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Abstract

Background: Asthma exerts a substantial burden on patients and health care systems. To facilitate preventive care for asthma
management and improve patient outcomes, we recently developed two machine learning models, one on Intermountain Healthcare
data and the other on Kaiser Permanente Southern California (KPSC) data, to forecast asthma-related hospital visits, including
emergency department visits and hospitalizations, in the succeeding 12 months among patients with asthma. As is typical for
machine learning approaches, these two models do not explain their forecasting results. To address the interpretability issue of
black-box models, we designed an automatic method to offer rule format explanations for the forecasting results of any machine
learning model on imbalanced tabular data and to suggest customized interventions with no accuracy loss. Our method worked
well for explaining the forecasting results of our Intermountain Healthcare model, but its generalizability to other health care
systems remains unknown.

Objective: The objective of this study is to evaluate the generalizability of our automatic explanation method to KPSC for
forecasting asthma-related hospital visits.

Methods: Through a secondary analysis of 987,506 data instances from 2012 to 2017 at KPSC, we used our method to explain
the forecasting results of our KPSC model and to suggest customized interventions. The patient cohort covered a random sample
of 70% of patients with asthma who had a KPSC health plan for any period between 2015 and 2018.

Results: Our method explained the forecasting results for 97.57% (2204/2259) of the patients with asthma who were correctly
forecasted to undergo asthma-related hospital visits in the succeeding 12 months.

Conclusions: For forecasting asthma-related hospital visits, our automatic explanation method exhibited an acceptable
generalizability to KPSC.
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Introduction

Background
Asthma affects 8.4% of the US population [1], resulting in over
3000 deaths, almost 500,000 hospitalizations, and over
2,000,000 emergency department (ED) visits every year [1,2].
The state-of-the-art method for reducing asthma-related hospital
visits, including ED visits and hospitalizations, is to use a model
to forecast which of the patients with asthma are prone to future
poor outcomes. We then enroll these patients in care
management, ensuring care managers call them periodically to
help them schedule health and related services. As used by
health care systems like University of Washington Medicine,
Intermountain Healthcare, and Kaiser Permanente Northern
California [3] and by health plans in 9 of 12 metropolitan
communities [4], this method, if implemented properly, can cut
up to 40% of patients’ future hospital visits [5-8].

Having a limited capacity, a care management program can
enroll only a small portion of patients [9], and its effectiveness
is upper bounded by the accuracy of the predictive model.
Because they are missing certain important features, the existing
models for forecasting asthma-related hospital visits among
patients with asthma [3,10-22] are inaccurate, with each model
missing over half of patients who will undergo future
asthma-related hospital visits and mislabeling many others as
making such visits. As a result, care management programs
continue to be used inefficiently because they are unable to
focus on the highest-risk patients. In addition, patient outcomes
deteriorate, whereas health care costs increase. To address this
problem, we recently considered many candidate features and
developed two extreme gradient boosting (XGBoost) [23]
machine learning models, one on Intermountain Healthcare data
[24] and the other on Kaiser Permanente Southern California
(KPSC) data [25], to forecast asthma-related hospital visits in
the succeeding 12 months among patients with asthma with a
higher accuracy. As is typical for machine learning approaches,
these two models do not explain their forecasting results.
Clinicians would know that a patient is considered to be at a
high risk by the model, but the model offers no reason why this
is the case. This makes it difficult for clinicians to understand
and trust the model’s prediction result, determine whether the
patient should be put into care management, and pinpoint
interventions suitable for the patient. To address the
interpretability issue of black-box models, we designed an
automatic method to offer rule format explanations for any
machine learning model’s forecasting results on imbalanced
tabular data and to suggest customized interventions with no
accuracy loss [26]. Our method worked well for explaining our
Intermountain Healthcare model’s forecasting results [26], but
its generalizability to other health care systems remains
unknown.

Objectives
The objective of this study is to evaluate the generalizability of
our automatic explanation method to KPSC in forecasting
asthma-related hospital visits. In the following sections, we
describe our evaluation approach and results.

Methods

Ethics Approval and Study Design
After receiving approval from the institutional review boards
of KPSC and University of Washington Medicine, in this study,
we conducted a secondary analysis of retrospective data.

Patient Population
We adopted the same patient cohort from our previous KPSC
predictive model paper [25]: a random sample of 70% of patients
with asthma who had a KPSC health plan for any period between
2015 and 2018. This sample size is the largest one permitted
by KPSC for sharing its data with another non-Kaiser
Permanente institution for research. KPSC has 227 clinics and
15 hospitals. It is the largest integrated health care system in
Southern California, offering care to approximately 19% of
residents there [27]. A patient was deemed asthmatic in a
specific year if during that year, at least one asthma diagnosis
code (International Classification of Diseases, Tenth Revision
[ICD-10]: J45.x; International Classification of Diseases, Ninth
Revision [ICD-9]: 493.0x, 493.1x, 493.8x, and 493.9x) was
recorded on the patient in the encounter billing database
[11,28,29]. Patient death during that year served as the exclusion
criterion.

