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Abstract

Background: The dynamics of the COVID-19 pandemic vary owing to local population density and policy measures. During
decision-making, policymakers consider an estimate of the effective reproduction number Rt, which is the expected number of
secondary infections spread by a single infected individual.

Objective: We propose a simple method for estimating the time-varying infection rate and the Rt.

Methods: We used a sliding window approach with a Susceptible-Infectious-Removed (SIR) model. We estimated the infection
rate from the reported cases over a 7-day window to obtain a continuous estimation of Rt. A proposed adaptive SIR (aSIR) model
was applied to analyze the data at the state and county levels.

Results: The aSIR model showed an excellent fit for the number of reported COVID-19 cases, and the 1-day forecast mean
absolute prediction error was <2.6% across all states. However, the 7-day forecast mean absolute prediction error approached
16.2% and strongly overestimated the number of cases when the Rt was rapidly decreasing. The maximal Rt displayed a wide
range of 2.0 to 4.5 across all states, with the highest values for New York (4.4) and Michigan (4.5). We found that the aSIR model
can rapidly adapt to an increase in the number of tests and an associated increase in the reported cases of infection. Our results
also suggest that intensive testing may be an effective method of reducing Rt.

Conclusions: The aSIR model provides a simple and accurate computational tool for continuous Rt estimation and evaluation
of the efficacy of mitigation measures.

(J Med Internet Res 2021;23(4):e24389) doi: 10.2196/24389
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Introduction

The COVID-19 pandemic is currently underway. As of
September 2, 2020, over 6,000,000 individuals in the United
States have been reported positive for COVID-19. Modeling
studies are key to understanding the factors that drive the spread
of the disease and for developing mitigation strategies. Early
modeling efforts forecasted very large numbers of infected
individuals, which would overwhelm health care systems in
many countries [1-3]. These forecasts served as a call to action

for policymakers to introduce policy measures including social
distancing, travel restrictions, and eventually lockdowns to
avoid the predicted catastrophe [4-6]. The mitigating policy
measures have been successful in changing the dynamics of the
pandemic and in “flattening the curve,” such that fewer people
have needed to seek treatment at any given time, and this has
prevented the health care system from getting overwhelmed.

One of the most fundamental metrics that describes the
pandemic’s dynamics is the reproduction number Rt, which is
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the expected number of secondary infections spread by a single
infectious individual [7]. In 1906, Hamer [8] speculated that
the course of an epidemic is determined by the rate of contact
between susceptible and infectious individuals. Later, Kermack
and McKendrick [9] reported that epidemics end not when there
are no susceptible individuals left, but rather when each
infectious individual can infect, on average, <1 more individual.
The Rt depends on three factors: (1) the likelihood of infection
per contact, (2) the period during which infectious individuals
freely interact with susceptible individuals and spread the
disease, and (3) the rate of contact. The likelihood of infection
per contact (factor 1) is determined on the basis of pathogen
virulence and protective measures such as social distancing or
wearing masks. Free interactions between infectious and
susceptible individuals (factor 2) occur until the infectious
individual is self-quarantined or hospitalized, either when the
individual tests positive or experiences severe symptoms.
Finally, the rate of contact (factor 3) is strongly affected by
public health measures to mitigate risk [10], such as lockdowns
during the COVID-19 pandemic. Thus, Rt is determined on the
basis of the biological properties of the pathogen and multiple
aspects of social behavior. When Rt>1, the number of cases is
expected to increase exponentially. The pandemic is considered
to have been contained when Rt decreases and remains at <1.
Real-time Rt estimation is critical for determining the effect of
implemented mitigation measures and future planning.

We propose a method for continuous estimation of the infection
rate and Rt to investigate the effect of mitigation measures and
immunity acquired by those who recover from the disease. We
estimated Rt with a Susceptible-Infectious-Removed (SIR)
model [9] that describes the dynamics of population
compartments as follows: individuals are initially “susceptible,”
contract the viral infection and become “infectious,” and are
then moved to the “removed” compartment once they are
quarantined or hospitalized, recover, or die. The SIR model is
one of the simplest epidemiological models that still captures
the main properties of an epidemic [11,12], and it has been
widely used in epidemic modeling studies. In most SIR
modeling studies, the model parameters were constant. An SIR
model with constant parameters, however, cannot be applied
for the COVID-19 pandemic because various mitigating
measures were introduced during pandemic progression. The
effect of policy changes on COVID-19 dynamics has been
modeled using the combination of an SIR model and Bayesian
inference [13,14]. In these modeling studies, the rate of infection
spread was assumed to be piece-wise linear among the 3 dates
of the implementation of policy changes. In another approach,
continuous estimation of Rt and an assessment of the effect of
mitigation measures were carried out on the basis of estimates
of the distribution of the serial intervals between symptom onset
in the primary and secondary cases [15-17]. Bayesian inference
and methods based on estimations of the serial interval include
multiple parameters whose values are not estimated from the
data. In contrast, we propose an adaptive SIR (aSIR) model in
which only one parameter—the removal rate—is determined
from the literature, while the second parameter—the infection
rate—is continuously estimated from the data through a sliding

