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Abstract

Background: Acute kidney injury (AKI) is commonly encountered in clinical practice and is associated with poor patient
outcomes and increased health care costs. Despite it posing significant challenges for clinicians, effective measures for AKI
prediction and prevention are lacking. Previously published AKI prediction models mostly have a simple design without external
validation. Furthermore, little is known about the process of linking model output and clinical decisions due to the black-box
nature of neural network models.

Objective: We aimed to present an externally validated recurrent neural network (RNN)–based continuous prediction model
for in-hospital AKI and show applicable model interpretations in relation to clinical decision support.

Methods: Study populations were all patients aged 18 years or older who were hospitalized for more than 48 hours between
2013 and 2017 in 2 tertiary hospitals in Korea (Seoul National University Bundang Hospital and Seoul National University
Hospital). All demographic data, laboratory values, vital signs, and clinical conditions of patients were obtained from electronic
health records of each hospital. We developed 2-stage hierarchical prediction models (model 1 and model 2) using RNN algorithms.
The outcome variable for model 1 was the occurrence of AKI within 7 days from the present. Model 2 predicted the future
trajectory of creatinine values up to 72 hours. The performance of each developed model was evaluated using the internal and
external validation data sets. For the explainability of our models, different model-agnostic interpretation methods were used,
including Shapley Additive Explanations, partial dependence plots, individual conditional expectation, and accumulated local
effects plots.

Results: We included 69,081 patients in the training, 7675 in the internal validation, and 72,352 in the external validation cohorts
for model development after excluding cases with missing data and those with an estimated glomerular filtration rate less than
15 mL/min/1.73 m2 or end-stage kidney disease. Model 1 predicted any AKI development with an area under the receiver operating
characteristic curve (AUC) of 0.88 (internal validation) and 0.84 (external validation), and stage 2 or higher AKI development
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with an AUC of 0.93 (internal validation) and 0.90 (external validation). Model 2 predicted the future creatinine values within 3
days with mean-squared errors of 0.04-0.09 for patients with higher risks of AKI and 0.03-0.08 for those with lower risks. Based
on the developed models, we showed AKI probability according to feature values in total patients and each individual with partial
dependence, accumulated local effects, and individual conditional expectation plots. We also estimated the effects of feature
modifications such as nephrotoxic drug discontinuation on future creatinine levels.

Conclusions: We developed and externally validated a continuous AKI prediction model using RNN algorithms. Our model
could provide real-time assessment of future AKI occurrences and individualized risk factors for AKI in general inpatient cohorts;
thus, we suggest approaches to support clinical decisions based on prediction models for in-hospital AKI.

(J Med Internet Res 2021;23(4):e24120) doi: 10.2196/24120
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Introduction

Acute kidney injury (AKI) is a common clinical condition that
can be attributed to multiple causes in various clinical settings.
AKI increases mortality, morbidity, length of hospital stay, and
health care costs [1-4]. According to the National Confidential
Enquiry on Patient Outcomes and Death reports, approximately
17% of AKI is estimated to be avoidable and preventable [5].
Therefore, many research efforts have been expended to detect
AKI early on and to manage patients with high risk [6].
Nevertheless, the reported incidence of AKI is 17%-25% in the
hospital setting [7,8] and it has continued to rise globally during
the recent decades [9]. Markedly increasing amounts of
electronic health record (EHR) data and recent developments
in machine learning techniques offer greater possibilities for
the improvement of quality of care and medical research [10].
Various clinical decision support systems that use EHR and
machine learning have been increasingly reported for various
diseases [11-14]. Machine learning methods can incorporate
tremendously large number of features in the model compared
with conventional regression models and thus enable the use of
nonlinear algorithms. As a result, in AKI research, several
studies have adopted machine learning methods such as random
forest and neural network models and reported improved model
performance [15-17]. Major risk factors associated with
in-hospital AKI include the use of various nephrotoxins,
repeatedly measured laboratory findings, and vital signs that
are dynamic rather than static variables [18-20]. The recurrent
neural network (RNN) is a powerful tool used to handle such
sequential data [21]; various RNN models have shown excellent
performance in the field of natural language processing and
time-series forecasting models [22,23]. Although the RNN
model is a promising approach, time-updated predictive models
for AKI using the RNN algorithm are still in their infancy [24].
Only a few studies have investigated these, and they have not
been externally validated [20,25]. Moreover, despite their
enhanced performance, these neural network models cannot
provide insights into how to link clinical decision supports;
therefore, interpreting the output using these models can be
difficult. In this respect, neural network models have been
criticized as being black-box models [26]. Previous studies on
clinical decision support for AKI have not implemented
predictions for AKI development but have only served as alarm
systems for the timely diagnosis of AKI according to diagnostic
criteria [27,28]. Therefore, in this study, we propose an

