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Abstract

Background: Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address
these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not
motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this
problem.

Objective: This study examines whether sensor-augmented toys can be used to assess children’s fine motor skills. The objectives
were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition
(fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on
the prediction.

Methods: Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with
a sensor-augmented toy called “Futuro Cube.” The game “roadrunner” focused on speed while the game “maze” focused on
precision. Each game had several levels of difficulty. While playing, both sensor and game data were collected. Four supervised
machine learning classifiers were trained with these data to predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic
regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and
classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best
on accuracy and F1 score. For all statistical tests, we used α=.05.

Results: The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and
game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differences in performance
were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, P=.03; KNN, P=.01; LR,
P=.02; SVM, P=.04). No significant differences in performance were found in the accuracy scores between the best performing
classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, P=.42; DT vs LR, P=.35; DT vs SVM, P=.08)
and the maze game (DT vs KNN, P=.15; DT vs LR, P=.62; DT vs SVM, P=.26). The accuracy of only the best performing level
of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data
obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (P=.046).

Conclusions: The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for
children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is
more important for determining the performance than selecting the machine learning classifier or level of difficulty.
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Introduction

Background
Motor development is crucial in child development. Acquiring
motor skills is not only essential for daily life functioning but
also influences children’s cognitive and social development [1].
Fine motor skills are a strong predictor of school results [2].
Motor skill development is not a fixed linear process. Every
child has his/her unique learning curve and pace, and their motor
skills develop by leaps and bounds [3]. Because of this unique
and unpredictable motor development path, it is important to
monitor children’s motor development over time instead of
assessing them once. That way, insight in the progress of their
motor development can be given [3,4]. Children with fine motor
development problems have difficulties with learning fine motor
skills. They experience, for instance, problems with school tasks
such as writing or cutting or daily life activities such as closing
a zipper or tying shoelaces [4]. In total, 5%-10% of children in
elementary school have developmental motor problems [5,6].
When monitoring children’s motor development over time,
these motor development problems can be recognized at an
early stage. Consequently, appropriate diagnostic methods and
required therapy could be started in time, which may diminish
the effects of their motor development problems.

Both worldwide and in the Netherlands, the Movement
Assessment Battery for Children Second Edition (MABC-2) is
the major test for assessing children’s motor development [5,7].
The MABC-2 consists of both tests for fine and gross motor
skills. Finishing the fine motor skill part of the MABC-2 (fine
MABC-2) takes approximately 15 minutes per child and requires
a trained supervisor [7]. Elementary school would be a natural
place to test children’s motor skills since developmental motor
problems affect cognitive development and school results and
vice versa. Proficient fine motor skills are, for instance, essential
for children to learn handwriting [8]. However, teachers in
elementary school report that they do not have the required
expertise and time to test all children, let alone to monitor them
all over time.

Sensor-augmented toys and machine learning have been
presented as possible solutions for the problems that teachers
experience with the current assessment methods [9,10]. Both
sensor data, regarding movements made with the toy, and game
data, regarding events that occur in the game, can be collected
while playing. Such a sensor-augmented toy can, for instance,
measure the smoothness of movements made with the toy or
how accurately a game was played. These data can be used to
train machine learning algorithms in predicting children’s motor
skill levels. After training and testing those machine learning
algorithms, they can be used to classify whether children have
fine motor development problems or not. Thus,
sensor-augmented toys can be used as an assessment tool for
signaling fine motor development problems in children.

Using sensor-augmented toys for indicating fine motor
development problems in children has many advantages. First,
these toys do not require a trained supervisor and require less
instruction time. Moreover, such toys provide more secure data
collection compared to manually collected data. Furthermore,
playing games can safely be considered to be more enjoyable
for children than standard assessment methods. Last, since no
trained supervisor is required and children can easily play with
the toys in the classroom, the toys enable testing in a natural
setting instead of a testing environment. By playing games in
such a natural setting, the assessment can be kept implicit and,
therefore, children are not aware of undergoing the assessment
[11].