Prediction Target (Dependent Variable)
We adopted the same prediction target as our prior KPSC
predictive model paper [25]. For every patient deemed to have
asthma in a specific year, the indicator of any asthma-related
hospital visit in the succeeding year is the outcome. An
asthma-related hospital visit is a hospitalization or ED visit with
asthma as its principal diagnosis (ICD-10: J45.x; ICD-9: 493.0x,
493.1x, 493.8x, and 493.9x). When training and testing our
automatic explanation method and our KPSC XGBoost model,
for each patient who had a KPSC health plan on a year’s last
day and was also deemed asthmatic in the year, we used the
patient’s data up to the year’s last day to forecast the patient’s
outcome in the succeeding year.

Data Set
We adopted the same administrative and clinical data set from
our prior KPSC predictive model paper [25]. Obtained from
KPSC’s research data warehouse, this structured data set covered
our patient cohort’s visits at KPSC between 2010 and 2018.

Features (Independent Variables), Predictive Models,
and Data Preprocessing
Our KPSC model [25] uses the XGBoost classification algorithm
[23] and 221 features to forecast asthma-related hospital visits
in the succeeding year in patients with asthma. These features
are listed in our previous KPSC predictive model paper [25],
were computed on the structured attributes in our data set, and
cover various characteristics such as patient demographics,
medications, visits, diagnoses, vital signs, procedures, and
laboratory tests. An example feature is the total number of
asthma relievers that the patient filled in the previous 12 months.
Every input data instance to our KPSC model aims at a (patient,
index year) pair, includes these 221 features, and is used to
forecast the succeeding year’s outcome of the patient. As in our
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prior KPSC predictive model paper [25], the top 10% of patients
with asthma projected at the highest risk were used as the cutoff
point for binary classification. We used the same data
preprocessing approach adopted in our prior KPSC predictive
model paper [25] to clean, normalize, and prepare the data.

Review of Our Automatic Explanation Method
Previously, we designed an automatic method to offer rule
format explanations for the forecasting results of any machine
learning model on tabular data and to suggest customized
interventions with no accuracy loss. The original method [30]
was designed for relatively balanced data. Recently, we extended
the method to handle imbalanced data [26], where one value of
the outcome variable has a much lower prevalence rate than
another. This fits the case of forecasting asthma-related hospital
visits in patients with asthma. At KPSC, the prevalence rate of
having asthma-related hospital visits in the succeeding year was
approximately 2%. In the remainder of this paper, we focus on
the extended automatic explanation method.

Main Idea
The central idea of our automatic explanation method is to use
two models side by side to separate the forecasting and offering
explanations. Each model serves a different purpose. The first
model was used for the forecasting. Typically chosen to be the
most accurate one, this model can be any model built on
continuous and categorical features. The second model contains
class-based association rules [31,32] mined from past data. It
is used not to forecast but to explain the forecasting results of
the first model. After using an automatic discretization method
[31,33] to convert continuous features to categorical features,
we use a standard approach such as Apriori to mine the
association rules [32]. Each rule presents a feature pattern
linking to a value u of the outcome variable and has the form:

r1 AND r2 AND ... AND rs → u.

The values of s and u can differ across the rules. For the binary
classification of poor versus good outcomes, u is typically a
poor outcome value. Each item ri (1≤i≤s) is a feature-value pair
(g, v). When v is a value, ri shows that feature g has a value v.
When v is a range, ri indicates that the value of g is within v.
The rule signifies that a patient’s outcome is apt to be u if r1,
r2, ..., and rs are all satisfied by the patient. An exemplar rule
is:

The patient had 8 or 9 primary or principal asthma
diagnoses in the previous 12 months

AND the patient had ≥6 no shows in the prior 12
months

→ The patient will undergo ≥1 asthma-related hospital
visit in the subsequent 12 months.

The Rule Mining and Pruning Process
Our automatic explanation method uses 5 parameters: the
minimum commonality threshold, the minimum confidence
threshold, the largest number of items permitted on an
association rule’s left-hand side, the confidence difference
threshold, and the number of top features used to construct rules.
For a given rule

r1 AND r2 AND ... AND rs → u,

its commonality reflects its coverage in the context of u and
refers to the fraction of data instances fulfilling r1, r2, ..., and rs

among all the data instances connected to u. Its confidence
reflects its precision and refers to the fraction of data instances
connecting to u among all the data instances fulfilling r1, r2, ...,
and rs. Our method uses those rules whose commonality is no
less than the minimum commonality threshold, whose
confidence is no less than the minimum confidence threshold,
and each containing no more than the maximum permitted
number of items on its left-hand side.