externally validated RNN-based prediction model for in-hospital
AKI and aimed to provide a framework to link the developed
model with clinical decision support.

Methods

Study Population
This study was performed in accordance with the
recommendations laid out in the World Medical Association
Declaration of Helsinki. The study protocol was approved by
the Institutional Review Boards (IRBs) of the Seoul National
University Bundang Hospital (SNUBH; IRB No.
B-1912/583-406) and Seoul National University Hospital
(SNUH; IRB No. H-1911-043-1076). Written consent was
waived by the IRB because of the retrospective nature of the
study, and all data were completely anonymized. Study
populations comprised all patients aged 18 years or older who
were hospitalized for more than 48 hours at the SNUBH from
2013 to 2017 (training and internal validation cohorts) and at
the SNUH from 2013 to 2017 (external validation cohort). These
2 tertiary hospitals are affiliated with each other. However, they
are located in different regions of Korea and have different
patient populations and EHR systems. The exclusion criteria
were as follows: (1) no baseline or follow-up creatinine (Cr)
measurements, (2) baseline estimated glomerular filtration rate

(eGFR) less than 15 mL/min/1.73 m2 or Cr greater than 4.0
mg/dL or end-stage kidney disease at admission, (3) no other
laboratory test results used in the model, (4) no BMI or vital
sign measurements, and (5) an AKI diagnosis at admission (day
1).

Data Collection
All demographics, laboratory values, vital signs, and clinical
conditions were obtained from the EHR of each hospital. The
features that are considered as risk factors of AKI from the
related literature or are correlated with AKI development were
selected for model development [18]. A total of 107 variables
were included in the model. These are summarized in
Multimedia Appendix 1. Each variable was classified as either
static or dynamic. The static variables were assigned to
time-invariant values during hospitalization, and the dynamic
variables were assigned to values that were updated on a daily
basis. Demographics and comorbidities were static variables,
while laboratory tests, vital signs, and clinical conditions were
dynamic variables. The use of medications during admission

J Med Internet Res 2021 | vol. 23 | iss. 4 | e24120 | p. 2https://www.jmir.org/2021/4/e24120
(page number not for citation purposes)

Kim et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/24120
http://www.w3.org/Style/XSL
http://www.renderx.com/


was incorporated in the model as a dynamic categorical variable,
and medication history before admission was treated as a static
variable. Patient comorbidities were classified into 17 categories
according to the International Statistical Classification of
Disease and Related Health Problems (10th revision) codes
from which the Charlson Comorbidity Index was assessed [29].
BMI was calculated from the height and weight measured at
admission. Laboratory values included Cr, white blood cells,
hemoglobin, platelets, albumin, sodium, potassium, chloride,
aspartate aminotransferase, alanine aminotransferase, blood
urea nitrogen, total CO2, bilirubin, calcium, glucose, creatine
kinase, lipase, and troponin I. The means of laboratory values
that were measured more than once each day were used in our
model. Medications included well-known nephrotoxic agents,
such as nonsteroidal anti-inflammatory drugs, aminoglycoside,
vancomycin, and colistin. Vital signs included systolic, diastolic,
and mean arterial blood pressures; pulse; and body temperature,
which were usually measured 3 times a day in general wards.
Therefore, the mean, maximum, and minimum values of the
vital signs during a day were used as different variables.