Related Work
Despite the advantages of evaluating children’s fine motor skills
with sensor-augmented toys and machine learning, limited
research is done in this field. Gamification of assessment
processes in other contexts such as cognitive assessments has
been studied before [12]. The systematic review of Lumsden et
al [12] shows that many gamified cognitive assessments have
been validated successfully. Although gamification in the field
of health and well-being is popular, most studies focus on
promoting physical activity levels, mental health, and people
with a chronic disease [13,14]. Only a few studied gamification
in the context of motor skills and most of them involved training
instead of assessment [15,16]. Moreover, most of those studies
involved patients with motor problems that were primarily
caused by medical conditions such as cerebral palsy or stroke.
Those children are already seen by medical specialists who
monitor their motor development. In contrast, our study involved
children who may have a delay in their motor skill development
but do not have such diseases.

To the best of our knowledge, only 3 studies involved smart
toys for assessing children’s fine motor skills [17-19].
Vega-Barbas et al [17] only performed a usability and feasibility
test with smart toys that are potentially helpful for assessing
motor skills, but they have not used it for assessment yet. The
remaining 2 studies did use toys to evaluate children’s fine
motor skill levels, but both involved toddlers instead of
elementary school children. Moreover, they did not build a
classification model that might predict the outcome of current
motor skill assessment tests. Rivera et al [18] studied the
intraindividual variability. Guitiérrez García et al [19] did build
a regression model, but this model has not been tested and used
to classify the fine motor skill level based on the sensor data
yet. In addition to the sensor data that both studies included, we
will also include game data, that is, data about events that occur
in the game, to study its additional value.

In preliminary research, we studied the possibilities to use
sensor-augmented toys for fine motor skill assessment [9,10].
We studied whether a toy called the Futuro Cube could be used
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to predict the outcome of the fine MABC-2 [9]. While a game
was played with the toy, information regarding events occurring
in the game was registered. In addition to these game data,
sensor data were collected by measuring the movements of the
toy with accelerometers inside the toy. These sensor data and
game data were used as input for several supervised machine
learning models, which then were used to classify the motor
skill level of children. Our previous study showed that a machine
learning model that uses sensor and game data of the Futuro
Cube as input has the potential to classify the fine motor skill
levels of children aged 7-8 years.

Objective of This Study
In this study, in which a larger number of children participated,
we improved our toy and game compared to that used in our
preliminary research. First, we explored whether additional
sensor features would improve the results. Second, we studied
a game in which children could choose their own pace in the
game since such elements are also included in the fine MABC-2.
Therefore, we added a gyroscope to the toy to collect rotational
data in addition to acceleration data. Moreover, we designed an
additional game that focusses on precision instead of speed.
Based on these modifications, we will answer the following
research question: What is the influence of the classification
model, game, type of data, and level of difficulty (LoD) on
predicting the fine MABC-2 scores for children aged 6-9 years
with playing games with the Futuro Cube?

Methods

Recruitment
Children were recruited through their elementary school
teachers. Since we required a sufficient number of participants
having motor development problems for balanced class labels,
we included 2 elementary schools in Amsterdam that were
known for having a larger population of children with motor
development problems. Children who were between the age of
6 and 9 years and who were in the 3rd or 4th year of elementary
school were included. Fine motor development is important for
handwriting education. In the Netherlands, handwriting
education starts in the 3rd year of elementary school and is a
very important part of the 4th year of elementary school.
Teachers of those classes reported that they need to know
whether children’s fine motor development is proficient to start
such education. Therefore, we chose not to include children in
classes higher than the 4th year of elementary school. Pilot tests
of our game showed that the explanation of the game was too
hard for some children younger than 6 years. To make sure that
all children understood how to play games with the toy, we
chose not to include children younger than 6 years. Written
informed consent was obtained from parents or legal guardians
for participation of the child. A separate informed consent was
acquired for publication of the pseudonymized raw data. In
total, written informed consent for participation was given for
99 children and written informed consent for publication of the
raw data was given for 49 children. A pseudonymized data set
consisting of the sensor and game data of these children and
their corresponding fine MABC-2 scores is available on request

from the corresponding author. This study was performed
according to the Declaration of Helsinki [20].

Procedures

Test Setup
Each child was tested for 25 minutes. The fine MABC-2 was
taken in 15 minutes by a trained supervisor. Further, the child
played 2 different games on the Futuro Cube. Each game started
with a short instruction, followed by a warming-up phase in
which the child was able to become familiar with the game.
Half of the participants started with the fine MABC-2 and
subsequently played with the toy. For the other half of the
participants, the order was the other way around: first playing
with the toy and subsequently performing the fine MABC-2.

