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Abstract

Background: Artificial intelligence (AI) methods can potentially be used to relieve the pressure that the COVID-19 pandemic
has exerted on public health. In cases of medical resource shortages caused by the pandemic, changes in people’s preferences for
AI clinicians and traditional clinicians are worth exploring.

Objective: We aimed to quantify and compare people’s preferences for AI clinicians and traditional clinicians before and during
the COVID-19 pandemic, and to assess whether people’s preferences were affected by the pressure of pandemic.

Methods: We used the propensity score matching method to match two different groups of respondents with similar demographic
characteristics. Respondents were recruited in 2017 and 2020. A total of 2048 respondents (2017: n=1520; 2020: n=528) completed
the questionnaire and were included in the analysis. Multinomial logit models and latent class models were used to assess people’s
preferences for different diagnosis methods.

Results: In total, 84.7% (1115/1317) of respondents in the 2017 group and 91.3% (482/528) of respondents in the 2020 group
were confident that AI diagnosis methods would outperform human clinician diagnosis methods in the future. Both groups of
matched respondents believed that the most important attribute of diagnosis was accuracy, and they preferred to receive combined
diagnoses from both AI and human clinicians (2017: odds ratio [OR] 1.645, 95% CI 1.535-1.763; P<.001; 2020: OR 1.513, 95%
CI 1.413-1.621; P<.001; reference: clinician diagnoses). The latent class model identified three classes with different attribute
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priorities. In class 1, preferences for combined diagnoses and accuracy remained constant in 2017 and 2020, and high accuracy
(eg, 100% accuracy in 2017: OR 1.357, 95% CI 1.164-1.581) was preferred. In class 2, the matched data from 2017 were similar
to those from 2020; combined diagnoses from both AI and human clinicians (2017: OR 1.204, 95% CI 1.039-1.394; P=.011;
2020: OR 2.009, 95% CI 1.826-2.211; P<.001; reference: clinician diagnoses) and an outpatient waiting time of 20 minutes (2017:
OR 1.349, 95% CI 1.065-1.708; P<.001; 2020: OR 1.488, 95% CI 1.287-1.721; P<.001; reference: 0 minutes) were consistently
preferred. In class 3, the respondents in the 2017 and 2020 groups preferred different diagnosis methods; respondents in the 2017
group preferred clinician diagnoses, whereas respondents in the 2020 group preferred AI diagnoses. In the latent class, which
was stratified according to sex, all male and female respondents in the 2017 and 2020 groups believed that accuracy was the most
important attribute of diagnosis.

Conclusions: Individuals’ preferences for receiving clinical diagnoses from AI and human clinicians were generally unaffected
by the pandemic. Respondents believed that accuracy and expense were the most important attributes of diagnosis. These findings
can be used to guide policies that are relevant to the development of AI-based health care.

(J Med Internet Res 2021;23(3):e26997) doi: 10.2196/26997
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Introduction

Artificial intelligence (AI) technology, which is also called
machine intelligence technology, has been used in various fields,
such as automation, language, image understanding and analysis,
and genetic algorithm research. AI technology can perform
better than a human when it comes to performing particular
tasks, and such technology has the potential to replace several
traditional human occupations. This is the result of continuous
advances in medicine, neuroscience, robotics, and statistics. In
the medical and health care field [1], AI technology has many
widespread applications, and the use of such technology has
resulted in a wide range of opportunities for the future. For
instance, machine learning technology has been used to analyze
medical big data and electronic health records, conduct computer
vision research, facilitate natural language processing, and
develop intelligent robots [2]. In addition, AI technology has
helped address the masses’ demands for increasing the number
of clinician services [3].