AKI and Baseline Creatinine Definitions
AKI was defined according to the Kidney Disease: Improving
Global Outcomes (KDIGO) Clinical Practice Guideline for AKI
[30]. Because urine volume data were not available, AKI stage
was defined based on serum Cr levels. Baseline Cr levels were
determined by searching the minimum serum Cr level within a
period of 2 weeks before admission. If there were no serum Cr

measurements during this period, the minimum value of Cr
measured within 90 or 180 days before admission was used as
the baseline Cr. In the absence of Cr measurements up to 180
days before admission, the serum Cr value measured on the first
day of hospitalization was defined as the baseline Cr.

Data Preprocessing and Statistical Analysis
During data collection, error values were treated as missing,
and outliers of all variables were examined and removed after
review by domain experts. Patients with missing variables at
baseline were excluded according to the exclusion criteria. The
last observation carried forward method was used for missing
values after baseline. Variables were scaled using the min–max
normalization before training the neural network. For continuous
prediction of AKI, the training and validation data sets were
organized as multiple sliding windows of features and target
labels fed to the input layer of the RNN model (Figure 1A). The
length of the sliding window was selected as 7 days and features
up to 2 weeks after admission were utilized. Therefore, all time
points were considered for both patients with AKI and non-AKI
during the length of stay before AKI occurrence or discharge.
The SNUBH data set was divided into a training set
(69,081/76,756, 90%) and an internal validation set
(7675/76,756, 10%) using the stratified random split. Categorical
variables are expressed as numbers and percentages, and
continuous variables as means (SD). The chi-square test and t
test were used to compare differences in baseline characteristics
between the training and validation cohorts. P values <.05 were
considered statistically significant.
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Figure 1. Architectural overview of the developed model using the recurrent neural network (RNN). (A) The sliding window approach for handling
sequential data and (B) the 2-stage hierarchical model comprising models 1 and 2. Model 1 could predict the occurrence of acute kidney injury (AKI)
in the next 7 days from the present, and model 2 could provide the predicted value of serum creatinine (Cr) for the next 3 days.

Model Development and Assessment
We developed 2 different models (models 1 and 2) with stacked
RNN algorithms. Model 1 had a many-to-one architecture with
7 sequential inputs and 1 prediction output. The outcome
variable for model 1 was the occurrence of AKI in the next 7
days. Padding and masking techniques were used for instances
with sequences shorter than the length of the sliding window.
The padded sequences were not used in training and inference
processes. To compare the performance with model 1, we
developed an additional gradient boosting model based on the
same training data set. The gradient boosting model was trained
using the XGBoost algorithm. In model 2, we constructed a
prediction model of the trajectory of Cr values after 24, 48, and
72 hours with available Cr values during the observation
window. Model 2 had a many-to-many structure with an output
length of 3 on 7 input sequences. To improve the predictive
accuracy of model 2, we developed a 2-stage hierarchical RNN
prediction model. That is, based on the results of model 1,
different types of model 2 were applied. These are the models
for each patient group that are or are not predicted to have AKI.
The architectures of models 1 and 2 are illustrated in Figure 1.
The optimal hyperparameters of each model were determined
using a fivefold cross validation. The tuned hyperparameters
include number of hidden RNN neurons, number of hidden
layers, dropout, activation functions, and batch size in the
stacked RNN model, and learning rate, depth of a tree, and
minimum child weight in the XGBoost model. Cross entropy

loss function and the AdamW optimizer were used to train the
RNN models. The entire data set was imbalanced due to the
relatively low incidence of in-hospital AKI. Therefore, we
applied a class weight parameter to the loss function to handle
class imbalances. Alpha dropout, L2 regularization, and early
stopping approaches were implemented to prevent overfitting.
Batch normalization was applied to each RNN layer for efficient

and effective learning. The learning rate was set to 10–4 for

pretraining, then to 10–6 for early stop learning. In the process
of model development, different sample sizes were tested to
evaluate the sensitivity of the developed models. As shown in
Table 1 in the Results section, the overall distribution of features
is quite different between the training and external validation
data sets. Therefore, we additionally fine-tuned our models to
overcome the heterogeneity of independent data sets.
Specifically, we refitted our model using a small proportion of
data (7234/72,352, 10%) from the external data set. The refitted
model was validated with the rest of the external data set
(65,118/72,352, 90%). Model performances were assessed based
on the area under the receiver operating characteristic curve
(AUC), accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and F1 score for model 1 and
based on the mean-squared error (MSE) for model 2.