Determining the Level of Fine Motor Skills
The subscale for the measurement of fine motor skills of the
MABC-2 was used to determine the fine motor skill level of
the children. The fine MABC-2 test consists of 3 subtests. In
the first subtest, children had to place 12 pegs in a board with
12 holes. In the second subtest, children had to thread a lace
back and forth through a lacing board with holes. Both the first
and second subtests were time-sensitive. The child was told to
perform the task as quickly as possible and the time to complete
the task was denoted as the raw score of those subtests. In the
last subtest, children had to draw a trail with a pencil. They had
to draw a single line and were not allowed to cross the trail’s
boundaries. This subtest was not time-sensitive and the raw
score consisted of the number of errors, that is, the number of
times that the drawn line crossed the boundaries [7]. The raw
scores of each subtest were summed to a raw total score. Based
on the age of the participant, the raw total score was converted
to a percentile score. This score, between 0 and 100, indicates
the fine motor skill level of the participant compared to that of
the children within the same age band. The higher the score,
the better the fine motor performance of the participant
compared to children of the same age. According to the MABC
manual, a score in the 16th percentile or lower was defined as
likely to have fine motor development problems. All scores in
the 17th percentile or above were defined as not having fine
motor development problems.

Toy and Games
The Futuro Cube, which is shown in Figure 1, is a commercial
toy that was adapted for research [21]. The cube has 9 colored
lights on each side. The accelerometer and gyroscope inside the
cube track motion, sense rotation, and measure orientation. The
cube is 52×52×52 cm with 9 colored light-emitting diodes
(LEDs) on each side. Each square can be identified by a unique
index number i ∈ {0, …, 53}. This index number can be used
to register the activation of an LED, including the color. The
toy contains a tri-axial accelerometer with an acceleration
sensitivity of ±8G and a tri-axial gyroscope with an angular rate
sensitivity of 2000 dps. Based on these inertial measurement
unit sensors, the orientation and the change of position can be
recorded. Data collected with these sensors will be referred to
as sensor data. The programming language PAWN2 was used
for creating the games that are played with the toy. In the
programmed script, we defined which information about events
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that occur during a game should be saved, for example, the
change of color of an LED during the game. Saved data about
the game will from now on be referred to as game data. While
playing, both the game data and the abovementioned sensor
data were registered. Bluetooth low energy was used to
wirelessly send all data in real time from the cube to a computer
with a sample frequency of 110 Hz. In both games, a highlighted
dot was moving on the cube’s surface by activating the colored
LEDs. In the first game, called the roadrunner game, the focus

was on speed. The second game, called the maze game, focused
on precision. In both games, no points were collected and neither
visual nor auditory feedback was given about how well the
game was played. In the roadrunner game, the velocity of the
moving dot was predetermined and the child had to follow this
speed. In the second game, however, the child was asked to
move the dot as precisely as possible through the path without
being tied to a certain pace.

Figure 1. Futuro cube.

In the roadrunner game, a green dot moved on the surface of
the cube. The player was asked to rotate the cube in order to
keep the spot on the top surface of the cube, which is shown in
Figure 2. The dot moved with a certain velocity on the cube
surface jumping from LED to LED. In case the spot was at the
center LED of a side, it randomly turned left or right or kept
moving forward. The velocity at which the spot moved was
defined as the LoD. This game had 3 LoDs: LoD ∈ {0,1,2}.
The lower the level, the longer the spot remained at the same
place. Thus, level 0 was the easiest level and level 2 was the

hardest level. The time that the spot remained at the same index
number was denoted as the delay in seconds. The LoDs
correspond to a delay d ∈ {0.8, 0.6, 0.4}. Each level lasted for
30 seconds and occurred twice. Hereby, it has to be taken into
account that each player started with the easiest level and 2
subsequent levels could not have the same LoD. The order of
the LoDs was randomized and the game started with a warming
up phase of 60 seconds to discover the game. Table 1 shows all
10 possible permutations along with their order of LoDs.

Figure 2. Schematic overview of the roadrunner game. A-D: show the way the cube should be rotated to keep the green dot in the correct position.
E-H: show what happens in case the cube was not rotated at all.
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Table 1. All possible permutations for the roadrunner game.

