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Abstract

Background: Asthma affects a large proportion of the population and leads to many hospital encounters involving both
hospitalizations and emergency department visits every year. To lower the number of such encounters, many health care systems
and health plans deploy predictive models to prospectively identify patients at high risk and offer them care management services
for preventive care. However, the previous models do not have sufficient accuracy for serving this purpose well. Embracing the
modeling strategy of examining many candidate features, we built a new machine learning model to forecast future asthma hospital
encounters of patients with asthma at Intermountain Healthcare, a nonacademic health care system. This model is more accurate
than the previously published models. However, it is unclear how well our modeling strategy generalizes to academic health care
systems, whose patient composition differs from that of Intermountain Healthcare.

Objective: This study aims to evaluate the generalizability of our modeling strategy to the University of Washington Medicine
(UWM), an academic health care system.

Methods: All adult patients with asthma who visited UWM facilities between 2011 and 2018 served as the patient cohort. We
considered 234 candidate features. Through a secondary analysis of 82,888 UWM data instances from 2011 to 2018, we built a
machine learning model to forecast asthma hospital encounters of patients with asthma in the subsequent 12 months.

Results: Our UWM model yielded an area under the receiver operating characteristic curve (AUC) of 0.902. When placing the
cutoff point for making binary classification at the top 10% (1464/14,644) of patients with asthma with the largest forecasted
risk, our UWM model yielded an accuracy of 90.6% (13,268/14,644), a sensitivity of 70.2% (153/218), and a specificity of
90.91% (13,115/14,426).

Conclusions: Our modeling strategy showed excellent generalizability to the UWM, leading to a model with an AUC that is
higher than all of the AUCs previously reported in the literature for forecasting asthma hospital encounters. After further
optimization, our model could be used to facilitate the efficient and effective allocation of asthma care management resources to
improve outcomes.
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Introduction

Background
In the United States, 7.7% of people have asthma, which causes
188,968 hospitalizations, 1,776,851 emergency department
(ED) visits, and 3441 deaths annually [1]. To reduce asthma
hospital encounters covering both hospitalizations and ED visits,
many health care systems and health plans deploy predictive
models to prospectively find patients at high risk and offer them
care management services for preventive care. The University
of Washington Medicine (UWM), Intermountain Healthcare,
and Kaiser Permanente Northern California [2] are 3 examples
of such health care systems. Examples of such health plans
include those in 9 of the 12 metropolitan communities [3]. Once
a patient is deemed to be at high risk and enrolled in a care
management program, a care manager will regularly assess the
patient’s asthma control, adjust the patient’s asthma medications
if necessary, and help the patient make appointments for health
and related services. Using effective care management, as many
as 40% of future hospital encounters by patients with asthma
can be avoided [4-7].

Owing to its limited service capacity, a care management
program normally enrolls at most 3% of patients with a
particular condition [8]. To maximize the benefits of this
resource-intensive program, it is crucial for the program to only
enroll the patients who are at the highest risk. After all, the
deployed predictive model’s accuracy (or lack thereof) places
an upper bound on the program’s effectiveness. Several other
research groups have built multiple models for forecasting future
asthma hospital encounters of patients with asthma. Every model
examined only a few features [2,9-22]. Overlooking some
important features in the model degrades model accuracy,
making the model miss at least half of the patients who will
experience future asthma hospital encounters and incorrectly
forecast future asthma hospital encounters for many other
patients with asthma. These errors result in impaired patient
outcomes and wasted health care spending [23]. In nonmedical
fields, people frequently adopt the modeling strategy of
examining many candidate features to enhance the accuracy of
machine learning models [24-27]. Embracing this modeling
strategy for medical data, we built a new machine learning
model to forecast future asthma hospital encounters of patients
with asthma at Intermountain Healthcare, a nonacademic health
care system [23]. Our Intermountain Healthcare model raised
the area under the receiver operating characteristic curve (AUC)
to 0.859, which is higher than that of every previously published
model by 0.049 or more. Although this progress is encouraging,
it is unclear how well our modeling strategy generalizes to
academic health care systems, which normally care for more
complex and sicker patients than nonacademic health care
systems [28].

Objective
This study evaluates the generalizability of our modeling
strategy to the UWM, an academic health care system. Similar
to the Intermountain Healthcare model [23], our UWM model
uses clinical and administrative data to forecast future asthma
hospital encounters of patients with asthma covering both
hospitalizations and ED visits. There are 2 possible values of
the categorical dependent variable: whether the patient with
asthma will experience asthma hospital encounters in the
subsequent 12 months. This paper reports on the development
and evaluation of the UWM model.

Our Contributions
This study makes the following 3 innovative contributions:

1. We conducted the first evaluation of the generalizability of
our modeling strategy to an academic health care system.

2. We evaluated the predictive power of 71 new features,
which were not used in our previous study [23], for
forecasting asthma hospital encounters.

3. We evaluated the generalizability of our Intermountain
Healthcare model to the UWM and the generalizability of
our UWM model to Intermountain Healthcare. To the best
of our knowledge, this is the first study to evaluate model
generalizability in both directions. Previously, model
generalizability was evaluated solely in one direction by
assessing the performance of a model built using one site’s
data on another site’s data [17].

Methods

Study Design and Ethics Approval
The institutional review boards of the UWM and Intermountain
Healthcare approved this secondary analysis study on clinical
and administrative data.

Patient Cohort
The UWM is the largest academic health care system in
Washington State. Its enterprise data warehouse contains clinical
and administrative data from 3 hospitals and 12 clinics for
adults. Our patient cohort covered adult patients with asthma
(age ≥18 years) who visited any of these UWM facilities
between 2011 and 2018. We defined a patient as having asthma
in a specific year if the encounter billing database contained at
least one asthma diagnosis code (International Classification of
Diseases, Ninth Revision [ICD-9]: 493.0x, 493.1x, 493.8x,
493.9x; International Classification of Diseases, Tenth Revision
[ICD-10]: J45.x) record of the patient in that year [10,29,30].
As the sole exclusion criterion, we eliminated patients who
passed away in that year.