Model Explainability for Clinical Decision Support
The neural network algorithm cannot directly offer any
explanations regarding the clinical meaning of features.
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Therefore, to identify the association between multiple features
and response (the occurrence of AKI), we examined the
following approaches using model-agnostic methods in model
1: (1) global interpretation with Shapley Additive Explanations
(SHAP), partial dependence plots (PDPs), and accumulated
local effects plots; and (2) instance-wise interpretation with
individual conditional expectation (ICE) plots. The SHAP
method is based on Shapley values from game theory [31].
Shapley values indicate marginal contribution of a feature to
the difference between the actual prediction and the mean
prediction for all possible coalitions of features [32]. The global
feature importance was presented by SHAP feature importance
plots. PDP provides average marginal predictions across all
instances when the feature of interest is forced to be a certain
value [33]. Similarly, ICE plots indicate an average marginal
effect of a feature for individual instances. PDP and ICE plots
can intuitively show the relationship between specific features
and the outcome variable [34]. In model 2, we applied ICE to
predict the future Cr values, whereby the model output was
estimated from new instances with modified feature values as
well. Given that PDP is not reliable when the features are highly
correlated, we also presented accumulated local effects plots.
In an accumulated local effects plot, feature values are divided
by set intervals and the differences in the prediction between
the upper and lower bounds of the interval are calculated [33].
The estimated differences are accumulated, and the mean
prediction is centered at 0.

Results

Study Population
A total of 482,467 patients (182,976 in the SNUBH and 299,491
in the SNUH) were initially screened from the EHR data
obtained from each participating hospital. After considering the
exclusion criteria, 69,081 patients were finally included in the
SNUBH training data set, 7675 in the SNUBH internal
validation data set, and 72,352 in the SNUH external validation
data set (Multimedia Appendix 2). The characteristics of the
study population are listed in Table 1. Patients in the training
data set were older than those in the external validation data set
(59.8 versus 57.1 years). The mean baseline eGFR was higher
in the training data set than in the external validation data set

(94.9 versus 89.4 mL/min/1.73 m2). Although more patients
had hypertension or diabetes in the training data set, the mean
Charlson Comorbidity Index was higher in the external
validation data set. There was no difference in baseline
characteristics between the training and internal validation data
sets. During the 2-week period after admission, the cumulative
incidence of AKI (any stage) was 5.91% in the training data set
and 3.63% in the external validation data set (Multimedia
Appendix 3). The cumulative incidence of severe AKI (stages
2 or 3) was 1.58% and 1.11% in the training and external
validation data sets, respectively.
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Table 1. Baseline characteristics of the training and validation data sets.

P valuecSNUHb validation set
(n=72,352)

SNUBH validation set
(n=7675)

SNUBHa training set
(n=69,081)

Variables

<.00157.1 (16.0)59.6 (16.6)59.8 (16.5)Age (years), mean (SD)

<.00137,405 (51.7)4114 (53.6)36,732 (53.2)Male sex, n (%)

<.00123.2 (3.5)23.8 (3.5)23.8 (3.5)Body mass index (kg/m2), mean (SD)

<.0016.9 (11.7)8.5 (10.4)8.7 (14.2)Stay length (days), mean (SD)

<.0012340 (3.2)475 (6.2)4478 (6.5)ICUd admission, n (%)

<.0011.1 (1.4)1.1 (1.4)1.0 (1.4)Charlson Comorbidity Index, mean
(SD)