Participants (n)Order of levels of difficultyPermutation

100, 1, 2, 0, 1, 20

100, 1, 2, 0, 2, 11

100, 1, 2, 1, 2, 02

100, 1, 2, 1, 0, 23

100, 2, 1, 0, 1, 24

90, 2, 1, 0, 2, 15

100, 2, 1, 2, 0, 16

100, 2, 1, 2, 1, 07

70, 1, 0, 2, 1, 28

90, 2, 0, 1, 2, 19

The goal of the maze game was to move a white dot through a
maze of green dots, as is shown in Figure 3. The dot could be
moved by rotating the cube. In case the player moved the white
dot on a location that was green and thus not allowed to enter,
the dot turned red. When the player moved the white dot back
on the right track, the red dot returned green. The path that the
players were asked to walk through with the white spot was
created by displaying green LEDs on the cube at certain index
numbers. The game had 2 different levels of difficulty, indicated
by the index numbers that turned green and thus were not
allowed to enter with the white dot: LoD ∈ {0, 1}. Level 0 was
the easiest level. Here, the player only had to push the white

dot around the corner of the toy in the middle of a side. In the
hardest level, pushing around the corner of the toy could also
have to take place at the edges of the cube. A schematic
overview of both levels of the maze game is shown in Figure
4. The path in the maze was infinite and each level lasted for
60 seconds. Similar to the roadrunner game, each level occurred
twice and the real levels were preceded to a warming up phase
of 60 seconds. No permutations could be made to randomize
the LoDs since there were only 2 LoDs; each game started with
the easiest level and 2 subsequent levels could not have the
same LoD.

Figure 3. Schematic overview of the maze game. A-C: show the way the cube should be rotated to correctly move the white dot through the maze. D:
shows what happens in case the white dot was moved to a location wherein it was not allowed to enter.

Figure 4. Schematic overview of the levels of the maze game. A: easiest level (level 0); B: hardest level (level 1).

Features
Before constructing features from the sensor data, we filtered
the raw sensor data. Both the acceleration data and gyroscope
data were filtered with a low-pass filter with a cut-off frequency

of 4 Hz. The so-called feature jerk was calculated as the
derivative of the acceleration and indicates the smoothness of
the translational movements. To indicate the smoothness of the
rotational movements, the derivative of the angular velocity
was calculated. For each game, we have built 1 game feature.
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The game feature for the roadrunner game is the cosine
similarity. This feature indicates how accurately a player kept
the green moving dot on the top surface of the cube. The cosine
similarity indicates the similarity between the location of the
dot and the location of the top of the cube. The cosine similarity
has a range of –1 to 1, with –1 meaning opposite orientations
and 1 meaning identical orientations. Thus, for the roadrunner
game, a cosine similarity value of 1 indicates that the player
kept the cube exactly in the preferred position regarding the
location of the green dot. For the maze game, the game state
feature is the maze correctness. This feature indicates the time
that the white dot was on the correct path.

We added gender and age of the participant as general features
to the sensor and game features. Table 2 shows all the features
together with its meaning in the context, which game the feature
applies to, and what type of feature it is. For each game, the
data of the warming-up phase (ie, the first 60 seconds of each
game) were removed since the warming up was intended to
familiarize the participant with the toy and was not part of the
assessment. The mean value of a variable over time (eg, mean
acceleration, mean jerk) and standard deviation were calculated
for each sensor and game feature. Thus, we constructed 8 sensor
features, 2 game features, and 2 general features per game.

Table 2. Overview of all the features.

Type of featureGameMeaning in contextFeature name

SensorBothTotal acceleration (m/s2)a

SensorBothTotal angular velocity (rad/s)ω

SensorBothSmoothness of the translational movements, derivative of aJerk

SensorBothSmoothness of the rotational movements, derivative of ωα

GameRoadrunnerAccuracy of keeping the green dot at the preferred positionCosine similarity