J Med Internet Res 2021 | vol. 23 | iss. 4 | e22796 | p. 2https://www.jmir.org/2021/4/e22796
(page number not for citation purposes)

Tong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2196/22796
http://www.w3.org/Style/XSL
http://www.renderx.com/


Prediction Target (Dependent Variable)
The prediction target was from our previous study [23]. We
defined an asthma hospital encounter as a hospitalization or an
ED visit with asthma as its principal diagnosis (ICD-9: 493.0x,
493.1x, 493.8x, 493.9x; ICD-10: J45.x). As Figure 1 shows, for

each patient deemed to have asthma in a specific year, we used
any asthma hospital encounter at UWM in the subsequent 12
months, that is, the 12 months after the end of this year, as the
outcome of interest. We adopted the patient’s data by the end
of this year to forecast the patient’s outcome in the subsequent
12 months.

Figure 1. The time periods used to compute the features and prediction target for an index year and patient pair. PCP: primary care provider.

Data Set
The UWM enterprise data warehouse supplied a structured data
set that contained clinical and administrative data on our patient
cohort’s encounters at the 3 UWM hospitals and 12 UWM
clinics between 2011 and 2019.

Features (Independent Variables)
Similar to our previous study [23], we examined 234 candidate
features describing a wide variety of characteristics. Table S1
of Multimedia Appendix 1 describes these features calculated
on the structured attributes in our data set, with the 71 new
features not used in our previous study [23] marked in italics.
Throughout this paper, every mention of the number of a
particular kind of items such as medications counts multiplicity
whenever the word differing is absent. For instance, consider a
patient who was ordered medications twice in a given year. The
first time, medications 1 and 2 were ordered for the patient. The
second time, medications 2 and 3 were ordered for the patient.
Then, the total number of medications ordered for the patient
in this year was 4. The total number of differing medications
ordered for the patient in this year was 3.

Every input data instance to the predictive model addresses a
unique index year and patient pair and is used to forecast the
patient’s outcome in the subsequent 12 months, that is, the 12
months after the end of the index year. For that pair, we
computed the patient’s age and primary care provider (PCP) on
the last day of the index year. The PCP identified was the
patient’s last PCP recorded in the electronic medical record
system on or before the last day of the index year. As Figure 1
shows, adopting the data in the preindex and index years, we
computed 1 feature: the percentage of the PCP’s patients with
asthma in the preindex year incurring asthma hospital encounters
in the index year. Using the data from 2011 to the index year,
we computed 25 features: the number of years from the first
encounter related to asthma in the data set, the number of years

from the first encounter related to chronic obstructive pulmonary
disease in the data set, family history of asthma, 15 features
related to the problem list, and 7 allergy features. We derived
the other 208 features from the data in the index year.

Data Analysis

Data Preparation
Our UWM data set included peak expiratory flow values, which
were absent in the Intermountain Healthcare data set adopted
in our previous study [23]. Adopting the lower and upper bounds
supplied by a clinical expert in our team, we deemed all peak
expiratory flow values more than 700 biologically implausible.
Adopting the data preparation approach used in our previous
paper [23] and this criterion, we pinpointed biologically
implausible values, marked them missing, and normalized data.
As the outcome of interest came from the subsequent year, our
data set included 8 years of effective data (2011-2018) over the
9-year period of 2011-2019. To be consistent with future model
use in practice, we used the 2011-2017 data to train the models
and the 2018 data to evaluate model performance.

Performance Metrics
As presented in Table 1 and the formulas below, we evaluated
model performance using 6 standard metrics: accuracy, AUC,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)

PPV = TP/(TP + FP) (4)

NPV = TN/(TN + FN) (5)

Here, TP stands for true positive. TN stands for true negative.
FP stands for false positive. FN stands for false negative.
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Table 1. The confusion matrix.

No future asthma hospital encounterFuture asthma hospital encountersOutcome class

False positiveTrue positiveForecasted future asthma hospital encounters

True negativeFalse negativeForecasted no future asthma hospital encounter

We performed a 1000-fold bootstrap analysis [31] to calculate
95% CIs for the 6 performance measures. For instance, we
computed our final UWM model’s performance measures for
each bootstrap sample of the 2018 data. The 2.5th and 97.5th
percentiles of the 1000 values we obtained for every
performance metric gave the 95% CI of the corresponding
performance measure. We rendered the receiver operating
characteristic curve to show the sensitivity-specificity tradeoff.

Classification Algorithms
As in our previous paper [23], our predictive models were built
using Waikato Environment for Knowledge Analysis (Weka)
Version 3.9 [32]. Weka is a core open-source software package
for data mining and machine learning. It integrates a large
number of popular feature selection techniques and machine
learning algorithms. We checked the extreme gradient boosting
(XGBoost) machine learning classification algorithm [33]
implemented in the software package XGBoost4J [34] and the
39 native classification algorithms in Weka listed in our previous
paper’s web-based multimedia appendix [23]. As an efficient
and scalable realization of gradient boosting, XGBoost is a form
of an ensemble of decision trees. As XGBoost accepts only
numerical features, we used one-hot encoding to transform
categorical features into numerical features before giving them
to XGBoost. We used the 2011-2017 training data and the
automatic machine learning model selection method developed
in our previous work [35] to automatically select the feature
selection technique, classification algorithm, data balancing
method for handling imbalanced data, and hyperparameter
values among all of the pertinent ones. On average, our method
can reduce the model error rate by 11% and search time by 28
times compared with the modern Auto-WEKA automatic
machine learning model selection method [35,36].

This study mainly evaluated our modeling strategy’s
generalizability to the UWM by using the UWM training set to
train multiple models and then checking their performance on
the UWM test set. In addition, we conducted 2 experiments to
evaluate the generalizability of our models across health
systems.