As of November 13, 2020, the novel COVID-19 disease has
spread in over 217 countries [4] and territories across the world.
The disease has also resulted in tremendous threats and
challenges to public health security systems worldwide. The
COVID-19 outbreak has pushed the medical systems and
resources of numerous countries to the brink of collapse.
Diagnostic AI technology, which includes diagnostic machine
learning technology, has started to play a role in relieving the
burden that the pandemic has placed on the public health system
and easing the shortage of medical resources. At the start of the
COVID-19 outbreak, the medical AI team of the Alibaba
Academy for Discovery, Adventure, Momentum, and Outlook
rapidly developed a set of AI diagnostic technologies that could
interpret the computed tomography images of patients with
suspected COVID-19 (ie, new COVID-19 cases) within 20
seconds, with an accuracy of 96% [5]. In the fight against the
epidemic [6], digital technologies such as cloud computing,
artificial intelligence, and blockchain technologies have played
a vital role.

The combination of AI technology and human
clinician–operated convolutional neural networks [7] has greatly
improved the efficiency and accuracy of diagnosis methods and
substantially reduced diagnosis times and outpatient queuing
times. In 2014, app developers from around the world made a
total of US $663.8 million by selling AI health care apps, and
their revenue is expected to reach US $666.2 million in 2021
[8]. However, there are various uncertainties with regard to
preferences for different diagnostic methods among patients
(ie, men and women) from high-income areas and low-income
areas in China. Furthermore, there have been no studies that
assess patients’ preferences for AI clinicians and human
clinicians before and during the COVID-19 pandemic period,
and analyze the aspects of patients’ decision-making behaviors
during different periods of time.

This study aimed to compare people’s preferences for AI
diagnoses and traditional diagnoses (ie, human clinicians’
diagnoses) before and during the COVID-19 pandemic. We
assessed two groups of respondents with similar demographic
characteristics. We recruited one group in 2017 and the other
group in 2020 to learn whether people’s preferences for AI and
traditional human clinicians were affected by the pressure of
the COVID-19 pandemic. We performed propensity score
matching (PSM) to match the two groups. We also conducted
a discrete choice experiment (DCE) to quantify and measure
peoples’preferences for different diagnosis methods and identify
factors that disrupted and impacted peoples’ decision-making
behaviors.

Methods

Overview
We designed a web-based questionnaire to collect participants’
demographic information and investigate patients’ preferences
for different diagnosis strategies (Multimedia Appendix 1). In
brief, the questionnaire included 7 similar hypothetical scenarios.
Respondents were asked to choose a preferred diagnosis strategy
for each scenario.
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We used the PSM method to match two different groups of
respondents (ie, the 2017 group and the 2020 group) with similar
demographic characteristics. In addition, we used multinomial
logit (MNL) models [9,10] and latent class models (LCMs) [11]
to evaluate and investigate respondents’preferences for different
diagnosis strategies. We also compared the preferences of the
matched respondents from the 2017 group to those of the 2020
group to identify heterogeneity or homogeneity in preferences
for diagnosis attributes.

Selection of Attributes and Levels
Individuals could choose different levels of health care services
for each diagnosis attribute. Patients from the outpatient queues
of The First Affiliated Hospital of Jinan University (Guangzhou
Overseas Chinese Hospital) and The First Affiliated Hospital
of Sun Yat-sen University were randomly selected for this study.
Each patient was prompted to hypothesize which diagnosis

methods or attributes had a large impact on their decision (ie,
the methods/attributes that were of prominent importance to
each participant).

After assessing patients’ hypotheses and related literature
[12-14], we included the following six diagnosis attributes and
their respective levels in our questionnaire experiment: (1)
diagnostic method (levels: clinician diagnosis, AI and clinician
diagnosis, and AI diagnosis); (2) outpatient waiting time before
the start of the diagnosis process (levels: 0, 20, 40, 60, 80, and
100 minutes); (3) diagnosis time (levels: 0, 15, and 30 minutes);
(4) accuracy (ie, the rate of correct diagnosis; levels: 60%, 70%,
80%, 90%, and 100%); (5) follow-up after diagnosis (ie, whether
a doctor can conduct follow-ups at any time; levels: yes or no);
and (6) diagnostic expenses (levels: ¥0, ¥50, ¥100, ¥150, ¥200,
and ¥250; a currency exchange rate of ¥1=US $0.16 is
applicable). Attributes and their respective levels are presented
in Textbox 1.

Textbox 1. Diagnosis attributes and their respective levels in this discrete choice experiment.