We use 3 techniques to reduce the number of association rules
and prevent it from being excessively large. First, we remove
every more specific rule q1 in the presence of a more general
rule q2 satisfying q2’s confidence ≥ q1’s confidence−the
confidence difference threshold. Second, certain machine
learning algorithms, such as XGBoost [23], can automatically
compute every feature’s importance value. When handling a
large data set with many features, only the top few features
having the largest importance values and used in the first model
are adopted to construct rules. Third, a clinician in the design
team of the automatic explanation function examines all possible
values and value ranges of the features adopted to construct
rules and labels those values and value ranges that could have
a positive correlation with the poor outcome value. Only the
labeled feature values and value ranges are adopted to form
rules.

For each feature-value pair item that is adopted to construct
association rules, a clinician in the design team of the automatic
explanation function compiles zero or more interventions. We
tag an item actionable if it links to at least one intervention.
Each rule passing the rule pruning process is automatically
linked to the interventions related to the actionable items on the
left-hand side of the rule. We tag a rule actionable if it contains
at least one actionable item on its left-hand side; that is, it links
to at least one intervention.

The Explanation Approach
For every patient whom the first model forecasts to take a poor
outcome value, we explain the forecasting result by showing
the association rules in the second model having this value on
their right-hand sides and whose left-hand sides are satisfied
by the patient. Each rule provides a reason why the patient is
forecasted to take this value. For each actionable rule that is
shown, the interventions connected to it are listed next to it.
The automatic explanation function’s user can find customized
interventions that fit the patient from the listed interventions.
Usually, the rules in the second model present common reasons
for having poor outcomes. Some patients will experience poor
outcomes for other reasons. Thus, the second model can explain
most, but not all, of the poor outcomes correctly forecasted by
the first model.

Parameter Setting
In our experiments, we used the same parameter setting
approach used in our previous automatic explanation paper [26].
Each association rule had no more than 5 items on its left-hand
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side. Our KPSC XGBoost model [25] used 221 features to
forecast asthma-related hospital visits. We used the top 50
features that our KPSC model ranked with the largest importance
values to construct association rules. Our KPSC model gained
an area under the receiver operating characteristic curve (AUC)
of 0.820 using all 221 features and an AUC of 0.815 using the
top 50 features.

For forecasting asthma-related hospital visits, our KPSC model
[25] obtained a lower AUC for KPSC data than our
Intermountain Healthcare model on Intermountain Healthcare
data [24]. As mentioned in our previous automatic explanation
paper [26], the harder it is to forecast the outcome, the smaller
the minimum commonality and confidence thresholds need to
be to ensure that our automatic explanation method can provide
explanations for a large percentage of the patients whom the
first model correctly forecasts to take a poor outcome value.
Following this guideline on KPSC data, we set the minimum
commonality threshold to 0.08%, which is lower than the
corresponding value of 0.2% we used on Intermountain
Healthcare data [26]. We set the minimum confidence threshold
to 25%, which is lower than the corresponding value of 50%
used for the Intermountain Healthcare data [26]. Despite not
looking large, 25% is much greater than 2%, which is the
percentage of KPSC data instances associated with
asthma-related hospital visits in the succeeding year, as well as
our KPSC model’s positive predictive value of 11.03% [25].

To set the value of the confidence difference threshold τ, we
calculated the number of association rules passing the rule
pruning process versus τ. Our previous paper [26] shows that
this number of rules first drops quickly as τ rises and then drops
slowly when τ becomes sufficiently large. The value of τ was
set at the transition point.

Data Analysis

Partitioning of the Training and Test Sets
We used the same method adopted in our prior KPSC predictive
model paper [25] to divide the entire data set into training and
test sets. As several features were computed on the data from
up to 2 years before the index year and the outcomes came from
the succeeding year, our data set included 6 years of effective
data (2012-2017) over the 9-year period of 2010-2018. To match
the use of our KPSC model and our automatic explanation
method in clinical practice, we used the 2012-2016 data as the
training set to train our KPSC model and mine the association

rules adopted by our automatic explanation method. We used
the 2017 data as the test set to gauge the performance of our
KPSC model and the automatic explanation method.

Performance Metrics
We used the same performance metrics from our previous
automatic explanation paper [26] to assess the performance of
our automatic explanation method. A performance metric on
our method’s explanation power is the fraction of patients with
asthma whom our method could offer explanations for among
the patients whom our KPSC model correctly forecasted to
undergo asthma-related hospital visits in the succeeding year.
We computed the average number of rules and the average
number of actionable rules that suit such a patient. A rule suits
a patient if all items on its left-hand side are satisfied for the
patient.