Specific preexisting comorbidities

<.0016624 (9.2)995 (13.0)9455 (13.7)Hypertension, n (%)

<.0016513 (9.0)769 (10.0)7187 (10.4)Diabetes mellitus, n (%)

<.0016289 (8.7)790 (10.3)7452 (10.8)Ischemic heart disease, n (%)

<.001793 (1.1)169 (2.2)1500 (2.2)Heart failure, n (%)

<.00189.4 (21.9)94.6 (37.4)94.9 (38.9)Baseline eGFRe (mL/min/1.73 m2),
mean (SD)

<.00165,310 (90.3)6683 (87.1)60,201 (87.1)No CKDf or CKD 1 or 2 (≥60

mL/min/1.73 m2), n (%)

4188 (5.8)550 (7.2)4839 (7.0)CKD G3a (45-59 mL/min/1.73 m2), n
(%)

1940 (2.7)279 (3.6)2629 (3.8)CKD G3b (30-44 mL/min/1.73 m2), n
(%)

914 (1.3)163 (2.1)1412 (2.0)CKD G4 (15-29 mL/min/1.73 m2), n
(%)

.5413.0 (2.0)13.0 (2.1)13.0 (2.1)Hemoglobin (g/dL), mean (SD)

<.0014.1 (0.5)4.0 (0.6)4.0 (0.6)Albumin (g/dL), mean (SD)

.030.9 (1.5)0.9 (1.6)0.9 (1.5)Bilirubin (mg/dL), mean (SD)

<.0019.1 (0.6)8.8 (0.6)8.8 (0.6)Calcium (mg/dL), mean (SD)

<.001121.1 (48.9)125.8 (54.1)126.4 (55.5)Glucose (mg/dL), mean (SD)

<.001139.8 (3.3)138.8 (3.8)138.9 (3.8)Sodium (mEq/L), mean (SD)

<.0014.2 (0.4)4.2 (0.5)4.1 (0.4)Potassium (mEq/L), mean (SD)

<.001103.5 (3.5)102.5 (4.0)102.5 (4.0)Chloride (mEq/L), mean (SD)

<.00132.4 (108.7)46.7 (213.2)47.3 (245.3)ASTg (IU/L), mean (SD)

<.00130.5 (100.4)42.0 (154.1)42.6 (192.1)ALTh (IU/L), mean (SD)

<.00125.6 (3.6)24.7 (3.3)24.7 (3.3)Total CO2 (mEq/L), mean (SD)

<.001235.8 (479.1)232.3 (86.7)232.9 (85.0)Platelet (103/μL), mean (SD)

.107.3 (5.5)8.3 (8.3)8.2 (7.1)White blood cell count (cells/mm2),
mean (SD)

Medication use

.0076039 (8.3)610 (7.9)5494 (8.0)RASi blockers, n (%)

.143723 (5.1)381 (5.0)3437 (5.0)Diuretics, n (%)

<.00113,290 (18.4)1874 (24.4)16,974 (24.6)NSAIDsj, n (%)
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P valuecSNUHb validation set
(n=72,352)

SNUBH validation set
(n=7675)

SNUBHa training set
(n=69,081)

Variables

<.001124.8 (15.8)128.6 (16.5)128.7 (16.5)Systolic blood pressure (mmHg), mean
(SD)

<.00176.2 (10.7)74.0 (10.7)74.1 (10.8)Diastolic blood pressure (mmHg),
mean (SD)

<.00177.7 (14.2)78.7 (14.3)78.6 (14.4)Heart rate (beats/minute), mean (SD)

<.00136.5 (0.4)36.7 (0.5)36.7 (0.5)Body temperature (°C), mean (SD)

aSNUBH: Seoul National University Bundang Hospital.
bSNUH: Seoul National University Hospital.
cP value between the SNUBH training set and the SNUH validation set (variables are not statistically different between the SNUBH training set and
the SNUBH validation set).
dICU: intensive care unit.
eeGFR: estimated glomerular filtration rate.
fCKD: chronic kidney disease.
gAST: aspartate aminotransferase.
hALT: alanine aminotransferase.
iRAS: renin–angiotensin system.
jNSAIDs: nonsteroidal anti-inflammatory drugs.