Diagnostic method

• Description: the diagnosis method that patients prefer

• Levels: clinician diagnosis, artificial intelligence and clinician diagnosis, and artificial intelligence diagnosis

Outpatient waiting time

• Description: the amount of time that patients wait in a queue before the diagnosis process

• Levels: 0 minutes, 20 minutes, 40 minutes, 60 minutes, 80 minutes, and 100 minutes

Diagnosis time

• Description: the amount of time before a patient obtains a diagnosis

• Levels: 0 minutes, 15 minutes, and 30 minutes

Diagnostic accuracy

• Description: the rate of correct diagnosis

• Levels: 60%, 70%, 80%, 90%, and 100%

Follow-up after diagnosis

• Description: case tracking and follow-ups after diagnosis

• Levels: Yes and no

Diagnostic expenses

• Description: the cost of diagnosis

• Levels: ¥0, ¥50, ¥100, ¥150, ¥200, and ¥250 (a currency exchange rate of ¥1=US $0.16 is applicable)

DCE Instrument Design and Questionnaire
With regard to the design our DCE instrument, we used the
fractional factorial design method [15,16] to identify the optimal
number of treatment scenarios. This process was conducted
with Lighthouse Studio version 9.8.1 (Sawtooth Software). In
practice, it is not always feasible for respondents to choose
among all of the possible combinations of attributes and levels
(ie, full factorial design). The full factorial design of the DCE
instrument had 3240 different combinations (ie, 3 × 6 × 3 × 5
× 2 × 6 = 3264), which is an unreasonable number of options
to present to respondents. Thus, the fractional factorial method

was essential in designing the DCE instrument. This method is
based on the following two principles [15-17]: (1) orthogonality,
which, in terms of the DCE, means that each attribute level
should have little to no correlation with other attribute levels;
and (2) balance, which means that each attribute should appear
an equal number of times. After considering these principles,
we provided 6 random questions and 1 fixed question to each
respondent in the DCE.

The DCE questionnaire contained 2 parts. The first part required
the respondents to fill in their demographic information, such
as age (ie, 18-20, 21-25, 26-30, 31-35, 36-40, 41-45, 46-50,
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51-55, 56-60, 61-65, 66-70, 71-75, 76-80, and 81-85 years), sex
(ie, male or female), and educational level (ie, primary school
student, primary school graduate, middle school student, middle
school graduate, high school student, high school graduate,
undergraduate, bachelor’s degree, graduate student, master’s
degree, postgraduate student, and doctorate degree). The second
part required the respondents to consider seven different
scenarios. For each scenario, respondents were to imagine that
they were in an outpatient queue waiting for a diagnosis. They
were then asked to choose a preferred diagnosis strategy. At the
end of the questionnaire, respondents were required to estimate
the number of years (ie, 5 years, 10 years, 15 years, 20 years,
30 years, 40 years, or never) it would take for AI clinicians to
surpass human clinicians. The scenarios and the options for the
different types of clinicians are presented in Multimedia
Appendix 2.

Data Collection
In October 2017 and August 2020, we sent our website link to
people of different age groups by using various social media
platforms, such as WeChat (Tencent Inc) and QQ (Tencent Inc).
People could use the link to access the DCE questionnaire,
which was the same for each participant. To increase the
response rate, we provided incentives (ie, a lottery for a Fitbit
watch and cash prizes) for completing the questionnaire.

At the beginning of the questionnaire, we provided a brief
background on the applications of AI in medicine. This included
information on the potential advantages and disadvantages of
AI clinicians and traditional clinicians, and the purpose of our
DCE. The questionnaire only took 5-10 minutes to complete.
Respondents had to click the “Agree to take the survey” button
to start filling out the questionnaire. Once respondents clicked
the “Agree to take the survey” button, they were notified that
they willingly chose to participate in this study. Respondents
were also notified that their privacy was protected by the law.