As our previous automatic explanation paper [26] showed,
several rules suiting a patient often differ by a single item on
their left-hand sides. When multiple rules suit a patient, the
amount of nonredundant information included in them is usually
much less than the number of rules in them. To plot a full picture
of the amount of information included in the automatic
explanations given to the patients, we computed 3 distributions
of the patients with asthma whom our KPSC model correctly
forecasted to undergo asthma-related hospital visits in the
succeeding year: (1) by the number of actionable rules suiting
a patient, (2) by the number of different actionable items
included in all the rules suiting a patient, and (3) by the number
of rules suiting a patient.

Results

Demographic and Clinical Characteristics of Our
Patient Cohort
Remember that each data instance aims at a different (patient,
index year) pair. Tables 1 and 2 present the demographic and
clinical characteristics of our KPSC patient cohort during
2012-2016 and 2017, respectively. The two sets of
characteristics are sufficiently similar to each other. During
2012-2016, 2.42% (18,925/782,762) of data instances were
linked to asthma-related hospital visits in the succeeding year.
During 2017, this fraction was 2.13% (4353/204,744). Our
previous KPSC predictive model paper [25] provides a detailed
comparison of the two sets of characteristics.
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Table 1. Demographic and clinical characteristics of our Kaiser Permanente Southern California patient cohort during 2012-2016.

Data instances
(n=782,762), n (%)

Data instances associated with asthma-
related hospital visits in the succeeding
year (n=18,925), n (%)

Data instances associated with no asthma-
related hospital visit in the succeeding year
(n=763,837), n (%)

Characteristics

Age (years)

110,950 (14.17)2288 (12.09)108,662 (14.23)≥65

424,446 (54.22)8557 (45.22)415,889 (54.45)18-65

193,622 (24.74)5039 (26.63)188,583 (24.69)6 to <18

53,744 (6.87)3041 (16.07)50,703 (6.64)<6

Gender

454,000 (58.00)10,590 (55.96)443,410 (58.05)Female

328,762 (42.00)8335 (44.04)320,427 (41.95)Male

Race

487,582 (62.29)10,040 (53.05)477,542 (62.52)White

7922 (1.01)230 (1.22)7692 (1.01)Native Hawaiian or other Pacific
Islander

115,851 (14.80)4982 (26.33)110,869 (14.51)Black or African American

70,063 (8.95)1282 (6.77)68,781 (9.00)Asian

3831 (0.49)86 (0.45)3745 (0.49)American Indian or Alaska native

97,513 (12.46)2305 (12.18)95,208 (12.46)Unknown or unreported

Ethnicity

460,372 (58.81)10,577 (55.89)449,795 (58.89)Non-Hispanic

307,371 (39.27)8131 (42.96)299,240 (39.18)Hispanic

15,019 (1.92)217 (1.15)14,802 (1.94)Unknown or unreported

Insurance

106,703 (13.63)2224 (11.75)104,479 (13.68)Self-paid plan

223,789 (28.59)7469 (39.47)216,320 (28.32)Public

81,819 (10.45)1426 (7.54)80,393 (10.52)High deductible plan

39,785 (5.08)735 (3.88)39,050 (5.11)Exchange (also known as market-
place)

532,412 (68.02)11,311 (59.77)521,101 (68.22)Commercial (employer-paid)

271,328 (34.66)6064 (32.04)265,264 (34.73)Other

Number of years from the first visit related to asthma in the data set

450,849 (57.60)10,919 (57.70)439,930 (57.59)>3

331,913 (42.40)8006 (42.30)323,907 (42.41)≤3

Asthma medication fill

247,083 (31.57)10,837 (57.26)236,246 (30.93)Systemic corticosteroid

553,684 (70.73)16,242 (85.82)537,442 (70.36)Short-acting, inhaled beta-2 agonist

20 (0.00)0 (0.00)20 (0.00)Mast cell stabilizer

35,270 (4.51)1694 (8.95)33,576 (4.40)Long-acting beta-2 agonist

89,424 (11.42)4125 (21.80)85,299 (11.17)Leukotriene modifier

92,822 (11.86)3975 (21.00)88,847 (11.63)Combination of long-acting beta-2
agonist and inhaled corticosteroid

336,997 (43.05)11,841 (62.57)325,156 (42.57)Inhaled corticosteroid

Comorbidity

21,040 (2.69)575 (3.04)20,465 (2.68)Sleep apnea
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Data instances
(n=782,762), n (%)

Data instances associated with asthma-
related hospital visits in the succeeding
year (n=18,925), n (%)

Data instances associated with no asthma-
related hospital visit in the succeeding year
(n=763,837), n (%)