GameMazeTime being on the correct pathMaze correctness

GeneralBothGenderGender

GeneralBothAge in yearsAge

Classification Models
Four different supervised machine learning algorithms were
compared: k-nearest neighbor (KNN), logistic regression (LR),
decision tree (DT), and support vector machine (SVM). LR and
DT were selected because they provide interpretable models,
which is important for teachers who will use the toy in their
classrooms. KNN and SVM were chosen because they are
known to have good performance with nontextual data, of which
SVM often performs well with relatively little data [22]. The
labels that were used for training and testing the classification
model were the binary outcomes of the fine MABC-2. A child
who was likely to have fine motor skill development problems
according to the fine MABC-2 was denoted as 1, while a child
not having fine motor skill development problems according to
the fine MABC-2 was labeled as 0. The performance of the
classification model was analyzed with stratified 49-fold cross
validation [23]. Since our data set is relatively small, we chose
to perform cross validation to prevent overfitting. Because the
data set included 49 children with label 1, we performed 49-fold
cross validation to maximize the use of the available data.
Ideally, the distribution of class labels is almost equal in the
training and test set. Stratified cross-validation enables this ideal
distribution while performing cross validation [24]. Since our
data set consisted of approximately as many children with label
1 as children with label 0, each test set of a fold consisted of
one child with label 1 and one child with label 0. The label of
each child was used as a test set in at least one fold because we
performed 49-fold cross validation and the data set contained
49 children with label 1. Since the data set included 46 children
with label 0, the data of 3 children were reused in the test set
of another fold to enable stratified cross-validation.

Comparing Performances
In the first analysis, the games and classifiers were compared.
We trained and tested 4 different machine learning algorithms
on all features of the roadrunner game and all features of the
maze game. We used accuracy to indicate the percentage of the
correctly classified cases. As an additional performance metric,
we used the F1 score since it considers both precision and recall
and these are both important in an assessment tool. Precision
indicates the proportion of cases labeled positive that were
actually correct, whereas recall indicates the proportion of actual
positive cases that were labeled correctly. Wilcoxon tests were
performed to show whether the best performing classifier
performed significantly better than the other 3 classifiers.
Moreover, Wilcoxon tests were performed to show the
differences between the roadrunner game and the maze game
for each classifier. For all statistical tests, we used α=.05. The
game and classifier that performed best were used in the second
analysis. Here, we compared the LoDs and the type of input
features. For each possible combination of LoDs of the
roadrunner game, we trained and tested the best performing
classifier on the sensor features, the game features, and both
sensor and game features. The general features such as age and
gender were always included as classifier input. Wilcoxon tests
were performed to show whether the best performing
combination of the levels performed significantly better than
the other combinations of levels. Furthermore, Wilcoxon tests
were performed to show whether there were differences between
the type of features for the best performing combination of
levels.
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Results

Participant Characteristics
In total, 95 children (52 girls and 43 boys) participated. Their
mean age was 7.8 (SD 0.7) years. Based on the fine MABC-2
scores, 49 children showed problems with their fine motor skills,
while 46 children did not have fine motor skill problems. Thus,
the group of children having fine motor skill problems according
to the fine MABC-2 score and the group of children not having
fine motor skill problems were almost equal in number. Since
we deliberately included urban elementary schools having a
larger population of children with motor skill problems, this
ratio is higher than the typical percentage of 5%-10% of the
children having motor skill problems [5,6].

Effects of the Games and Classifiers
The DT classifier with only features of the roadrunner game as
input performed best with a mean accuracy score of 0.68 and a
mean F1 score of 0.65. The corresponding mean recall score
was 0.74. The DT classifier also performed best for the maze
game with a mean accuracy score of 0.52, a mean F1 score of
0.44, and a mean recall score of 0.51. For all classifiers, the
highest mean accuracy and mean F1 scores were achieved with
features of the roadrunner game used as input. An overview of
all mean accuracy and mean F1 scores per game and machine
learning algorithm is shown in Figure 5.

Although the DT classifier achieved higher accuracy and F1
scores than the other 3 classifiers for both the roadrunner and
the maze games, no significant differences were found. All
results of the performed Wilcoxon tests to study differences
between the DT and the other classifiers are shown in Table 3.

Figure 5. Mean accuracy and mean F1 scores for the comparison of the classifiers and games. DT: decision tree; KNN: k-nearest neighbor; LR: logistic
regression; SVM: support vector machine.

Table 3. Results of the Wilcoxon tests when the performance scores of the decision tree classifier were compared with those of the other classifiers.

F1 score (P value)Accuracy (P value)Classifier

Maze gameRoadrunner gameMaze gameRoadrunner game

.14.41.15.42k-nearest neighbor

.90.18.62.35Logistic regression

.23.08.26.08Support vector machine

Each classifier performed significantly better on accuracy with
data obtained from playing the roadrunner game than with that
obtained from playing the maze game (DT, P=.03; KNN, P=.01;
LR, P=.02; SVM, P=.04). Except for the SVM classifier, each
classifier also performed significantly better on the F1 score

with data obtained from playing the roadrunner game than with
data obtained from playing the maze game (DT, P=.02; KNN,
P=.01; LR, P=.049). Table 4 shows all the results of the
performed Wilcoxon tests to show differences between data
obtained from playing the roadrunner game and the maze game.
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Table 4. Results of the Wilcoxon tests when the performance scores of the roadrunner game were compared with those of the maze game for all
classifiers.