Evaluating the Generalizability of Our Intermountain
Healthcare Model to the UWM
In the first experiment, we evaluated the generalizability of our
Intermountain Healthcare model to the UWM. Previously, we

developed both a simplified model and a full model on the
Intermountain Healthcare data set [23]. Our simplified
Intermountain Healthcare model uses the top 21 features whose
importance values calculated by XGBoost on that data set are
≥0.01 [23]. Compared with our full Intermountain Healthcare
model using 142 features, our simplified Intermountain
Healthcare model retained nearly all of its predictive power.
Our UWM data set contained the top 21 features and missed
some other features adopted in our full Intermountain Healthcare
model. We evaluated the performance of our simplified
Intermountain Healthcare model on the UWM test set twice.
The first time, we retrained our simplified Intermountain
Healthcare model on the UWM training set. The second time,
we did not perform retraining and directly applied our original
simplified Intermountain Healthcare model trained on the
Intermountain Healthcare training set.

Evaluating the Generalizability of Our UWM Model to
Intermountain Healthcare
In the second experiment, we evaluated the generalizability of
our UWM model to Intermountain Healthcare. We used a
simplified UWM model, which used only the top features whose
importance values calculated by XGBoost on the UWM training
set were ≥0.01. For any top feature that was newly introduced
in this study and was not used in our previous study [23], we
computed the feature on the Intermountain Healthcare data set.
We evaluated our simplified UWM model’s performance on
the Intermountain Healthcare test set twice. The first time, we
retrained our simplified UWM model using the Intermountain
Healthcare training set. The second time, we did not perform
retraining and directly applied our simplified UWM model
trained on the UWM training set.

Results

Demographic and Clinical Characteristics of Our
Patient Cohort
Each data instance addresses a unique index year and patient
pair. Tables 2 and 3 show the demographic and clinical
characteristics of our UWM patient cohort during 2011-2017
and 2018, respectively. The characteristics were similar across
the 2 periods. During 2011-2017 and 2018, 1.74% (1184/68,244)
and 1.49% (218/14,644) of data instances were linked to asthma
hospital encounters in the subsequent 12 months, respectively.
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Table 2. Demographic and clinical characteristics of patients with asthma at the University of Washington Medicine during 2011-2017.

Data instances connecting to no asthma
hospital encounter in the subsequent
12 months (n=67,060), n (%)

Data instances connecting to asthma
hospital encounters in the subsequent 12
months (n=1184), n (%)

Data instances
(N=68,244), n (%)

Characteristic

Age (years)

22,993 (34.29)466 (39.36)23,459 (34.38)<40

33,306 (49.67)583 (49.24)33,889 (49.66)40-65

10,761 (16.05)135 (11.40)10,896 (15.97)>65

Gender

23,647 (35.26)551 (46.54)24,198 (35.46)Male

43,413 (64.74)633 (53.46)44,046 (64.54)Female

Race

1326 (1.98)32 (2.70)1358 (1.99)American Indian or Alaska native

5625 (8.39)96 (8.11)5721 (8.38)Asian

7900 (11.78)520 (43.92)8420 (12.34)Black or African American

659 (0.98)14 (1.18)673 (0.99)Native Hawaiian or other Pacific is-
lander

47,240 (70.44)507 (42.82)47,747 (69.97)White

4310 (6.43)15 (1.27)4325 (6.34)Unknown or not reported

Ethnicity

3444 (5.14)82 (6.93)3526 (5.17)Hispanic

55,247 (82.38)1062 (89.70)56,309 (82.51)Non-Hispanic

8369 (12.48)40 (3.38)8409 (12.32)Unknown or not reported

Insurance

39,585 (59.03)424 (35.81)40,009 (58.63)Private

28,031 (41.80)756 (63.85)28,787 (42.18)Public

1301 (1.94)65 (5.49)1366 (2.00)Self-paid or charity

Number of years from the first encounter related to asthma in the data set

59,887 (89.30)986 (83.28)60,873 (89.20)≤3

7173 (10.70)198 (16.72)7371 (10.80)>3

Asthma medication prescription

28,263 (42.15)626 (52.88)28,889 (42.33)Inhaled corticosteroid

21,516 (32.08)499 (42.15)22,015 (32.26)Inhaled corticosteroid and long-acting
β-2 agonist combination

7970 (11.88)201 (16.98)8171 (11.97)Leukotriene modifier

11,919 (17.77)374 (31.59)12,293 (18.01)Long-acting β-2 agonist

43 (0.06)4 (0.34)47 (0.07)Mast cell stabilizer

46,798 (69.79)1010 (85.30)47,808 (70.05)Short-acting inhaled β-2 agonist

18,085 (26.97)614 (51.86)18,699 (27.40)Systemic corticosteroid

Comorbidity

11,277 (16.82)172 (14.53)11,449 (16.78)Allergic rhinitis

19,513 (29.10)372 (31.42)19,885 (29.14)Anxiety or depression

1 (0)0 (0)1 (0)Bronchopulmonary dysplasia

3693 (5.51)133 (11.23)3826 (5.61)Chronic obstructive pulmonary disease

60 (0.09)1 (0.08)61 (0.09)Cystic fibrosis
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Data instances connecting to no asthma
hospital encounter in the subsequent
12 months (n=67,060), n (%)

Data instances connecting to asthma
hospital encounters in the subsequent 12
months (n=1184), n (%)

Data instances
(N=68,244), n (%)

Characteristic

3825 (5.70)66 (5.57)3891 (5.70)Eczema

12,053 (17.97)238 (20.10)12,291 (18.01)Gastroesophageal reflux

7668 (11.43)177 (14.95)7845 (11.50)Obesity

7172 (10.69)89 (7.52)7261 (10.64)Sinusitis

4468 (6.66)88 (7.43)4556 (6.68)Sleep apnea

Smoking status

13,826 (20.62)255 (21.54)14,081 (20.63)Current smoker

15,309 (22.83)221 (18.67)15,530 (22.76)Former smoker

37,925 (56.55)708 (59.80)38,633 (56.61)Never smoker or unknown
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Table 3. Demographic and clinical characteristics of patients with asthma at the University of Washington Medicine in 2018.