Characteristics

115,173 (14.71)2832 (14.96)112,341 (14.71)Sinusitis

17,297 (2.21)690 (3.65)16,607 (2.17)Premature birth

176,442 (22.54)4776 (25.24)171,666 (22.47)Obesity

103,958 (13.28)2778 (14.68)101,180 (13.25)Gastroesophageal reflux

85,369 (10.91)2944 (15.56)82,425 (10.79)Eczema

138 (0.02)3 (0.02)135 (0.02)Cystic fibrosis

28,387 (3.63)999 (5.28)27,388 (3.59)Chronic obstructive pulmonary dis-
ease

263 (0.03)22 (0.12)241 (0.03)Bronchopulmonary dysplasia

164,950 (21.07)4231 (22.36)160,719 (21.04)Anxiety or depression

168,709 (21.55)4673 (24.69)164,036 (21.48)Allergic rhinitis

Smoking status

489,148 (62.49)11,885 (62.80)477,263 (62.48)Never smoker or unknown

136,326 (17.42)2870 (15.17)133,456 (17.47)Former smoker

157,288 (20.09)4170 (22.03)153,118 (20.05)Current smoker
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Table 2. Demographic and clinical characteristics of our Kaiser Permanente Southern California patient cohort in 2017.

Data instances
(n=204,744), n (%)

Data instances associated with asthma-
related hospital visits in the succeeding
year (n=4353), n (%)

Data instances associated with no asthma-
related hospital visit in the succeeding year
(n=200,391), n (%)

Characteristics

Age (years)

36,021 (17.59)679 (15.60)35,342 (17.64)≥65

112,021 (54.71)2052 (47.14)109,969 (54.88)18-65

44,868 (21.91)1012 (23.25)43,856 (21.89)6 to <18

11,834 (5.78)610 (14.01)11,224 (5.60)<6

Gender

120,495 (58.85)2482 (57.02)118,013 (58.89)Female

84,249 (41.15)1871 (42.98)82,378 (41.11)Male

Race

126,816 (61.94)2302 (52.88)124,514 (62.14)White

1952 (0.95)42 (0.96)1910 (0.95)Native Hawaiian or other Pacific
Islander

27,939 (13.65)1075 (24.70)26,864 (13.41)Black or African American

18,874 (9.22)319 (7.33)18,555 (9.26)Asian

1018 (0.50)31 (0.71)987 (0.49)American Indian or Alaska native

28,145 (13.75)584 (13.42)27,561 (13.75)Unknown or unreported

Ethnicity

119,211 (58.22)2410 (55.36)116,801 (58.29)Non-Hispanic

80,021 (39.08)1868 (42.91)78,153 (39.00)Hispanic

5512 (2.69)75 (1.72)5437 (2.71)Unknown or unreported

Insurance

34,405 (16.80)647 (14.86)33,758 (16.85)Self-paid plan

66,631 (32.54)1904 (43.74)64,727 (32.30)Public

25,003 (12.21)356 (8.18)24,647 (12.30)High deductible plan

17,946 (8.77)269 (6.18)17,677 (8.82)Exchange (also known as market-
place)

130,144 (63.56)2420 (55.59)127,724 (63.74)Commercial (employer-paid)

84,783 (41.41)1675 (38.48)83,108 (41.47)Other

Number of years from the first visit related to asthma in the data set

118,901 (58.07)2616 (60.10)116,285 (58.03)>3

85,843 (41.93)1737 (39.90)84,106 (41.97)≤3

Asthma medication fill

67,475 (32.96)2597 (59.66)64,878 (32.38)Systemic corticosteroid

140,819 (68.78)3742 (85.96)137,077 (68.40)Short-acting, inhaled beta-2 agonist

0 (0.00)0 (0.00)0 (0.00)Mast cell stabilizer

11,810 (5.77)467 (10.73)11,343 (5.66)Long-acting beta-2 agonist

28,095 (13.72)1099 (25.25)26,996 (13.47)Leukotriene modifier

29,731 (14.52)1151 (26.44)28,580 (14.26)Combination of long-acting beta-2
agonist and inhaled corticosteroid

80,806 (39.47)2586 (59.41)78,220 (39.03)Inhaled corticosteroid

Comorbidity

13,144 (6.42)333 (7.65)12,811 (6.39)Sleep apnea
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Data instances
(n=204,744), n (%)

Data instances associated with asthma-
related hospital visits in the succeeding
year (n=4353), n (%)

Data instances associated with no asthma-
related hospital visit in the succeeding year
(n=200,391), n (%)