F1 score (P value)Accuracy (P value)Classifier

.02a.03aDecision tree

.01a.01ak-nearest neighbor

.049a.02aLogistic regression

.20.04aSupport vector machine

aDifferences were statistically significant at P<.05.

Influence of the Game Levels and Features
The DT classifier with features of only the roadrunner game as
input was used to compare the types of input features and
combinations of levels since the combination of this classifier
and game performed best in the first analysis. The highest mean
accuracy, being 0.76, was achieved with a combination of data
obtained from playing level 0 and level 2 and a combination of
both sensor and game features. The corresponding mean F1 and
recall scores were 0.67 and 0.71, respectively. The best mean
F1 score, being 0.70, was achieved with the combination of
level 1 and level 2 and only using game features. The
corresponding mean accuracy and recall scores were 0.65 and

0.80, respectively. Figure 6 shows an overview of all mean
accuracy and mean F1 scores per combination of levels and
type of input features achieved with the DT classifier and data
of the roadrunner game. Since the combination of data obtained
from playing levels 0 and 2 with both sensor and game features
achieved the highest mean accuracy, we compared levels 0 and
2 with the other combinations of levels. The combination of
level 0 and level 2 only performed significantly better than the
combination of level 0 and level 1 when both sensor and game
features were used as input (P=.046). All results of the
performed Wilcoxon tests to study differences between the
combination of levels with both sensor and game features used
as input are shown in Table 5.

Figure 6. Mean accuracy and F1 scores for the comparison of the levels and types of input features.
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Table 5. Results of the Wilcoxon tests when the performance scores of game level 0 and level 2 were compared with those of the other levels.a

F1 score (P value)Accuracy (P value)Game level

.54.38Level 0

.52.21Level 1

.92.11Level 2

.10.046bLevel 0 + 1

.52.21Level 1 + 2

.81.20Level 0 + 1 + 2

aIn all cases, decision tree was used as the classifier and both sensor and game features of the roadrunner game were used as input.
bDifferences were statistically significant at P<.05.

For all combinations of levels, the combination of both sensor
and game features performed better regarding accuracy than
only one of those features. When zooming in on the best
performing combination of levels, that is, level 0 and level 2,
we found a significant difference in the accuracy and F1 scores

between using both types of features and using only sensor
features (accuracy, P=.001; F1 score, P=.01). The results of the
performed Wilcoxon tests to study differences between the type
of input features for the combination of level 0 and level 2 are
shown in Table 6.

Table 6. Results of the Wilcoxon tests when the performance scores of the types of input features were compared.a

F1 score (P value)Accuracy (P value)Input feature

.01b.001bBoth features versus only sensor features

.06.18Both features versus only game features

.91.10Sensor versus game

aIn all cases, decision tree was used as the classifier and both data from game level 0 and level 2 were used for the input features.
bDifferences were statistically significant at P<.05.

Discussion

Principal Results
By comparing the classifiers and games, we learned that the
game focusing on speed was more suitable for predicting the
motor skill level than the game focusing on precision. Data
obtained from playing the roadrunner game led to significantly
better performances than data obtained from playing the maze
game. Thus, adding the game focusing on precision did not
improve our preliminary results. The important contribution of
the roadrunner data to the classification performance may be
explained by the fact that speed is an important component in
the MABC-2 as well. Two out of 3 subtests of the fine MABC-2
are time-sensitive. These findings correspond to the results of
Rivera et al [18], who showed that the time for completing a
task was an important component for intraindividual variability
with their tested sensor-augmented toy.