Prediction of AKI Development
First, we assessed the performance of model 1 to predict AKI
development (any stage and stage 2 or higher) within the next
7 days based on different algorithms. Overall, the AUC was
higher in the stacked RNN model than in the XGBoost model
for any AKI and stage 2 or higher AKI. The AUC of the RNN
model was 0.88/0.84 (internal/external validation) for any AKI
and 0.93/0.90 (internal/external validation) for stage 2 or higher
AKI, while the AUC of the XGBoost model was 0.86/0.82
(internal/external validation) for any AKI and 0.90/0.89
(internal/external validation) for stage 2 or higher AKI (Figure
2). Overall, better performance was found with the larger

training sample size, which might be due to the class imbalance
of the data set, suggesting that 80%-90% of the split ratio was
sufficient in training (Multimedia Appendix 4). The model
performance on the external validation set was slightly lower
than that on the internal validation set. However, the
performance of the updated model was improved, reducing the
difference in the AUC between the internal and external
validation sets. The RNN model to predict stage 2 or higher
AKI revealed the highest performance. The evaluation metrics
other than AUC are shown for different probability cutoff values
in Multimedia Appendices 5 and 6. We evaluated model 2 based
on model 1 for any AKI, considering the AKI incidence rate.
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Figure 2. The receiver operating characteristic curve for model 1. (A) The stacked RNN model for any AKI, (B) the stacked RNN model for AKI stage
2 or higher, (C) the XGBoost model for any AKI, and (D) the XGBoost model for AKI stage 2 or higher. AKI: acute kidney injury; RNN: recurrent
neural network.

Prediction of Creatinine Trajectory
We constructed and validated the prediction model (model 2)
for Cr trajectory separately in the positive and negative
prediction groups based on the prediction results of model 1 for
any AKI. The MSE values are presented in Table 2, and ranged

from 0.03 to 0.06 in the internal validation case, and from 0.06
to 0.09 in the external validation case. The refitted model in the
external validation data set showed the improved MSE of
0.03-0.08. Overall, the MSE values at different prediction points
(24, 48, and 72 hours) were comparable to each other.

Table 2. Predictive performance of model 2 for the future value of serum creatinine (Cr).

MSE at different time pointsSubgroup and validation method

72 hours48 hours24 hours

Positive prediction

0.060.040.04Internal validation

0.090.060.06External validation

0.080.060.05External validation (refitting)

Negative prediction

0.040.040.03Internal validation

0.080.060.06External validation

0.050.050.03External validation (refitting)

Application of Interpretability Techniques on the
Developed Models
Application of model 1 allows the identification of patients with
high AKI risk. Moreover, the future values of Cr can be
predicted using model 2. However, risk assessment and

predicted laboratory values are insufficient for the management
of patients with high risk. The prediction model itself could not
provide measures on how to manage or prevent AKI. First, we
examined feature importance obtained by mean SHAP values
in model 1 (Multimedia Appendix 7). Baseline eGFR and serum
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Cr were the top 2 features in both RNN and XGBoost models.
The remaining features showed relatively less impact on
prediction. To determine the feature importance in the RNN
model, the SHAP values were also averaged over the sequence
length (7 days); thus, many static variables were of high rank.
However, the importance ranking of some dynamic features,
such as pulse rate, diuretic use, and white blood cell count, was
found to increase over time (Multimedia Appendix 8). To
illustrate the relationships between the AKI risk and each
feature, we have presented PDP and ICE plots in Multimedia
Appendix 9, where yellow lines denote the average probability
of AKI versus the selected feature values in the studied patients
(PDP), and each black line represents an individual’s probability
(ICE plot). These plots provide global and instance-level model
explanations. They primarily offer visual representations of a
selected feature’s effect on AKI probability. Overall, substantial
changes in AKI probability with the level of features were
observed, especially for aspartate aminotransferase, platelet
count, white blood cell count, and vital signs (eg, blood pressure
and pulse rate). The patterns of ICE plots were quite different
in individual patients. However, PDP could not fully explain
the feature–response relationship in each patient. We did not