Characteristics

29,882 (14.59)680 (15.62)29,202 (14.57)Sinusitis

4513 (2.20)132 (3.03)4381 (2.19)Premature birth

49,738 (24.29)1190 (27.34)48,548 (24.23)Obesity

33,259 (16.24)797 (18.31)32,462 (16.20)Gastroesophageal reflux

21,159 (10.33)638 (14.66)20,521 (10.24)Eczema

42 (0.02)2 (0.05)40 (0.02)Cystic fibrosis

7591 (3.71)285 (6.55)7306 (3.65)Chronic obstructive pulmonary dis-
ease

30 (0.01)1 (0.02)29 (0.01)Bronchopulmonary dysplasia

47,300 (23.10)1124 (25.82)46,176 (23.04)Anxiety or depression

40,933 (19.99)1084 (24.90)39,849 (19.89)Allergic rhinitis

Smoking status

127,908 (62.47)2663 (61.18)125,245 (62.50)Never smoker or unknown

36,743 (17.95)717 (16.47)36,026 (17.98)Former smoker

40,093 (19.58)973 (22.35)39,120 (19.52)Current smoker

The Number of Residual Association Rules
Taking the top 50 features that our KPSC model ranked with
the largest importance values, we mined 11,628,850 association
rules from the training set. Figure 1 displays the number of
residual rules versus the confidence difference threshold τ. This
number first drops quickly as τ rises and then drops slowly when
τ becomes ≥0.15. Accordingly, the value of τ was set to 0.15,
resulting in 954,493 residual rules.

An asthma clinical expert in our team labeled the values and
value ranges of the top 50 features that could have a positive

correlation with asthma-related hospital visits in the succeeding
year. After we removed those rules involving any other value
or value range, 725,632 association rules remained. Each rule
provides a reason why a patient is forecasted to undergo future
asthma-related hospital visits. Almost all (725,623) of these
rules were actionable. Thus, our automatic explanation method’s
performance numbers are almost the same regardless of whether
all these rules or only the actionable rules were used. In the
remainder of this section, we present only the performance
numbers when only the actionable rules were used.

Figure 1. The number of residual rules versus the confidence difference threshold τ.

Example Association Rules Adopted by the Second
Model
To allow the reader to gain a sense of the association rules the
second model adopted, we present 5 example rules:

• Rule 1: The patient filled ≥89 asthma relievers in total in
the previous 12 months

→ The patient will undergo ≥1 asthma-related hospital
visits in the subsequent 12 months.

The use of many asthma relievers indicates poor asthma control.
An intervention tied to the item the patient filled ≥89 asthma
relievers in total in the prior 12 months is to tailor prescribed
medications and to suggest the patient to maximize adherence
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to asthma control medications or to improve avoidance of
asthma triggers.

• Rule 2: The patient had ≥25 nebulizer medication orders
in the previous 12 months

AND the patient incurred ≥16 major visits for asthma
in the previous 12 months

→ The patient will undergo ≥1 asthma-related hospital
visits in the subsequent 12 months.

The use of many nebulizer medications indicates a poor asthma
control. An intervention tied to the item the patient had ≥25
nebulizer medication orders in the prior 12 months is to tailor
prescribed medications and to suggest the patient to maximize
adherence to asthma control medications or to improve the
avoidance of asthma triggers.

As defined in our previous paper [24], major visits for asthma
cover outpatient visits linked to a primary diagnosis of asthma,
and ED visits and hospitalizations linked to an asthma diagnosis
code. Outpatient visits linked to a secondary, but not a primary,
diagnosis of asthma are deemed minor visits for asthma. Having
many major visits for asthma indicates a poor asthma control.
An intervention tied to the item the patient incurred ≥16 major
visits for asthma in the prior 12 months is to adopt control
strategies for the patient to avoid needing emergency care.

• Rule 3: The patient had 8 or 9 primary or principal asthma
diagnoses in the previous 12 months

AND the patient had ≥6 no shows in the previous 12
months

→ The patient will undergo ≥1 asthma-related hospital
visits in the subsequent 12 months.

Having many primary or principal asthma diagnoses indicates
a poor asthma control. An intervention tied to the item the
patient had 8 or 9 primary or principal asthma diagnoses in
the prior 12 months is to offer the patient suggestions on how
to improve asthma control.

Having many no shows correlates with poor outcomes. An
intervention tied to the item the patient had ≥6 no shows in the
prior 12 months is to give the patient social resources to handle
socioeconomic challenges to keep appointments.

• Rule 4: The patient incurred ≥8 ED visits in the previous
12 months

AND the patient was prescribed ≥28 short-acting
beta-2 agonist medications in total in the previous 12
months

AND the patient is Black or African American

→ The patient will undergo ≥1 asthma-related hospital
visits in the subsequent 12 months.

In the United States, Black and African American people tend
to have poorer asthma outcomes than others. Frequent ED visits
indicated a poor asthma control. An intervention tied to the item
the patient incurred ≥8 ED visits in the prior 12 months is to
adopt control strategies for the patient to avoid needing
emergency care.

Short-acting beta-2 agonists are rescue medications for the quick
relief of asthma symptoms. The use of many short-acting beta-2
agonists indicates a poor asthma control. An intervention tied
to the item the patient was ordered ≥28 short-acting beta-2
agonist medications in total in the prior 12 months is to tailor
prescribed medications and to suggest the patient to maximize
adherence to asthma control medications or to improve the
avoidance of asthma triggers.