Data instances connecting to no asthma
hospital encounter in the subsequent 12
months (n=14,426), n (%)

Data instances connecting to asthma
hospital encounters in the subsequent 12
months (n=218), n (%)

Data instances
(N=14,644), n (%)

Characteristic

Age (years)

4746 (32.9)77 (35.3)4823 (32.9)<40

6683 (46.3)111 (50.9)6794 (46.4)40-65

2997 (20.8)30 (13.8)3027 (20.7)>65

Gender

5138 (35.6)100 (45.9)5238 (35.8)Male

9288 (64.4)118 (54.2)9406 (64.2)Female

Race

273 (1.9)8 (3.7)281 (1.9)American Indian or Alaska native

1307 (9.1)18 (8.7)1325 (9.1)Asian

1491 (10.3)79 (36.2)1570 (10.7)Black or African American

129 (0.9)2 (0.9)131 (0.9)Native Hawaiian or other Pacific
islander

10,103 (70)110 (50.5)10,213 (69.7)White

1123 (7.8)1 (0.5)1124 (7.7)Unknown or not reported

Ethnicity

830 (5.7)20 (9.2)850 (5.8)Hispanic

12,370 (85.7)196 (89.9)12,566 (85.8)Non-Hispanic

1226 (8.5)2 (0.9)1228 (8.4)Unknown or not reported

Insurance

10,692 (74.1)108 (49.5)10,800 (73.7)Private

7841 (54.3)182 (83.5)8023 (54.8)Public

459 (3.2)25 (11.5)484 (3.3)Self-paid or charity

Number of years from the first encounter related to asthma in the data set

10,442 (72.4)124 (56.9)10,566 (72.1)≤3

3984 (27.6)94 (43.1)4078 (27.8)>3

Asthma medication prescription

6069 (42.1)108 (49.5)6177 (42.2)Inhaled corticosteroid

4425 (30.7)83 (38.1)4508 (30.8)Inhaled corticosteroid and long-act-
ing β-2 agonist combination

2130 (14.77)46 (21.1)2176 (14.9)Leukotriene modifier

2456 (17.02)62 (28.4)2518 (17.2)Long-acting β-2 agonist

13 (0.09)1 (0.5)14 (0.1)Mast cell stabilizer

9540 (66.1)164 (75.2)9704 (66.3)Short-acting inhaled β-2 agonist

4043 (28)120 (55.1)4163 (28.4)Systemic corticosteroid

Comorbidity

2069 (14.3)26 (11.9)2095 (14.3)Allergic rhinitis

4284 (29.7)62 (28.4)4346 (29.7)Anxiety or depression

4 (0)0 (0)4 (0)Bronchopulmonary dysplasia

902 (6.2)30 (13.8)932 (6.4)Chronic obstructive pulmonary dis-
ease

17 (0.1)0 (0)17 (0.1)Cystic fibrosis
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Data instances connecting to no asthma
hospital encounter in the subsequent 12
months (n=14,426), n (%)

Data instances connecting to asthma
hospital encounters in the subsequent 12
months (n=218), n (%)

Data instances
(N=14,644), n (%)

Characteristic

732 (5.1)11 (5.1)743 (5.1)Eczema

2611 (18.1)46 (21.1)2657 (18.1)Gastroesophageal reflux

1579 (10.9)25 (11.5)1604 (10.9)Obesity

1357 (9.4)15 (6.9)1372 (9.4)Sinusitis

1475 (10.2)24 (11.0)1499 (10.2)Sleep apnea

Smoking status

3193 (22.1)49 (22.5)3242 (22.1)Current smoker

3453 (23.9)41 (18.8)3494 (23.9)Former smoker

7780 (53.9)128 (58.7)7908 (54.0)Never smoker or unknown

As the Chi-square 2-sample test showed, for both the 2011-2017
and 2018 data, the data instances connecting to future asthma
hospital encounters and those connecting to no future asthma
hospital encounter exhibited the same distribution for anxiety
or depression occurrence (P=.74 for the 2018 data and P=.09
for the 2011-2017 data), bronchopulmonary dysplasia
occurrence (P=.99), cystic fibrosis occurrence (P=.99), eczema
occurrence (P=.99 for the 2018 data and P=.90 for the
2011-2017 data), gastroesophageal reflux occurrence (P=.29
for the 2018 data and P=.06 for the 2011-2017 data), and sleep
apnea occurrence (P=.79 for the 2018 data and P=.32 for the
2011-2017 data). These 2 sets of data instances exhibited
differing distributions for gender (P=.002 for the 2018 data and
P<.001 for the 2011-2017 data), ethnicity (P<.001), insurance
category (P<.001), race (P<.001), systemic corticosteroid
prescription (P<.001), inhaled corticosteroid prescription (P=.02
for the 2018 data and P<.001 for the 2011-2017 data), inhaled
corticosteroid and long-acting β-2 agonist combination
prescription (P=.02 for the 2018 data and P<.001 for the
2011-2017 data), short-acting inhaled β-2 agonist prescription
(P=.006 for the 2018 data and P<.001 for the 2011-2017 data),
long-acting β-2 agonist prescription (P<.001), leukotriene
modifier prescription (P=.01 for the 2018 data and P<.001 for

the 2011-2017 data), and chronic obstructive pulmonary disease
occurrence (P<.001). For the 2011-2017 data, these 2 sets of
data instances exhibited differing distributions for mast cell
stabilizer prescription (P=.003), obesity occurrence (P<.001),
sinusitis occurrence (P<.001), allergic rhinitis occurrence
(P=.04), and smoking status (P=.003). For the 2018 data, these
2 sets of data instances exhibited the same distribution for mast
cell stabilizer prescription (P=.52), obesity occurrence (P=.89),
sinusitis occurrence (P=.25), allergic rhinitis occurrence (P=.36),
and smoking status (P=.19).