window approach. A continuous Rt estimate is then obtained
using the infection rate estimate. The SIR model is described
as a system of differential equations, and the key idea in our
proposed method is that the initial conditions for each window
are considered as values estimated for the previous window.
The only additional hyperparameter is the length of the sliding
window. The proposed method retains the conceptual and
computational simplicity of SIR-type models and can be easily
extended through the introduction of additional compartments
supported by data.

Methods

Data
Data on daily and cumulative confirmed cases between February
29 and September 2, 2020, were obtained from John Hopkins
University (JHU), and the dates of interventions by state (eg,
state of emergency and stay-at-home orders) were obtained from
Wikipedia. The JHU data were available at 2 levels of
aggregation: county and state. JHU considers many sources for
reporting these data; county-level information was extracted
from the websites of the states’ departments of health, and
state-level data were extracted directly from the website of the
Centers for Disease Control and Prevention.

Model
The SIR model is a system of ordinary differential equations:

Here, S is the number of susceptible individuals, I is the number
of infectious individuals who freely interact with others and can
transmit the infection, R is the number of individuals excluded
from the other 2 compartments because they are quarantined or
hospitalized, have recovered and acquired immunity, or have
died. Several sources of government data on COVID-19 provide
the daily number of newly confirmed cases and a cumulative
number of confirmed cases. Careful consideration is required
to determine whether these numbers should be attributed to the
I or R compartment. In the United States, once an individual
has been confirmed positive for COVID-19, he/she is expected
to be either self-isolated or hospitalized. Therefore, we assigned
the data on confirmed cases to the R compartment, and we fit
the model to the cumulative number of confirmed cases.

The infection rate is determined as follows:

β = p × c           (2)

where p is the probability of being infected upon contact with
an infectious individual, and c is the average number of contacts
per day. We have no data that would allow us to estimate p and
c separately; hence, we directly estimated β, as is usually
performed when using SIR models.
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The removal rate γ determines the rate at which infected
individuals are moved from the I to the R compartments. In the
context of the COVID-19 pandemic, γ is determined from the
time taken for the appearance of severe symptoms, such that
the individual can be tested and is self-quarantined or
hospitalized, as required. Therefore, we assumed the duration
of the infectious period as the average time taken for the infected
individual to be isolated, not the overall time for recovery. We
assumed that an individual is infectious from the day he/she
contracts the infection before symptom onset [18-20]. The
average time to symptom onset is 5-6 days [21-23]. We assumed
that the infectious period before the development of severe
symptoms is 6 days; hence, γ=1/6.

Time-Variant Parameter Estimation
The aSIR model contains two parameters, β and γ, with γ=1/6
obtained from the literature, and β estimated from the reported
data for each region of interest. The time-variant β(t) was
estimated using a sliding window of τ=7 days and step of s=1
day, with the estimated values for S and I obtained from the
previous window used as the initial conditions for the next
window.

The reproduction number was calculated as follows:

Rt(t) = β(t)/γ           (3)

For the first window, we determined the date when the number
of confirmed cases began to increase exponentially. This is
important because for many states or counties, very few
confirmed cases were initially reported for a number of days or
even weeks, which suggests that either the epidemic had not
started or the true number of infected individuals was unknown.
It is not reasonable to apply an SIR model for this initial period.
We considered the onset of the pandemic as the first of the 4
consecutive days in which the number of reported confirmed

cases increased in at least 3 days. The initial conditions for
system (1) for window 0 were as follows:

S0(0) = N           (4)

where N is the population in the region of interest, I0(0)=1, and
R0(0)=0. The infection rate βi and S(t), I(t) for t [0, τ—1] were
estimated from the initial conditions and actual R.