find a clear effect of some clinically meaningful features such
as hemoglobin and albumin on AKI prediction. However,
accumulated local effects plots better showed the association
between these features and AKI prediction (Figure 3). Therefore,
we performed an additional analysis using accumulated local
effects plots to evaluate the feature effects at different time gaps
from the prediction point (Figure 3 and Multimedia Appendix
10). Vital signs, white blood cell counts, and Cr levels had the
greatest effect the day before the prediction point, while albumin
and hemoglobin showed the greatest effect 5-6 days before the
prediction point. Some dynamic features, such as the use of
medication, could be considered as correctable features in actual,
clinical settings. In this regard, we estimated the predicted
trajectories of serum Cr values according to the use of
nephrotoxic drugs. Predicted values of Cr with and without
nephrotoxic drug administration are shown in Figure 4. The
presented cases represent the past Cr values (green lines),
predicted values (blue lines), and predicted values after the
discontinuation of nephrotoxic drugs (orange lines). These
approaches could help clinicians make decisions regarding the
prevention and intervention for future AKI occurrence.
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Figure 3. Accumulated local effects plots for the selected variables at the different time gaps from the prediction point. The same y-scale was used for
all plots. AST: aspartate aminotransferase; ALT: alanine aminotransferase; BUN: blood urea nitrogen; Hb: hemoglobin; WBC: white blood cell count.
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Figure 4. Individual interpretation with individual conditional expectations (green lines: the past Cr values; blue lines: predicted Cr values on certain
nephrotoxic drugs; orange lines: predicted Cr value when nephrotoxic drugs are discontinued; and dotted red lines: prediction point). Modified drugs
are NSAIDs in these 4 cases. AKI: acute kidney injury; Cr: creatinine; NSAIDs: nonsteroidal anti-inflammatory drugs.

Discussion

Principal Findings
In this study, we developed a continuous prediction model for
in-hospital AKI using the RNN algorithm with external
validation and demonstrated its applicability for the support of
clinical decision making. The developed model was constructed
for all general inpatients based on the use of various dynamic
and static clinical features, showing relatively good performance.
External validation was performed with data from an
independent center. Furthermore, we showed examples relevant
to the presentation of feature information to help actual clinical
decisions at the global and individual patient level using several
model-agnostic interpretation methods.

To prevent and manage AKI more effectively, timely diagnosis
and intervention are emphasized. Thus, AKI is an area of interest
for the application of predictive clinical models. To date,
numerous studies have been published on predictive models
related to AKI [18]. The identification and appropriate
management of patients with high risk could improve patient
outcomes and reduce economic burden in health care facilities
[35]. Nevertheless, previous studies of the AKI prediction model
have mainly focused on specific population groups, such as
patients who are critically ill or those who underwent
cardiovascular surgery, thus making generalization difficult
[36-38]. Moreover, most models have not been externally
validated, and there are only few models that are capable of
real-time assessments. In a recent report of artificial intelligence

research, only 6% of conducted studies performed external
validation [39]. Many predictive models used clinical or
laboratory data collected at the time of admission or at specific
time points, such as during the preoperative period or admission
[40-42]. However, the definition of AKI is dynamic and includes
the concept of time duration (Cr increase by at least 0.3 mg/dL
in 48 hours or 1.5 times over 1 week) as shown in the KDIGO
definition [30]. Not only the changes in Cr levels, but also the
changed rates or slopes were important in clinical decisions
[43]. In this regard, the RNN algorithms could have a
considerable strength and could fully utilize the sequential
information of feature values. The RNN models were found to
be effective in learning sequential data and demonstrated
superior model performance over conventional models
developed using data at one time point [44-46]. These reflect
the trends of clinical variables and are expected to be
advantageous for real-time risk assessment.