• Rule 5: The highest exacerbation severity of all asthma
diagnoses recorded on the patient in the previous 12 months
is status asthmaticus

AND the patient incurred ≥11 and ≤17 visits with
same-day appointments in the previous 12 months

AND the admission type of the patient’s last visit in
the previous 12 months is nonelective

→ The patient will undergo ≥1 asthma-related hospital
visits in the subsequent 12 months.

Status asthmaticus is the most severe form of asthma
exacerbation. An intervention tied to the item the highest
exacerbation severity of all of the asthma diagnoses recorded
on the patient in the prior 12 months is status asthmaticus is to
offer the patient suggestions on how to improve asthma control.

Having many visits with same-day appointments indicates a
poor asthma control. An intervention tied to the item the patient
incurred ≥11 and ≤17 visits with same day appointments in the
prior 12 months is to improve support offered to the patient
between visits to enhance medication adherence, address asthma
triggers, and maximize the value of each visit.

A patient incurs a nonelective visit when the patient’s condition
requires an immediate medical attention, for example, when the
patient experiences severe asthma exacerbation. An intervention
tied to the item the admission type of the patient’s last visit in
the prior 12 months is nonelective is to adopt control strategies
for the patient to avoid needing emergency care.

The Performance of Our Automatic Explanation
Method
We evaluated our automatic explanation method on the test set.
Our method explained the forecasting results for 97.9%
(599/612) of the children (age <18 years) with asthma and
97.45% (1605/1647) of the adults (age ≥18 years) with asthma
our KPSC model correctly forecasted to undergo asthma-related
hospital visits in the succeeding year. Put together, our method
explained the forecasting results for 97.57% (2204/2259) of the
patients with asthma who were correctly forecasted to undergo
asthma-related hospital visits in the succeeding year. For every
such patient, on average, our method provided 1516.25 (SD
2161.30) explanations, each from one rule, and found 24.04
(SD 8.68) actionable items.

For the patients with asthma whom our KPSC model correctly
forecasted to undergo asthma-related hospital visits in the
succeeding year, Figures 2 and 3 display the patient distribution
according to the number of actionable rules suiting a patient.
Having a long tail, this distribution is significantly skewed
toward the left. As the number of rules suiting a patient
increases, the number of patients each covered by this number
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of rules tends to decline nonmonotonically. The biggest number
of rules suiting a patient is fairly large (15,252). However, only
one patient matched this number of rules.

For the patients with asthma whom our KPSC model correctly
forecasted to undergo asthma-related hospital visits in the
succeeding year, Figure 4 displays the patient distribution
according to the number of different actionable items included
in all the rules suiting a patient. The largest number of different

actionable items included in all the rules suiting a patient is 42,
much less than the largest number of actionable rules suiting a
patient. As noted in our previous automatic explanation paper
[26], 2 or more actionable items included in the rules that suit
a patient often connect to the same intervention.

Our automatic explanation method provided explanations for
67.61% (2943/4353) of patients with asthma who would undergo
asthma-related hospital visits in the succeeding year.

Figure 2. The patient distribution by the number of actionable rules suiting a patient for the patients with asthma whom our Kaiser Permanente Southern
California model correctly forecasted to undergo asthma-related hospital visits in the succeeding year.

Figure 3. The patient distribution by the number of actionable rules suiting a patient when this number is ≤250 for the patients with asthma whom our
Kaiser Permanente Southern California model correctly forecasted to undergo asthma-related hospital visits in the succeeding year.

Figure 4. The patient distribution by the number of different actionable items included in all the rules suiting a patient for the patients with asthma
whom our Kaiser Permanente Southern California model correctly forecasted to undergo asthma-related hospital visits in the succeeding year.
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Discussion

Principal Findings
The results presented in this paper are similar to those presented
in our previous automatic explanation paper [26]. For forecasting
asthma-related hospital visits, our automatic explanation method
exhibited an acceptable generalizability to KPSC. In particular,
our method explained the forecasting results for 97.57%
(2204/2259) of the patients with asthma who were correctly
forecasted to undergo asthma-related hospital visits in the
succeeding year. This fraction is comparable with that (89.68%)
on Intermountain Healthcare data in our previous automatic
explanation paper [26] and is large enough to put our automatic
explanation method into daily clinical use. After further
development to boost its accuracy, our KPSC model combined
with our automatic explanation method could be used to guide
asthma care management’s use to help enhance patient outcomes
and reduce health care costs.

Our automatic explanation method provided explanations for
67.61% (2943/4353) of patients with asthma who would undergo
asthma-related hospital visits in the succeeding year. This
fraction is less than the 97.57% (2204/2259) success rate, at
which our method explained the forecasting results for the
patients with asthma our KPSC model correctly forecasted to
undergo asthma-related hospital visits in the succeeding year.
This is possibly due to the correlation between the association
rules’ and our KPSC model’s forecasting results. Among the
patients with asthma whom our KPSC model correctly
forecasted to undergo asthma-related hospital visits in the
succeeding year, many are easy cases for us to explain their
outcomes using association rules. Among the patients with
asthma who would undergo asthma-related hospital visits in the
succeeding year and whose outcomes were incorrectly forecasted
by our KPSC model, many are difficult cases for any model to
correctly explain or forecast their outcomes.