PSM
PSM is a regression method for identifying treatment group and
control group patients with similar basic characteristics. This
method is prevalently used in the study of impact factors and
causal effects, such as those in medical treatments, policy
decisions, or case studies. PSM involves the following five steps
[18]: (1) estimating propensity scores; (2) choosing a matching
algorithm; (3) checking for overlap/common support; (4)
estimating the quality and effects of the matching results; and
(5) conducting a sensitivity analysis. The mathematical theory
for PSM is primarily based on the Roy-Robin model [19-21].
Our objective was to perform a PSM analysis in which
participants who were recruited in 2017 were treated as the
treatment group, and participants who were recruited in 2020
were treated as the control group. Participants’ PSM data are
provided in Multimedia Appendix 3 [18]. We matched the
respondents in each group according to their demographic
characteristics, such as age, sex, and educational level. All
demographic information was coded as dummy variables; for
instance, male respondents were coded as “1,” and female
respondents were coded as “0.”

Matching Algorithm
Although there are various matching algorithms [18], we used
the nearest neighbor [22] algorithm because it was appropriate
for identifying individuals in one group that best matched the
individuals in another group. Another merit of the nearest
neighbor algorithm is that it can differentiate between
individuals in the control group and individuals in the treatment
group, which guarantees that all treated individuals are
successfully matched. Therefore, the nearest neighbor algorithm
provides the most information on treatment groups and control
groups. Additionally, we conducted a 1:1 matching analysis,
which effectively reduces confounding bias [23] and improves
research efficiency and credibility.

Statistical Analysis

MNL Model
There are various analysis models that can be used to conduct
DCE-related statistical analyses, such as random effects binary
probit and logit models, MNL models, and mixed logit models
[16,24]. The theoretical model for a DCE is based on the random
utility model (Multimedia Appendix 4) [16]. We assumed that
respondents’ choices would maximize the utility of each
question in the DCE questionnaire. The overall utility of
decision makers is based on fixed utility and random utility,
which are unobservable. We assessed respondents’ preferences
by analyzing their comments. This allowed us to identify random
utilities that could not be identified by analyzing a question.

We used the MNL model to analyze people’s preferences for
different attribute levels. Our independent variable only
accounted for attributes that were related to health care plans;
it did not account for any information that was related to
participants. The MNL model was used to analyze respondents’
health care plans, which were chosen based on the relative
importance of the plans’ attributes and the “none” option. The
coded value of each participants’ chosen health care plan was
calculated based on participants’ coded responses to questions
about queuing times, diagnosis times, and diagnostic costs. We
used a maximum likelihood approach to analyze MNL model
data.

The results from the MNL model were determined by the
options for health care plans, as the data for this attribute were
grouped before analysis. In the MNL model, “effect” is
synonymous with “utility.” Therefore, positive MNL model
coefficients indicated that individuals preferred one level of
service over other levels for the same attribute. The MNL model
in this study was based on a similar logistic regression model.
The MNL model–based observations correlated with those in
blocks that corresponded with the same individual. Instead of
having 1 level line per individual like in the classical logit
model, the MNL model had 1 level line per attribute level of
interest (ie, for each individual). For example, in this study, we
analyzed three types of diagnoses (ie, clinician diagnoses, AI
and clinician diagnoses, and AI diagnoses), and each type had
its own characteristics. However, an individual could only
choose 1 of the 3 types of diagnoses. As per the characteristics
of the MNL model, all three options were presented to each
respondent, and all respondents could choose their preferred
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option. We reported the odds ratios (ORs) of respondents’
preferences for different attribute levels.

LCM
We used an LCM [11] to create different classes for individuals
with similar preferences. The purpose of the LCM was to
identify correlations among explicit variables, create the fewest
number of classes, and achieve local independence. An LCM
initially assumes that the null model is the hypothesized model
and that local independence exists among explicit variables.
Afterward, the LCM increases the number of latent categories
in the null model and uses a maximum likelihood approach to
create various models, which are based on parameters’
limitations. The LCM then tests the hypothesized model and
observed data, compares the hypothesized model to the other
models, and identifies the most appropriate model. Although
there are different types of model information evaluation criteria,
Akaike information criteria [25] and Bayesian information
criteria [26] are the most prevalently used criteria for selecting
LCMs. After the model was created, observed data were
classified into the appropriate latent classes.

