U-EGC according to the differentiation, specific size,
and morphological and histological conditions of the involved
lesion. However, optical endoscopic determination of the factors
stated above involves operator-dependent characteristics. In the
study of a Korean multicenter registry of ESD for U-EGC, there
was a discrepancy between pre-ESD indications and post-ESD
criteria in 36.7% of all the lesions [6]. Underestimation of the
size was the most common reason for noncurative resection
(71.4%), followed by underestimation of the depth of invasion
(32%) and unpredictability of lymphovascular invasion (14.9%)
[6]. Although adopting a precise indication is important, U-EGC
itself is a risk factor for an enhanced out-of-indication rate,
leading to noncurative resection; therefore, more strict
indications might be necessary for pursuing the ESD of U-EGC
[11,12].

Another important finding of this study is the presentation of
the determination reason or process of the ML model through
the explainable artificial intelligence analysis. Notably, there
is a tradeoff between accuracy and interpretability in the
classification model of ML [14]. Although the ML approach
exhibited high degrees of accuracy based on complex

calculations, it is characterized by low interpretability (artificial
intelligence is more generally characterized as being of a
“black-box nature”) [14]. Conventional statistical analyses such
as univariate or multivariate logistic regression analyses in
previous studies have shown the reasons underlying the lower
curative resection rate of ESD for U-EGC [5,6]. However, there
is a limitation in the explanatory power of the overall model
(low accuracy) in these studies. The XGBoost classifier used
parallel-tree boosting analysis to provide highly efficient and
accurate predictions. Through the ensemble model and extensive
explainable artificial intelligence analysis, we identified the size
of the lesion as being the most important feature for the
successful prediction of curative resection in the ESD of U-EGC.
Although a prospective trial of ESD for U-EGC that satisfied
the expanded indication reported an excellent long-term survival
rate [6,23,24], more cautious application or restriction of ESD
indications has been recommended, especially regarding the
size categorization [3,25]. Most recently published studies have
also indicated that small intramucosal U-EGC lesions measuring
less than 1.0 cm or 1.5 cm without lymphovascular invasion
should be considered as the ESD candidate [26,27]. The
explainable artificial intelligence analysis in our study also
revealed that U-EGC lesions of less than 1 cm have the greatest
probability of curative resection (Multimedia Appendix 3).
Considering that the aim of this study was not the validation of
current ESD criteria, further studies with robust analysis would
elucidate the value of these findings.

In the context of ecological factors, age and gender have been
tested with the endoscopic factors for the potential variable for
the curative resection rate prediction. However, these variables
were not consistently identified as important indicators for
predicting curative resection [28-30]. Although feature
importance analysis (Figure 5) or Shapley additive explanations
analysis (Multimedia Appendix 6) in our study revealed that
age is an important variable for the ML determination process,
explainable artificial intelligence analysis is currently an
experimental method to understand how ML judges. It is
presumed that the reason ML shows higher accuracy than
traditional statistics is that it performs a complex operation that
considers all variables. It is true that age is an important factor
influencing ML judgment, but further explainable artificial
intelligence statistics can explain how much it affects the actual
curative resection.
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Although this study established and rigorously validated the
predictive performance of the designed ML model, several
inevitable limitations became apparent. First, there was some
discrepancy in the validation performance between the first and
second external data sets. The indications of ESD for U-EGC
have not been approved by all endoscopists. Therefore, practice
patterns adopting ESD indications for U-EGC have been
heterogenous depending on the institution. The first external
validation data set was more heterogenous with respect to the
baseline characteristics and therapeutic outcomes. However,
the second data set was collected from a single institution, thus
providing a more discrete application pattern of the ESD
indication for U-EGC. Second, patient age was an important
feature in the explainable artificial intelligence analysis;
however, this feature does not perfectly reflect the general
condition of the patient. Further, there is no age factor for ESD
indications. However, the general condition of the patients is
frequently considered in the determination of whether to pursue
ESD. Therefore, clinical factors that reliably reflect patients’

health status other than age should be developed and considered
so as to attain the most favorable therapeutic outcomes of ESD.
Third, the training and internal validation data sets included
cases that were surgically resected as well as endoscopically
resected cases. Endoscopists decide whether to perform ESD
or surgery when they detect U-EGC. In other words, it has not
been determined which U-EGC is a candidate for ESD or
surgery. All the U-EGCs resected with surgery or ESD were
included as it was not always accurate and appropriate for the
endoscopists to differentiate between ESD or surgery. If only
U-EGCs that were resected by ESD were collected, a clear ESD
candidate would have been collected, which in itself may be a
selection bias. In conclusion, we established an ML model
capable of accurately predicting the curative resection of U-EGC
prior to ESD by considering the morphological and ecological
characteristics of the lesions. A clinical application study in a
randomized controlled manner would elucidate the real value
of this ML model.
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