As the Cochran-Armitage trend test [37] showed, the data
instances connecting to future asthma hospital encounters and
those connecting to no future asthma hospital encounter
exhibited the same distribution for age (P=.06) in the 2018 data
and differing distributions for age (P<.001) in the 2011-2017
data. With regard to the 2018 and 2011-2017 data, these 2 sets
of data instances exhibited differing distributions for the number
of years from the first encounter related to asthma in the data
set (P<.001).

Table 4 shows the number of patients with asthma and their
number of visits in each year between 2011 and 2018.

Table 4. The number of patients with asthma and their number of visits in each year between 2011 and 2018.

Number of visits by patients with asthmaNumber of patients with asthmaYear

32,91068522011

40,73077682012

39,38577542013

58,95397852014

69,28510,5872015

78,60512,0722016

87,40313,4262017

94,87514,6442018

Classification Algorithm and Features Adopted by
Our Final UWM Model
Our automatic machine learning model selection method [35]
selected the XGBoost classification algorithm [33]. XGBoost

is a form of an ensemble of decision trees that can naturally
deal with missing feature values. As described in Hastie et al
[38] in detail, XGBoost automatically calculates the importance
value of each feature based on its apportioned contribution to
the model. Our final UWM model was formed using XGBoost
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and 71 features displayed in descending order of their
importance values in Table S2 of Multimedia Appendix 1.
XGBoost automatically removed the other features because
they had no additional predictive power.

Performance Measures Yielded by Our Final UWM
Model
On the UWM test set, our final model yielded an AUC of 0.902
(95% CI 0.879-0.924). Figure 2 shows the receiver operating
characteristic curve of the model. Table 5 lists the model’s
performance measures when the cutoff point for making binary
classification was placed at different top percentages of patients
with asthma with the largest forecasted risk. When the cutoff
point was placed at the top 10% (1464/14,644), the model
yielded an accuracy of 90.6% (13,268/14,644; 95% CI
90.13-91.06), a sensitivity of 70.2% (153/218; 95% CI
63.8-76.0), a specificity of 90.91% (13,115/14,426; 95% CI
90.45-91.38), a PPV of 10.45% (153/1464; 95% CI 8.90-11.97),
and an NPV of 99.51% (13,115/13,180; 95% CI 99.39-99.62).
Table 6 presents the confusion matrix of the model in this case.

Several features, such as a family history of asthma, were
calculated on 2 or more years of data. When we dropped these
features and checked solely those features calculated on 1 year
of data, the AUC of the model decreased from 0.902 to 0.899.
If we used only the top 17 features in Table S2 of Multimedia
Appendix 1 whose importance values are ≥0.01 and ignored
the other 217 features, the model’s AUC decreased from 0.902
to 0.898 (95% CI 0.874-0.919). In this case, when we placed
the cutoff point for making binary classification at the top 10%
(1464/14,644) of patients with asthma with the largest forecasted
risk, the model’s accuracy decreased from 90.6%
(13,268/14,644) to 90.59% (13,266/14,644; 95% CI
90.11-91.06), sensitivity decreased from 70.2% (153/218) to
69.7% (152/218; 95% CI 63.6-75.5), specificity remained at
90.91% (13,114/14,426; 95% CI 90.42-91.37), PPV decreased
from 10.45% (153/1464) to 10.38% (152/1464; 95% CI
8.82-11.97), and NPV decreased from 99.51% (13,115/13,180)
to 99.5% (13,114/13,180; 95% CI 99.38-99.61).

Figure 2. The receiver operating characteristic curve of our final University of Washington Medicine model.
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Table 5. Our final UWM model’s performance measures when the cutoff point for making binary classification was placed at different top percentages
of patients with asthma with the largest forecasted risk.

NPVbPPVaSpecificity
(N=14,426), n (%)

Sensitivity
(N=218), n
(%)

Accuracy
(N=14,644), n (%)

Top percentage of pa-
tients with asthma with
the largest forecasted risk
(%)

Nn (%)Nn (%)

14,49814,345 (98.9)14665 (44.5)14,345 (99.4)65 (29.8)14,410 (98.4)1

14,35214,225 (99.1)29291 (31.2)14,225 (98.6)91 (41.7)14,316 (97.8)2

14,20514,090 (99.2)439103 (23.5)14,090 (97.7)103 (47.3)14,193 (96.9)3

14,05913,951 (99.2)585110 (18.8)13,951 (96.7)110 (50.5)14,061 (96)4

13,91213,815 (99.3)732121 (16.5)13,815 (95.8)121 (55.5)13,936 (95.2)5

13,76613,677 (99.3)878129 (14.7)13,677 (94.8)129 (59.2)13,806 (94.3)6

13,61913,534 (99.4)1025133 (13)13,534 (93.8)133 (61)13,667 (93.3)7

13,47313,392 (99.4)1171137 (11.7)13,392 (92.8)137 (62.8)13,529 (92.4)8

13,32713,260 (99.5)1317151 (11.5)13,260 (91.9)151 (69.3)13,411 (91.6)9

13,18013,115 (99.5)1464153 (10.5)13,115 (90.9)153 (70.2)13,268 (90.6)10

12,44812,403 (99.6)2196173 (7.9)12,403 (86)173 (79.4)12,576 (85.9)15

11,71611,679 (99.7)2928181 (6.2)11,679 (81)181 (83)11,860 (81)20

10,98310,956 (99.7)3661191 (5.2)10,956 (75.9)191 (87.6)11,147 (76.1)25

aPPV: positive predictive value.
bNPV: negative predictive value.

Table 6. The confusion matrix of our final University of Washington Medicine model when the cutoff point for making binary classification was placed
at the top 10% (1464/14,644) of patients with asthma with the largest forecasted risk.