Willingness to Pay
Willingness to pay (WTP) is an efficient metric for measuring
how much an individual is willing to sacrifice (ie, economic
sacrifices) to choose one diagnosis attribute level over another
(ie, the reference attribute level). We analyzed participants’
WTP to identify homogeneity and heterogeneity in participants’
preferences.

Software
Propensity score matching was conducted with Stata 16
(StataCorp LLC), and the MNL model and LCMs were created
with Lighthouse Studio version 9.8.1 (Sawtooth Software).

Results

Data Collection
Of the 1520 individuals who visited our DCE website in 2017,
1317 (86.6%) completed the questionnaire and were included

in the analysis. Of these 1317 respondents, 1317 (100%) were
aged 18-85 years, 731 (55.5%) were female, and 1115 (84.7%)
believed that AI clinicians would surpass or replace human
clinicians.

Of the 874 individuals who visited our new DCE website in
2020, 528 (60.4%) completed the questionnaire. Of these 528
participants, 272 (51.5%) were female and 482 (91.3%) were
confident that AI diagnoses were better than traditional
diagnoses.

General PSM and MNL Model Results
Of the 1317 respondents who were recruited in 2017, 528
(40.1%) were matched (ie, via PSM) to the 528 respondents
who were recruited in 2020. The PSM procedure is presented
in Figure 1, and the demographic characteristics of respondents
before and after PSM are presented in Table 1. The general
MNL model results for the 2017 and 2020 groups are presented
in Table 2, which shows estimated average preference weights
(ie, effect weights), P values, ORs, and 95% confidence
intervals. Generally, individuals in the 2017 and 2020 groups
believed that accuracy was the most important diagnosis
attribute (Figure 2). The weighted importance value of accuracy
was 38.53% in the 2017 group and 40.55% in the 2020 group.
Respondents believed that diagnosis time was the least important
attribute (weighted importance in 2017: 2.69%; weighted
importance in 2020: 1.16%). Additionally, individuals in the
2017 and 2020 groups preferred to receive combined diagnoses
from both AI and human clinicians over AI-only diagnoses or
human clinician–only diagnoses (2017: OR 1.645, 95% CI
1.535-1.763; 2020: OR 1.513, 95% CI 1.413-1.621; reference:
clinician diagnosis; Table 2). In addition, the ORs for the levels
of diagnosis accuracy increased as the accuracy increased, which
indicated that people will always prefer diagnosis methods with
high accuracy. For instance, in the 2017 group, 100% accuracy
had an OR of 5.043 (95% CI 4.534-5.609). In the 2020 group,
100% accuracy had an OR of 5.263 (95% CI 4.734, 5.852). The
preferences of the matched respondents in the 2017 group were
very similar to those of the respondents in the 2020 group.
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Figure 1. Propensity score matching procedure.

Table 1. Demographic characteristics of nonmatched and propensity score–matched respondents.

Propensity score–matched respondentsNonmatched respondentsBaseline matching characteristics

P value2020 group (n=528),
n (%)

2017 group (n=528),
n (%)

P value2020 group (n=528),
n (%)

2017 group
(n=1317), n (%)

.97<.001Sex

256 (48.48)250 (47.35)256 (48.48)586 (44.5)Male

272 (51.52)278 (52.65)272 (51.52)731 (55.5)Female

.69<.001Age (years)

348 (65.91)379 (71.78)348 (65.91)1106 (83.98)<35

180 (34.09)149 (28.22)180 (34.09)211 (16.02)≥35

.13<.001Highest education level

336 (63.64)385 (72.92)336 (63.64)1033 (78.44)Primary school graduate to
undergraduate

192 (36.36)143 (27.08)192 (36.36)284 (21.56)Bachelor’s degree to doctorate
degree
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Table 2. General results of the multinomial logit model. Data on propensity score–matched respondents’ preferences for diagnosis attributes in 2017
and 2020 are reported (N=528).