The window was slid by s=1 point. For the new i+1 window,
the initial conditions were considered as the estimated values
from the previous window Si+1(0)=Si(s), Ii+1(0)=Ii(s), and actual
Ri+1(0)=R(s). The actual values of R(t) were used, and the
infection rates βi+1 and Si+1(t), and Ii+1(t) were estimated.

For each window, the Rt.i was determined as follows:

Rt.i = βi/γ           (5)

The Rt.i was assigned to the last time point of the window. To
obtain a smooth estimate of Rt, we used a rolling average of 5
points.

Results

We fit the model for each state and county in the United States.
Model performance was evaluated by calculating the quality of
fit as the root mean squared error between the actual and fitted
R data for all windows concatenated (wRMSE). The fit was
excellent with wRMSE<6 across all states. Furthermore, we
calculated 1-day, 3-day, and 7-day forecasts of R after each
window (Figure 1A). The mean absolute prediction error for
the forecasts is provided in Table 1. The 1-day forecast error
did not exceed 2.6% across all states, while the 7-day forecast
error was large and approached 16.2% for New York. In
particular, the 7-day forecast strongly overestimated the number
of cases when Rt was rapidly decreasing (Figure 1).
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Figure 1. (A) Estimated Infectious and forecast Removed. (B) Estimated reproduction number Rt. The shaded region indicates the dates of the lockdown.
While the 1-day and 3-day forecasts are accurate, the 7-day forecast exhibits marked errors when Rt>1 and is rapidly decreasing.
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Table 1. Reproduction numbers and forecast accuracy for 50 US states.

MAPE (7-day forecast), %MAPE (3-day forecast), %MAPEb (1-day forecast), %Rt
a maxState

10.04.21.52.9Alabama

11.33.71.62.8Alaska

10.12.91.33.3Arizona

12.64.01.52.8Arkansas

6.32.91.72.5California

7.32.91.12.6Colorado

9.33.12.04.1Connecticut

7.92.91.72.4Delaware

4.41.80.82.1District of Columbia

9.34.42.03.6Florida

7.43.71.83.0Georgia

9.73.62.02.7Hawaii

13.64.82.43.4Idaho

8.52.51.34.0Illinois

10.44.01.43.8Indiana

8.03.61.82.8Iowa

8.63.51.63.0Kansas

11.24.92.63.0Kentucky

12.14.01.83.7Louisiana

6.72.81.22.0Maine

6.22.81.23.3Maryland

9.73.61.33.4Massachusetts

12.83.51.64.5Michigan

8.02.91.32.7Minnesota

9.33.01.22.9Mississippi

11.43.31.83.6Missouri

11.93.71.63.3Montana

9.74.12.02.5Nebraska

10.03.82.32.9Nevada

8.53.31.72.3New Hampshire

7.82.31.54.1New Jersey

7.33.42.22.3New Mexico

16.24.21.54.4New York

7.22.41.33.2North Carolina

12.64.81.82.4North Dakota

9.83.41.23.3Ohio

10.23.51.43.1Oklahoma

6.62.81.32.5Oregon

6.32.91.73.2Pennsylvania

6.83.11.52.4Rhode Island

10.64.32.13.5South Carolina
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MAPE (7-day forecast), %MAPE (3-day forecast), %MAPEb (1-day forecast), %Rt
a maxState

8.73.21.32.1South Dakota

12.54.82.23.5Tennessee

9.33.92.03.6Texas

8.33.11.43.2Utah

7.72.40.82.9Vermont

5.12.11.12.5Virginia

8.64.82.03.0Washington

14.03.91.63.5West Virginia

10.03.21.53.6Wisconsin

14.24.71.92.9Wyoming

aRt: reproduction number.
bMAPE: mean absolute prediction error.

The estimated time course of Rt for New York and Nassau
county, one of the most affected counties since the beginning
of the COVID-19 pandemic, are shown in Figure 1. The
estimated daily number of infectious individuals rapidly
increased and then gradually declined after the lockdown was
implemented on March 22, 2020 (Figure 1A). The estimated Rt

also declined upon implementation of the lockdown (Figure
1B). The time course of Rt exhibits weekly seasonality, which
likely reflects the effect of social interactions and possibly the
effect of fluctuations in case reporting on weekdays vs
weekends. For New York and Nassau county, Rt initially
increased, which may reflect the fact that the pandemic in New
York was continuously seeded by travelers arriving at John F
Kennedy International Airport until a ban on international travel
was implemented on March 12, 2020. This may also reflect the
fact that not all severe cases were initially recognized and
reported as COVID-19 cases. In Florida, Rt decreased to almost
1 by mid-April but then began increasing at the end of May
(Figure 1B). In June 2020, Florida authorities introduced more
stringent measures to control the pandemic, which is reflected
in the reduction in Rt in the second half of July 2020. The
opening of multiple states since June 2020 has been

accompanied by an increase in Rt beyond 1 (data not shown),
and close monitoring of Rt is needed to contain another wave
of the pandemic.