By comparing the types of data and the LoDs, we learned that
the combination of both sensor and game features was the most
suitable for predicting the motor skill level. For the combination
of data obtained from playing level 0 and level 2, using both
sensor and game features led to a significantly better
performance than only using sensor features. Although the
contribution of the sensor features to the performance was shown
to be little, the addition of the gyroscope data led to improved
results compared to our preliminary results [9]. The significant
difference between using both sensor and game features and

only using sensor features for the best performing combination
of levels is interesting. This means that the game component of
the assessment approach is not only beneficial for playfulness
but it also plays an important role in the prediction of the motor
skill level itself together with the sensor data. An interesting
follow-up project could be to generate additional game features
or design more speed-based games and study how they affect
the prediction of the fine MABC-2 score. The fact that no
significant differences were found between the DT classifier
and the other 3 classifiers indicates that the selection of input
features has more impact on the performance than the selection
of the classifier. Although the DT classifier did not perform
significantly better, it is preferred over the KNN and SVM
algorithms since it gives insight into the classification process.
This is an important characteristic for the teachers who will use
the toy in their classrooms.

Strengths, Limitations, and Opportunities
The best achieved accuracy of 0.76 and F1 score of 0.70 on
predicting the label of the fine MABC-2 are promising for
assessing children’s motor skills with sensor-augmented toys.
Since the cube is easy to use in the classroom, it is relatively
easy to collect data. Therefore, the current approach might not
only be useful for one-time assessment but could also be used
for monitoring. Although we predicted the outcome of the fine
MABC-2 and this assessment indicates whether children have
fine motor development problems or not, we cannot state that
we can predict children’s fine motor skill level with playing
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games with the Futuro Cube. To do so, we should repeat our
research and replace the fine MABC-2 labels with expert view
labels of the motor skill level. Moreover, assessment with the
Futuro Cube only indicates whether children might have fine
motor development problems in general. However, fine motor
development is complex and consists of several aspects.
Important factors are, for instance, cognitive ability, anticipatory
control, motor planning function, and spatial ability [4]. Since
all of these factors are included in the tasks of the fine MABC-2,
we included them in the games of the Futuro Cube as well.
Thus, our toy only signals motor development problems in
general but does not assess specific aspects of motor
development. In case the assessment tool showed that a child
was likely to have fine motor development problems, follow-up
examination is required to investigate individual aspects or
causes of fine motor development problems.

The current approach might not only be useful for assessment
but might also be useful as a first screening tool. In that case,
children who are not likely to have motor problems are already
being filtered out with the results of the game. A valid and
reliably fine motor skill assessment test such as the fine
MABC-2 can be taken for the children who were likely to have
fine motor skill problems based on the game results. That way,
not all children have to take the fine MABC-2 test, and the false
positives of the assessment with the toy can be filtered out
afterwards.

Another promising opportunity of the Futuro Cube is using it
for training instead of monitoring. Developing a valid and
reliable assessment toy will take some time, but playing with
the Futuro Cube might also be useful for training purposes.
Children could train their fine motor skills while playing games
with the toy. This could be valuable for both children with motor
skill problems without having specific disorders as well as
children with, for instance, cerebral palsy or fine motor problems
after a stroke. For learning, fun is an important factor since it
improves intrinsic motivation and focus [25]. It is shown that

gamified training is highly engaging and boosts the motivation
of players [12]. Therefore, such a playful way of training their
motor skills would be a valuable addition to the current methods.
When the toy is ready for assessment, it could also be used to
monitor progress in therapy or rehabilitation of such children.
Since data are wirelessly sent in real time to a computer, such
training opportunities could be improved by making the game
adaptive. The level could be fitted to the child’s capacities,
which improves the attention span and motivation. In this study,
we focused on predicting the outcome of the fine MABC-2, but
we did not include feasibility and usability in our approach.
Although we did not study playfulness for children and usability
for teachers in our approach, both children and teachers were
very enthusiastic and their informal responses were, without
exception, positive.

Conclusions
This study examined the possibilities of using sensor-augmented
toys to assess children’s fine motor skills. Such toys are less
time-consuming and more playful and motivating than the
current assessment methods. Compared to our preliminary
research, we added the gyroscope for extra sensor data and an
extra game that focused on precision instead of speed. With the
best achieved accuracy of 0.76 and F1 score of 0.70, we showed
that sensor-augmented toys can efficiently predict the outcome
of the fine MABC-2 score. The selection of features is more
important for the performance than the selection of the machine
learning classifier. Classifiers that used input features obtained
from playing the game focusing on speed performed
significantly better that classifiers that used input features
obtained from playing the game focusing on precision. Although
our findings are a good start, further research is needed to
develop a reliable and valid playful assessment tool. Possible
improvements may be generating more game features, designing
more speed-based games, and making the LoDs adaptive. Such
adaptive games may also be valuable for training or
rehabilitation purposes.
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