2020 group2017 groupAttributes and levels

Odds ratio (95% CI)P valueEffect coefficientOdds ratio (95% CI)P valueEffect coefficient

Diagnosis method

Reference.12−0.05Reference<.001−0.15Clinician

1.51 (1.413-1.621)<.0010.361.64 (1.535-1.763)<.0010.35Artificial intelligence and
clinician

0.78 (0.725-0.833)<.001−0.310.95 (0.885-1.016)<.001−0.20Artificial intelligence

Outpatient waiting time (minutes)

Reference.010.15Reference<.0010.310

1.12 (1.013-1.245)<.0010.260.82 (0.741-0.914).030.1220

0.85 (0.762-0.942).72−0.020.71 (0.639-0.789).57−0.0340

0.71 (0.640-0.788)<.001−0.200.67 (0.606-0.748).12−0.0860

0.71 (0.640-0.789)<.001−0.200.54 (0.482-0.595)<.001−0.3180

Diagnosis time (minutes)

Reference.57−0.02Reference.190.050

1.01 (0.946-1.084).83−0.010.89 (0.834-0.957).06−0.0715

1.05 (0.980-1.122).430.030.98 (0.912-1.046).530.0230

Diagnosis accuracy (% accuracy)

Reference<.001−0.83Reference<.001−0.8360

1.52 (1.365-1.684)<.001−0.411.62 (1.458-1.802)<.001−0.3570

2.25 (2.033-2.487).72−0.022.47 (2.235-2.737).160.0780

3.51 (3.169-3.891)<.0010.433.18 (2.867-3.526)<.0010.3290

5.26 (4.734-5.852)<.0010.835.04 (4.534-5.609)<.0010.79100

Follow-up after diagnosis

Reference<.0010.19Reference<.0010.20Yes

0.69 (0.656-0.715)<.001−0.190.67 (0.620-0.698)<.001−0.20No

Diagnosis expenses (¥a)

Reference<.0010.36Reference<.0010.420

0.88 (0.782-0.989)<.0010.230.87 (0.769-0.976)<.0010.2850

0.83 (0.738-0.935)<.0010.180.65 (0.576-0.730).82−0.01100

0.65 (0.580-0.736).30−0.060.67 (0.599-0.760).660.03150

0.58 (0.510-0.648)<.001−0.190.52 (0.459-0.585)<.001−0.24200

0.41 (0.366-0.468)<.001−0.520.41 (0.363-0.465)<.001−0.47250

aA currency exchange rate of ¥1=US $0.16 is applicable.
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Figure 2. General estimated weighted importance of diagnosis attributes in 2017 and 2020.

Overall WTP
In 2017, respondents were willing to pay ¥13.99 to receive
combined diagnoses from AI and human clinicians.
Additionally, people were not willing to pay for longer
outpatient waiting times, but they were willing to pay for higher
diagnosis accuracy (ie, ¥1.60 per 1% increase in accuracy). In
2020, respondents were willing to pay ¥0.79 to receive combined
diagnoses from AI and human clinicians instead of

clinician-only diagnoses. Compared to respondents’ WTP for
certain diagnosis methods in 2017, respondents’ WTP in 2020
was lower. Furthermore, similar to the 2017 group, respondents
in the 2020 group were also not willing to pay for longer
outpatient waiting times. However, they were willing to pay for
higher diagnosis accuracy.
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LCM Results
After comparing the Akaike information criteria, Bayesian
information criteria, and Akaike/Bayesian information criteria
of the various potential classes, we chose three classes that were
the most appropriate for the matched respondents in the 2017
and 2020 groups. The proportions of matched respondents from
the 2017 group in each of the three classes were 43.2% (class
1: 228/528), 42.2% (class 2: 223/528) and 14.6% (class 3:
77/528). The proportions of matched respondents from the 2020
group in each of the three classes were 44.8% (class 1: 237/528),
48.2% (class 2: 254/528) and 7% (class 3: 37/528).