No future asthma hospital encounter, nFuture asthma hospital encounter, nOutcome class

1311153Forecasted future asthma hospital encounters

13,11565Forecasted no future asthma hospital encounter

Performance Measures Yielded by Our Simplified
Intermountain Healthcare Model on UWM Data
For our original simplified Intermountain Healthcare model
trained on the Intermountain Healthcare training set [23], when
we did not retrain the model and applied the model directly to
the UWM test set, the model yielded an AUC of 0.861 (95%
CI 0.835-0.885). When we placed the cutoff point for making
binary classification at the top 10% (1464/14,644) of patients
with asthma with the largest forecasted risk, the model yielded
an accuracy of 90.29% (13,222/14,644; 95% CI 89.81-90.77),
a sensitivity of 59.6% (130/218; 95% CI 53.4-65.7), a specificity
of 90.75% (13,092/14,426; 95% CI 90.28-91.20), a PPV of
8.88% (130/1464; 95% CI 7.46-10.34), and an NPV of 99.33%
(13,092/13,180; 95% CI 99.20-99.46).

After we used the UWM training set to retrain our simplified
Intermountain Healthcare model [23], the retrained model
yielded on the UWM test set an AUC of 0.874 (95% CI
0.848-0.896). When we placed the cutoff point for making
binary classification at the top 10% (1464/14,644) of patients
with asthma with the largest forecasted risk, the model yielded
an accuracy of 90.34% (13,230/14,644; 95% CI 89.85-90.80),
a sensitivity of 61.5% (134/218; 95% CI 54.6-67.7), a specificity

of 90.78% (13,096/14,426; 95% CI 90.32-91.23), a PPV of
9.15% (134/1464; 95% CI 7.62-10.66), and an NPV of 99.36%
(13,096/13,180; 95% CI 99.22-99.49).

Performance Measures Yielded by Our Simplified
UWM Model on Intermountain Healthcare Data
Our simplified UWM model used only the top 17 features with
importance values of ≥0.01. For our simplified UWM model
trained on the UWM training set, when we did not retrain the
model and applied the model directly to the Intermountain
Healthcare test set, the model yielded an AUC of 0.814 (95%
CI 0.798-0.830). When we placed the cutoff point for making
binary classification at the top 10% (1926/19,256) of patients
with asthma with the largest forecasted risk, the model yielded
an accuracy of 89.76% (17,285/19,256; 95% CI 89.32-90.18),
a sensitivity of 47.2% (383/812; 95% CI 43.8-50.6), a specificity
of 91.64% (16,902/18,444; 95% CI 91.24-92.03), a PPV of
19.90% (383/1925; 95% CI 18.16-21.60), and an NPV of
97.52% (16,902/17,331; 95% CI 97.28-97.75).

After we used the Intermountain Healthcare training set to
retrain our simplified UWM model, the retrained model yielded
on the Intermountain Healthcare test set an AUC of 0.846 (95%
CI 0.831-0.859). When we placed the cutoff point for making
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binary classification at the top 10% (1926/19,256) of patients
with asthma with the largest forecasted risk, the model yielded
an accuracy of 90.11% (17,351/19,256; 95% CI 89.64-90.56),
a sensitivity of 51.2% (416/812; 95% CI 47.6-54.5), a specificity
of 91.82% (16,935/18,444; 95% CI 91.43-92.21), a PPV of
21.62% (416/1,925; 95% CI 19.81-23.41), and an NPV of
97.72% (16,935/17,331; 95% CI 97.48-97.93).

Discussion

Principal Findings
We built a model on UWM data to forecast asthma hospital
encounters of patients with asthma in the subsequent 12 months.
Table 7 reveals that our final UWM model yielded an AUC that
was higher than the previously reported AUC of every existing
model [2,9-23], that is, our modeling strategy of examining
many candidate features to enhance model accuracy showed
excellent generalizability to the UWM. After further
optimization to boost its accuracy and automatically provide
explanations of its predictions [39,40] to allow clinical
interpretability, our UWM model could be used to facilitate
efficient and effective allocation of asthma care management
resources to improve outcomes.

In Table S2 of Multimedia Appendix 1, both the 5 most
important features and multiple other features within the top 17
indicate a loss of asthma control. It is important to note that the
loss of asthma control could be partly because of factors not
well captured in our data, such as socioeconomic circumstances,
variable management practices among providers, access to
subspecialty clinicians, and nonadherence to medications and

treatments. Variable asthma severity across patients over time
also influences this process.

We checked 234 candidate features. Our final UWM model
used 30.3% (71/234) of them. Despite being correlated with the
outcome, many unused features had no extra predictive power
on the UWM data set over the features adopted in our final
UWM model.

For our original simplified Intermountain Healthcare model
trained on the Intermountain Healthcare training set [23], when
we did not retrain the model on the UWM data and directly
applied the model, the model yielded an AUC of 0.861 on the
UWM test set. This AUC is 0.041 lower than our final UWM
model’s AUC, but is still larger than the previously reported
AUC of every existing model for forecasting future
hospitalizations and ED visits of patients with asthma (Table
7). Therefore, our simplified Intermountain Healthcare model
showed excellent generalizability to the UWM.

Compared with our full UWM model using 71 features, our
simplified UWM model retained nearly all of its predictive
power. For our simplified UWM model trained on the UWM
training set, when we did not retrain the model on the
Intermountain Healthcare data and directly applied the model,
the model yielded an AUC of 0.814 on the Intermountain
Healthcare test set. This AUC is 0.045 lower than our full
Intermountain Healthcare model’s AUC but is still larger than
the previously reported AUC of every existing model developed
by others for forecasting future hospitalizations and ED visits
of patients with asthma (Table 7). Therefore, our simplified
UWM model shows excellent generalizability to Intermountain
Healthcare.
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Table 7. A comparison of our final University of Washington Medicine model and several existing models for forecasting future hospitalizations and
emergency department (ED) visits of patients with asthma.