Displaying the Automatic Explanations
Many rules could suit a patient. In this case, it is undesirable to
list all of them simultaneously and overwhelm the user of the
automatic explanation function. Instead, we should rank these
rules and display the top few (eg, 3) of them by default. If
desired, the user can ask an automatic explanation function to
show more rules. In ranking the rules suiting a patient and the
items on the left-hand side of a rule, we consider the following
factors and strike a balance among them:

1. All else being equal, rules with fewer items on their
left-hand sides are easier to understand and should be ranked
higher.

2. All else being equal, rules with higher confidence are more
precise and should be ranked higher.

3. All else being equal, rules with a higher commonality cover
more patients with poor outcomes and should be ranked
higher.

4. The automatic explanation function’s user tends to read the
rules one by one in the display order. All else being equal,
the more items on the left-hand side of a rule appear in
higher-ranked rules, the less new information that the user

has not seen so far is contained in the rule and the lower
the rule should be ranked.

5. Consider the items on the left-hand side of a rule. The
automatic explanation function’s user tends to read the
items one by one in the display order. All else being equal,
the items that have appeared in higher-ranked rules contain
repeated information and should be put after the other items
that have not appeared in any of the higher-ranked rules.

6. The automatic explanation function’s user cares about
finding suitable interventions for the patient. Consider the
items on the left-hand side of a rule. All else being equal,
the actionable items should be placed before the
nonactionable items.

7. Actionable rules should be ranked higher than nonactionable
rules.

We are in the process of preparing a paper describing our
rule-ranking method in detail.

Related Work
As described in the book [34] and the survey paper [35], many
other researchers have proposed miscellaneous methods for
automatically offering explanations for the forecasting results
of machine learning models. Such explanations are typically
not in a rule format. Many such methods sacrifice a part of the
forecasting accuracy and/or are designed for a particular machine
learning algorithm. In addition, none of these methods can
automatically suggest customized interventions. In comparison,
our automatic explanation method supplies rule format
explanations for any machine learning model’s forecasting
results on tabular data and suggests customized interventions
with no accuracy loss. Rule format explanations are easier to
comprehend and can suggest customized interventions more
directly than other forms of explanations.

To the best of our knowledge, we were the first to use
association rules to automatically offer rule format explanations
for any machine learning model’s forecasting results on tabular
data and to suggest customized interventions with no accuracy
loss [30]. Our original method [30] was designed for relatively
balanced data and was initially tested in the case of forecasting
type 2 diabetes diagnoses. Subsequently, Alaa et al [36,37]
applied the original method to multiple medical prediction tasks.
So far, no researcher outside of our group has applied our
extended automatic explanation method [26], which can handle
imbalanced data, to any prediction task. Rudin et al [38] and
Ribeiro et al [39] used rules to automatically offer explanations
for the forecasting results of any machine learning model. These
rules are not association rules and are unknown before the
prediction time; hence, they cannot be used to automatically
suggest customized interventions at the prediction time. In
comparison, the association rules used in our automatic
explanation method are mined before the prediction time and
used to automatically suggest customized interventions at the
prediction time.

Limitations
This study has three limitations, all of which can be fine areas
for future work:
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1. For forecasting asthma-related hospital visits, our study
evaluated the generalizability of our automatic explanation
method to a single health care system. It would be nice to
assess our automatic explanation method’s generalizability
to other health care systems, such as academic ones, which
have different properties from Intermountain Healthcare
and KPSC. In comparison with nonacademic systems,
academic health care systems tend to handle more complex
and sicker patients [40]. To prepare for such an evaluation,
we are currently retrieving a data set of patients with asthma
from the enterprise data warehouse of the University of
Washington Medicine [41].

2. Our study evaluated the generalizability of our automatic
explanation method only for forecasting asthma-related
hospital visits. It would be nice to assess the generalizability

of our automatic explanation method for other diseases and
outcomes [41].

3. Our current automatic explanation method is designed for
structured data and traditional machine learning algorithms
that are not deep learning algorithms. It would be nice to
extend our method so it can also handle deep learning
models built directly on longitudinal data [41,42].

Conclusions
In its first generalizability assessment, our automatic explanation
method for imbalanced tabular data exhibited a decent
generalizability to KPSC for forecasting asthma-related hospital
visits. After further development to boost its accuracy, our KPSC
model combined with our automatic explanation method could
be used to guide asthma care management’s use to help enhance
patient outcomes and reduce health care costs.
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