Next, we compared aSIR with the model developed by Cori et
al [15], implemented as R package EpiEstim, and a model
implemented by Systrom, Vladeck, and Krieger in rt.live [24]
(Figure 2). In EpiEstim, we assumed an equal probability of
infection within the infectious period of 6 days, the Rt estimate
was smoothed with a 7-point rolling average window, same as
that in aSIR. While all 3 models show similar estimates when
Rt approaches 1, their estimates differ considerably in the
beginning of the pandemic. In particular, the rt.live model [24]
returned a lower maximum Rt than the other 2 models and
estimated that Rt already decreased to 1 by the time the
lockdown was announced in New York on March 22, 2020
(Figure 2, shaded region). The EpiEstim and aSIR models
estimated similar peak values of Rt, and both models estimated
that Rt decreased and approached 1 in the first week of April
2020. Although both models show a rapid reduction in Rt in
March, the aSIR model shows a lagged change. However, we
are not aware of the ground truth data to determine which model
yields a more accurate estimate.
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Figure 2. Comparison of models that generate continuous Rt estimates. The three Rt estimates differ widely in the beginning of the COVID-19 pandemic.
In particular, the Rt estimated using the rt.live model of Systrom, Vladeck, and Krieger [24] decreased to 1 at the onset at the lockdown on March 22,
2020 (shaded region). aSIR: adaptive Susceptible-Infectious-Removed.

Finally, we investigated the effect of an abrupt increase in testing
on the estimated Rt (Figure 3). We assumed a step-wise 50%
increase in testing, which persisted after April 12, 2020 (Figure
3, left panel). Both aSIR and EpiEstim models exhibited a spike
in Rt. However, an increase in testing would help identify and
quarantine infectious individuals sooner, resulting in a shorter

infectious period and larger removal rate γ, in turn decreasing
Rt. We did not model a potential increase in γ. Instead, we
assumed that the underlying dynamics of the pandemic did not
change, and within 2 weeks both models returned to the Rt time
course estimated without an increase in testing.

Figure 3. Effect of a step-wise 50% increase in testing (left panel, dashed line). The 1-day forecast by the aSIR model adapts within a week. For the
Rt estimate, both EpiEstim and our aSIR models produced a spike, followed by a reduction (right panel, dashed lines) before returning to the unperturbed
Rt time course (solid lines). aSIR: adaptive Susceptible-Infectious-Removed.

Discussion

Principal Findings
We developed a simple approach to adaptively estimate the
time-varying parameters of the SIR model, using reported data
on the number of confirmed COVID-19 cases. This approach
adds to the already large literature on COVID-19 modeling in
2 ways. First, we estimate the parameters of the SIR model with
a sliding window of a limited duration (7 days) to account for
rapid changes in transmissibility and contact patterns in response
to changes in social behavior and government mitigation

measures. The window duration is a hyperparameter that can
be changed as needed, the trade-off being the accuracy of the
parameter estimates versus the rapid reaction to changes in the
underlying pandemic. Because the proposed model is so simple,
a number of scenarios can be explored as needed.

Second, we attribute the data on reported cases to the Removed
compartment rather than the Infectious compartment. This
modeling decision is based on the realities of the COVID-19
pandemic in the United States, where individuals with confirmed
COVID-19 are supposed to self-isolate or be hospitalized.
Although these individuals remain infectious and can infect
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other family members or caregivers even when self-isolated or
hospitalized, they would not freely interact with the susceptible
population, as would be required to attribute them to the I
compartment. The addition of a new X compartment in the SIR
model has been proposed to model symptomatic quarantined
infectious individuals [25]. However, we have no data to
independently estimate this additional parameter of quarantine
rate. For the same reason, we did not use the
Susceptible-Exposed-Infected-Removed (SEIR) model because
we are not aware of reliable data on the duration of the exposure
period during which an infected person is not yet infectious.
Moreover, it has been reported that the SIR model performed
better than the SEIR model in representing the information
contained in the confirmed-case data on COVID-19 [26].