AUCcNPVb

(%)
PPVa

(%)

Specificity
(%)

Sensitivity
(%)

Classification al-
gorithm

Number of
features the
model adopted

Number of
data in-
stances

Prediction targetModel

0.90299.5110.4590.9170.2XGBoostd7182,888Asthma hospital
encounters

Our final UWM
model

0.85997.8322.6591.9353.69XGBoost142334,564Asthma hospital
encounters

Our Intermountain
Healthcare model
[23]

0.8————eLogistic regres-
sion

7611Asthma exacerba-
tion

Loymans et al [9]

0.78199.15.689.843.9Logistic regres-
sion

54197Asthma-induced
hospitalization in
children

Schatz et al [10]

0.71299.33.98744.9Logistic regres-
sion

36904Asthma-induced
hospitalization in
adults

Schatz et al [10]

0.689————Logistic regres-
sion

12858Asthma-induced
hospitalization

Eisner et al [11]

0.751————Logistic regres-
sion

32415Asthma-induced
ED visit

Eisner et al [11]

0.625————Classification and
regression tree

378Severe asthma ex-
acerbation

Sato et al [12]

0.81————Logistic regres-
sion

172821Asthma hospital
encounters

Miller et al [14]

0.7856826377Logistic regres-
sion

114888Lost day or hospi-
tal encounters for
asthma

Yurk et al [16]

0.79————Proportional-haz-
ards regression

716,520Asthma-induced
hospitalization

Lieu et al [2]

0.69————Proportional-haz-
ards regression

716,520Asthma-induced
ED visit

Lieu et al [2]

——18.583.649Classification and
regression tree

47141Asthma hospital
encounters

Lieu et al [18]

0.61493.2229225.4Logistic regres-
sion

414,893Asthma hospital
encounters

Schatz et al [19]

0.75————Scoring17615Severe asthma ex-
acerbation

Forno et al [21]

0.70————Recurrent neural
network

—31,433Asthma exacerba-
tion

Xiang et al [22]

aPPV: positive predictive value.
bNPV: negative predictive value.
cAUC: area under the receiver operating characteristic curve.
dXGBoost: extreme gradient boosting.
eThe initial paper showing the model did not give the performance measure.

Comparison With the Previous Work
Researchers have built multiple models to forecast future
hospitalizations and ED visits of patients with asthma [2,9-23].
Table 7 compares our final UWM model with these models,
which cover all the relevant models described in the systematic
review by Loymans et al [17]. The final UWM model’s AUC
was 0.902. The AUC of our Intermountain Healthcare model
was 0.859. All other existing models have a previously reported

AUC 0.81 [2,9-22], which is lower than our final UWM model’s
AUC by at least 0.091.

It is important to consider the prevalence of the outcome of
interest when comparing the performance of different predictive
models. Compared with other existing models, the model by
Yurk et al [16] achieved a higher sensitivity and PPV mainly
because it adopted a different prediction target: asthma hospital
encounters or at least 1 day lost for diminished activities or
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missing work for asthma. This prediction target had a 54%
prevalence rate in patients with asthma and was therefore easier
to forecast. If the model by Yurk et al [16] were used to forecast
asthma hospital encounters, an outcome that had a <2%
prevalence rate in patients with asthma, the model’s sensitivity
and PPV would likely drop.

The recurrent neural network model by Xiang et al [22] reached
a low AUC of 0.7, mainly because it used mostly inpatient data
with little outpatient data; adopted only 3 types of attributes:
medication, diagnosis, and demographics; and did not merge
individual asthma medications into asthma medication categories
such as nebulizers and short-acting β-2 agonists, that is, the low
AUC does not prove that the recurrent neural network is
ineffective at predicting asthma outcomes, but is mainly because
of incomplete data and insufficient feature modeling. In
comparison, to build our final UWM model, we used both
inpatient and outpatient data, adopted many types of attributes,
and merged individual asthma medications into asthma
medication categories to better capture and model the
relationship among different asthma medications.

Excluding the model by Yurk et al [16], every existing published
model has a sensitivity 53.69%, which is significantly lower
than our final UWM model’s sensitivity of 70.2%. For patients
with asthma who will have future asthma hospital encounters,
sensitivity is the percentage of them identified by the model.
The difference in sensitivity can have a significant impact on
health care use. Owing to the high prevalence rate of asthma,
for every 10% increase in the identified percentage of patients
with asthma who would have future asthma hospital encounters,
up to 7759 more hospitalizations and 71,074 more ED visits
could be avoided in the United States each year with effective
care management [1,4-7].

The prevalence rate of targeted poor outcomes greatly impacts
the PPV of any predictive model [41]. In our UWM test data
set, 1.49% (218/14,644) of patients with asthma had future
asthma hospital encounters. When we placed the cutoff point
for making binary classification at the top 10% (1464/14,644)
of patients with asthma with the largest forecasted risk, an
impeccable model in theory would yield the highest possible
PPV of 14.89% (218/1464). Our final UWM model yielded a
PPV of 10.45% (153/1464), which is 70.18% of the highest
possible PPV in theory. In comparison, our Intermountain
Healthcare model achieved a PPV of 22.65% [23]. This is
53.69% of the highest possible PPV that an impeccable model
in theory would yield on the Intermountain Healthcare test set.
The model by Lieu et al [18] yielded a PPV of 18.5% on a data
set where 6.9% of patients with asthma had future asthma
hospital encounters. The model by Schatz et al [19] yielded a
PPV of 22% on a data set where 6.5% of patients with asthma
had future asthma hospital encounters. Compared with our case
with UWM, both populations have a higher prevalence of
asthma hospital encounters, which allows the PPV to be higher.
Excluding these PPVs and the PPV by the Yurk et al [16] model,
no other existing published model’s PPV exceeds 5.6%.

Our final UWM model and our Intermountain Healthcare model
[23] have similar top features with importance values of ≥0.01.
In both models, many top features are related to previous ED

visits and asthma medications. We did not identify several
candidate features at the time of constructing our Intermountain
Healthcare model. They appeared as top features and affected
the ranks and importance values of the other top features in our
final UWM model.