In this study, we developed 2-stage hierarchical prediction
models (model 1 and model 2) using the stacked RNN structure.
Model 1 focused on the distinction of patients with high risk of
AKI from those without risk. Model 1 using stacked RNN layers
predicted any AKI with an AUC of 0.84-0.88 and stage 2 or
higher AKI with an AUC of 0.90-0.93. In particular, the RNN
model outperformed the XGBoost-based model for both any
AKI and stage 2 or higher AKI. Gradient boosting algorithm
has been frequently utilized for the model of AKI prediction in
recent related studies. The overall performance of the gradient
boosting models was reported to have an AUC of 0.67-0.77 for
AKI stage 1 or higher and an AUC of 0.84-0.87 for AKI stage
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2 or higher in the next 48 hours [47-49]. Model 2 intended to
predict the future values of serum Cr that could help physicians
understand and interpret the models in a more intuitive manner.
We adapted a study design that is updated on a daily basis
because most laboratory tests or medications usually do not
change more than once a day in the general ward of institutions.
Similarly, to minimize the burden of real-time data processing,
a daily AKI alert system was implemented into the EHR, which
demonstrated its effectiveness for the diagnosis of unlooked
AKI [28]. In this study, the overall model performance was
somewhat different between the internal and external validation
cohorts. It may be attributed to different patient characteristics,
such as age and comorbidities, and to the patterns of clinical
practice in the 2 centers. Specifically, the incidence of AKI
stage 1 was quite different between the 2 centers. In this regard,
some authors suggest multiple external validations for a
generalized prediction model [50]. The construction of a
generalizable prediction model in superpopulations is
burdensome in terms of time and cost. Therefore, we
additionally fine-tuned our model to overcome the heterogeneity
of independent data sets. This approach has been employed in
recent related studies [32,49]. Although only a small amount
of data was used for refitting, the model performance was greatly
improved. The results of the refitted models were comparable
to those of the internal validation data set.

However, machine learning–based models do not explain why
their decisions are right, and it is uncertain how they relate the
results to clinical decision making. To apply the prediction
results in clinical practice, clinicians must understand how the
risk assessment is derived. Unlike conventional regression
models, neural network models process enormous amounts of
input data through complex, multiple hidden layers and weight
parameters that make it difficult for clinicians to understand
and interpret the network structure. In this context, machine
learning models are usually referred to as black boxes.
Therefore, we presented some model-agnostic interpretation
approaches, such as the SHAP feature importance, PDP with
ICE plots, and accumulated local effects plots. These methods
are practical and helpful in utilizing neural network–based

models and could help us identify correctable risk factors at the
individual patient level. ICE plots could offer insights into how
selected features affect prediction results in the black-box model.
As shown in ICE plots, quite different relationships between
feature values and prediction outcomes were observed in each
patient. This suggests interindividual heterogeneity of feature
contributions. PDP does not reflect the heterogeneous effects
between individuals and requires an assumption of independence
[33]. In this regard, the accumulated local effects plot provides
a better interpretation of the association between features and
predictions. Accumulated local effects plots are unbiased and
superior to the PDP when evaluating feature effects in data sets
with correlated features. Nevertheless, the interpretation methods
themselves do not indicate causal inferences between features
and the model output. Currently, various feature engineering
techniques are actively being studied and constitute promising
fields of artificial intelligence. Therefore, human-friendly
interpretable models that reflect possible causal inferences will
be developed in the future.

Limitations
There are some limitations associated with this study. First, we
used retrospective data in model training and validations. Thus,
our results do not indicate the performance of the model in
actual clinical practice. Second, because the model is updated
daily, its application is more appropriate for patients in general
wards than for those who are critically ill. Nevertheless, we
developed an AKI prediction model with a relatively high
performance and validated it externally. We presented the model
interpretation methods for the RNN model based on sequential
data and showed an example of the effective utilization of an
AKI prediction model.

Conclusion
Our study demonstrated how to support clinical decisions based
on RNN-based prediction models in the clinical setting. Our
model can provide real-time assessment of future AKI
occurrences and individualized risk factors for AKI in general
inpatient cohorts.
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