With regard to class 1 (n=228), Figure 3 shows that matched
respondents in the 2017 group believed that diagnosis method
was the most important attribute (weighted importance: 32.95%),
followed by diagnosis expenses (weighted importance: 18.14%).
In class 2, matched respondents from the 2017 group believed
that diagnosis accuracy (weighted importance: 49.92%) and
diagnosis expenses (weighted importance: 19.84%) were the
most important attributes. In class 3, matched respondents from

the 2017 group believed that diagnosis accuracy (weighted
importance: 25.66%) and diagnosis expenses (weighted
importance: 23.21%) were the most important attributes. In
class 1, the respondents from the 2020 group believed that
diagnosis expenses (weighted importance: 29.99%) and
diagnosis method (weighted importance: 28.99%) were the most
important attributes. In class 2, the respondents from the 2020
group believed that diagnosis accuracy (weighted importance:
52.34%) was the most important attribute, followed by diagnosis
expenses (weighted importance: 14.44%). In class 3, the
respondents from the 2020 group believed that diagnosis
expense (weighted importance: 36.21%) was the most important
attribute, followed by diagnosis accuracy (weighted importance:
32.84%). It was obvious that the three factors that respondents
believed were the most important were diagnosis accuracy,
diagnosis expenses, and diagnosis methods. In some classes,
respondents believed that diagnosis method was the most
important attribute. However, respondents typically believed
that diagnosis accuracy was the most important attribute and
diagnosis expense was the second most important attribute.
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Figure 3. Weighted importance of diagnosis attributes in 2017 and 2020, as determined by the latent class model.

According to our ORs for classes 1 and 2, the respondents in
the 2017 group (Table S1 in Multimedia Appendix 5) preferred
the combined diagnosis method (class 1: OR 2.479, 95% CI
0.997-2.743; class 2: OR 1.204, 95% CI 1.039-1.394) over the
other two methods. This was not true for respondents in class
3. Respondents in classes 1 and 3 preferred an outpatient waiting
time of 0 minutes, and respondents in classes 1 and 2 preferred
a diagnosis time of 0 minutes. Respondents across all classes
preferred a diagnosis cost of ¥0. Furthermore, respondents in

the 2017 group (ie, those in all classes) preferred high diagnosis
accuracy (eg, 100% accuracy in class 3: OR 4.899, 95% CI
3.631-6.611). Respondents in all classes believed that follow-ups
after diagnosis were important.

In classes 1 and 2, the respondents from the 2020 group (Table
S2 in Multimedia Appendix 5) preferred the combined diagnosis
method (class 1: OR 1.135, 95% CI 0.997-1.293; class 2: OR
2.009, 95% CI 1.826-2.211). This was not true for class 3.
Respondents in class 2 preferred an outpatient waiting time of
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20 minutes (OR 1.488, 95% CI 1.287-1.721). Additionally,
similar to the 2017 group, the respondents in the 2020 group
(ie, those in all classes) preferred high accuracy. Follow-ups
after diagnosis were important to the respondents in the 2020

group (ie, those in all classes). The strength of respondents’
preferences is visually presented in Figure 4; preference strength
was quantified by calculating the preference weight (ie,
coefficient) of each attribute’s level.

Figure 4. Preference weights stratified by year (ie, 2017 and 2020) and class (ie, classes 1, 2, and 3), as determined by the latent class model.

We found that respondents’ WTP was highly consistent with
the corresponding ORs of each attribute. In classes 1 and 2, the
respondents from the 2017 group (Table 3) were willing to pay
for the combined diagnosis method. This was not true for class
3. Additionally, in class 3, the respondents from the 2017 group
were the only respondents who were willing to pay for longer
diagnosis times. The respondents from the 2017 group (ie, those
in all classes) were willing to pay for higher diagnosis accuracy
and follow-ups after diagnosis.

In classes 1 and 2, the respondents from the 2020 group (Table
4) were willing to pay for the combined diagnosis method. This
was not true for class 3, in which respondents were willing to
pay more for the AI diagnosis method. The respondents from
the 2020 group (ie, those in all classes) were willing to pay for
shorter outpatient waiting times, higher diagnosis accuracy, and
follow-ups after diagnosis.