Differing models in Table 7 were built using different patient
cohorts and used similar but not necessarily identical prediction
targets. Some features used in the models built by other
researchers, such as certain features computed from
patient-reported outcomes and patient surveys, are unavailable
in our UWM data set. Therefore, we were unable to show the
performance measures that the models built by other researchers
would achieve on our UWM data set. However, we are confident
that the techniques used in this study improved prediction
accuracy. Our final UWM model was built using a
state-of-the-art machine learning algorithm, XGBoost.
Compared with statistical methods such as logistic regression,
machine learning can enhance prediction accuracy with less
strict assumptions on data distribution [8,42,43]. Compared
with the models built by other researchers, our final UWM
model was built using more patients and a more extensive set
of candidate features constructed with careful feature
engineering, both of which are known to often help improve
prediction accuracy [24-27,32]. As partial evidence for this, we
built predictive models for asthma hospital encounters using
data from 3 health care systems: UWM, Intermountain
Healthcare [23], and Kaiser Permanente Southern California
[44]. For each of the 3 health care systems, we started model
building with approximately 20 candidate features and obtained
unsatisfactory accuracy. This motivated us to examine several
hundred candidate features. Ultimately, for each of the 3 health
care systems, we built a model with an AUC that is higher than
all of the AUCs other researchers previously reported in the
literature for forecasting asthma hospital encounters [23,44].
This demonstrates the generalizability of our modeling strategy
for forecasting asthma hospital encounters.

Considerations Concerning the Potential Clinical Use
Our final UWM model has an AUC that is higher than all of
the AUCs previously reported in the literature for forecasting
asthma hospital encounters, but still had a seemingly low PPV
of 10.4% (153/1464). Nevertheless, this model could be valuable
in clinical care. First, health care systems such as UWM,
Intermountain Healthcare, and Kaiser Permanente Northern
California [2] use proprietary models to allocate asthma care
management resources. These models and the models that were
formerly built by others have similar performance measures.
Our final UWM model has an AUC that is higher than the
previously reported AUCs of all these models.

Second, as explained earlier, even an impeccable model in
theory would reach a low PPV because the poor outcome of
interest has a low prevalence rate in our data set. For such an
outcome, sensitivity better reflects the model’s potential clinical
value than PPV. Our final UWM model had a higher sensitivity
than the previously reported sensitivity of every existing model
using a comparable prediction target. It is important to note that
while asthma hospital encounters have an overall low prevalence
rate in the population of patients with asthma, they have
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significant financial and clinical impacts at both the population
and individual patient levels.

Third, a PPV of 10.45% (153/1464) is useful for identifying
high-risk patients with asthma to receive low-cost preventive
interventions. The following are 4 examples of such
interventions: training the patient to record a diary about
environmental triggers, coaching the patient to use an asthma
inhaler correctly, coaching the patient to use a peak flow meter
correctly and giving it to the patient to self-monitor symptoms
at home, and asking a nurse to do extra follow-up phone calls
with the patient or the patient’s caregiver. These interventions
could have a significant impact on patient outcomes.

The final UWM model used 71 features. Reducing the number
of features could ease the clinical deployment of our model. To
this end, if a minor decrease in prediction accuracy could be
tolerated, one could adopt the top few features whose importance
values are greater than a given threshold, such as 0.01, and drop
the other features. The importance value of a feature varies
across health care systems. Ideally, the importance values of
the features should first be calculated on a data set from the
target health care system before choosing the features to retain.

As is typical with complex machine learning models, an
XGBoost model using many features is difficult to interpret.
This can limit clinical understandability and adoption,
particularly by clinicians who are resistant to using automated
tools. In the future, we plan to adopt our previously developed
method [39,40] to automatically explain the prediction results
of our final UWM model.

The final UWM model was constructed using XGBoost [33].
For binary classification of imbalanced data, XGBoost leverages
a hyperparameter, scale_pos_weight, to balance the weights of
the 2 outcome classes [45]. To maximize the AUC of our UWM
model, our automatic model selection method [35] altered
scale_pos_weight to a nondefault value to balance the 2 outcome
classes [46]. This incurs a side effect of significantly shrinking
the model’s forecasted probabilities of having future asthma
hospital encounters to values much less than the actual
probabilities [46]. This does not preclude us from choosing the
top few percent of patients with asthma with the greatest
forecasted risk to receive various preventive interventions. To
prevent this side effect from occurring, we could retain
scale_pos_weight at its default value of 1 without doing any
balancing. As a tradeoff, the AUC of the model would decrease
from 0.902 to 0.885 (95% CI 0.861-0.907); however, this

decreased AUC is still larger than all of the AUCs previously
reported in the literature for forecasting asthma hospital
encounters.

Limitations
This study has at least 4 limitations that could be interesting
topics for future work, as follows:

1. It is possible to further increase the model accuracy by using
features other than those checked in this study. For example,
features derived from environmental and physiological data
gathered by intelligent wearable devices can have this
potential.

2. This study used purely structured data and checked only
nondeep learning classification algorithms. It is possible to
further increase the model accuracy by using deep learning
as well as features derived from unstructured clinical notes
using natural language processing techniques [40,47].

3. Our UWM data set contained no data on patients’ health
care use outside of UWM. Therefore, we limited the
prediction target to asthma hospital encounters at UWM
instead of asthma hospital encounters anywhere. In addition,
the features we checked were derived from patients’
incomplete administrative and clinical data [48-51]. It would
be worth investigating how model accuracy would vary if
we have more complete administrative and clinical data of
patients [52].

4. This study evaluated the generalizability of our modeling
strategy to an academic health care system on a single
outcome of a complex chronic disease. We recently showed
that our modeling strategy also generalizes well to Kaiser
Permanente Southern California for the same predictive
modeling problem [44]. We plan to investigate our modeling
strategy’s generalizability to other diseases, outcomes, and
health care systems in the future.

Conclusions
In the first evaluation of its generalizability to an academic
health care system, our modeling strategy of examining many
candidate features to enhance prediction accuracy showed
excellent generalizability to the UWM and led to a model with
an AUC that is higher than all of the AUCs previously reported
in the literature for forecasting asthma hospital encounters. After
further optimization, our UWM model could be used to facilitate
the efficient and effective allocation of asthma care management
resources to improve outcomes.
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