The reported number of positive COVID-19 cases represents a
fraction of infected individuals because of the limited testing
capacity in March and April 2020; consequently, only those
who developed severe symptoms were tested. Up to 80% of
infected individuals may have been asymptomatic or may have
experienced mild symptoms [27] and were not tested; hence,
for that period, our model applies only to the small
subpopulation with severe symptoms. However, this
subpopulation is of particular interest because it represents those
who are at the greatest risk, and Rt estimated from these limited
data can be used to guide policy decisions aimed at protecting
the most vulnerable population [28]. As the number of the tested
individuals increases, the short sliding window approach makes
our model adaptable to an increasing proportion of the
population (Figure 3).

Across all US states, the maximal Rt values were estimated for
New York (4.4) and Michigan (4.5) (Table 1), which is similar
to the mean value of 4.34 estimated for Italy [29] but higher
than that obtained with a stochastic transmission model [30,31].
The wide range of maximal values of Rt of 2.0-4.5 (Table 1)
likely reflects the differences in contact rates owing to the
population density [32,33]. Increased social distancing is
required to contain the spread of the pandemic [34,35], with
more stringent mitigation measures, including lockdown,
considered necessary to decrease the contact rate in high-density
states and counties. Another measure to decrease Rt is to
increase the removal rate γ through intensive testing and
quarantining of individuals who test positive. This targeted
intervention would strongly decrease the interaction between
infectious and susceptible individuals and maintain an Rt of <1
until a vaccine is available and while vaccination efforts are
ramping up. Intensive testing combined with social distancing
and mask wearing, followed by the isolation of individuals
confirmed with COVID-19, are key features of reopening
strategies for schools and universities [36-38]. Our model allows
researchers and policymakers to monitor Rt in different
geographic regions of the United States, better understand the
effect of government policies on the dynamics of the pandemic,

and develop further mitigation strategies as we continue to battle
COVID-19 [39,40].

Limitations
The SIR model is perhaps the simplest model that captures the
dynamics of a pandemic. It is based on several assumptions that
are valid only to some degree as we consider real-life scenarios.
The 2 main limitations of the original SIR model are that it has
constant parameters and it is deterministic. Our proposed aSIR
model allows us to estimate time-varying parameters and thus
removes the first limitation. The other limitation remains,
however. It is assumed that infectious individuals freely interact
with the susceptible population. The infection rate β
encompasses both the probability of transmission and the
average number of contacts per day. The SIR model does not
reflect interaction dynamics that are stochastic in nature and are
described by stochastic epidemiologic models [15-17,41]. In
its simplest form, the SIR model does not reflect the
heterogeneity of viral transmission reflected in overdispersion
or superspreading where few numbers of infected individuals
infect a large number of susceptible individuals [42-44]. The
removal rate γ is an average number of days until an infectious
individual is excluded and does not reflect the variability of this
interval, nor does it allow one to model a possibility of a
subsequent, albeit reduced transmission to caregivers or other
susceptible individuals as may happen in a real-life scenario.
Consequently, Rt, which is calculated using constants β and γ
rather than their distributions, does not reflect the stochastic
nature of the dynamics of the pandemic. Parameter distributions
can be obtained by applying Bayesian methods to SIR modeling
[45]. Moreover, a single value of Rt estimated for a large
population does not reflect differences in subpopulations, such
as age groups, which is especially relevant for COVID-19
[46-48]. The generation of a bank of aSIR models for each
subpopulation or region can provide a more realistic insight
into the dynamics of the pandemic across a larger population
[49,50]. Another critical assumption is that once an individual
is infected and recovers, he/she is no longer susceptible to
repeated infection; however, this assumption does not appear
strongly violated. Although some cases of repeated infection
with SARS-CoV-2 have been reported [51-53], the risk of
re-infection is considered low [54,55]. Overall, the SIR model
is a trade-off between the computational simplicity and veracity
of describing the real-life complexities of a pandemic.

Conclusions
SIR type models, particularly the proposed time-variant aSIR
model, have an advantage over more complex models in the
initial stages of a pandemic when critical public policy decisions
need to be made while the empirical data on interaction
dynamics, transmission rates, and the disease progression and
contagiousness from the moment of infection are not yet readily
available. Our model provides a simple and efficient method to
assess the efficacy of interventions as the pandemic progresses.
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