J Med Internet Res 2021 | vol. 23 | iss. 3 | e26997 | p. 11https://www.jmir.org/2021/3/e26997
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Respondents’ WTPa in 2017.b

WTP in class 3 (n=77), ¥
(US $)

WTP in class 2 (n=223), ¥
(US $)

WTP in class 1 (n=228), ¥
(US $)

Overall WTP (N=528), ¥
(US $)

Attribute

Diagnosis method

0.31 (0.05)−0.22 (−0.04)−3.03 (−0.48)−13.99 (−2.24)Artificial intelligence
and clinician

1.22 (0.20)0.25 (0.04)−0.52 (−0.08)1.50 (0.24)Artificial intelligence

0.53 (0.09)0.96 (0.15)0.62 (0.10)8.92 (1.43)Outpatient waiting time

−0.44 (−0.07)0.07 (0.01)0.07 (0.01)−0.57 (−0.09)Diagnosis time

−1.20 (−0.19)−2.85 (−0.46)−0.44 (−0.07)−1.14 (−0.18)Diagnosis accuracy

0.62 (0.10)0.95 (0.15)1.22 (0.20)11.32 (1.81)Follow-up after diagnosis

ReferenceReferenceReferenceReferenceDiagnosis expenses

aWTP: willingness to pay.
bNegative currency values refer to the amount that respondents were willing to pay for another level.

Table 4. Respondents’ WTPa in 2020.b

WTP in class 3 (n=37), ¥
(US $)

WTP in class 2 (n=254), ¥
(US $)

WTP in class 1 (n=237), ¥
(US $)

Overall WTP (N=528), ¥
(US $)

Attribute

Diagnosis method

−1.31 (−0.21)−1.33 (−0.21)−0.17 (−0.03)−0.79 (−0.13)Artificial intelligence
and clinician

−1.62 (−0.26)0.42 (0.07)0.54 (0.09)0.48 (0.07)Artificial intelligence

0.61 (0.10)0.19 (0.03)0.70 (0.11)0.38 (0.06)Outpatient waiting time

0.06 (0.01)0.004 (0.001)−0.04 (−0.01)−0.05 (−0.01)Diagnosis time

−5.65 (−0.90)−0.44 (−0.07)−3 (−0.48)−1.60 (−0.26)Diagnosis accuracy

2.31 (0.37)0.25 (0.04)1.46 (0.23)0.73 (0.12)Follow-up after diagnosis

ReferenceReferenceReferenceReferenceDiagnosis expenses

aWTP: willingness to pay.
bNegative currency values refer to the amount that respondents were willing to pay for another level.

According to the LCM, which stratified data according to sex,
male respondents in the 2017 group (Figure 5) believed that the
most important attribute was diagnosis accuracy (weighted
importance: 39.14%), followed by diagnosis expenses (weighted
importance: 21.39%). Female respondents in the 2017 group
also thought that diagnosis accuracy (weighted importance:
37.41%) and diagnosis expenses (weighted importance: 20.74)
were the most important attributes. Male respondents in the
2020 group thought that diagnosis accuracy (weighted

importance: 36.74%) was the most important attribute, followed
by diagnosis expenses (weighted importance: 23.84%).
Additionally, female respondents in the 2020 group believed
that diagnosis accuracy (weighted importance: 41.69%) was
the most important attribute, followed by diagnosis expenses
(18.96%). The LCM for male and female respondents in the
2017 and 2020 groups showed that there was no obvious
heterogeneity among these respondents’ preferences.
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Figure 5. Weighted importance of diagnosis attributes in 2017 and 2020, as determined by the latent class model, which stratified data according to
sex (ie, male and female respondents).

Discussion

Principal Results
In this study, we collected information on people’s preferences
for AI-based diagnosis by analyzing two different groups of
individuals who were recruited in 2017 and 2020 (ie, before
and during the COVID-19 pandemic). We used the PSM method
to match two groups of respondents with similar demographic
characteristics (ie, age, sex, and educational level). After
comparing the demographically similar respondents in the 2017
and 2020 groups, we did not find any substantial differences in
respondents’ preferences. Diagnosis accuracy and diagnosis
expenses were the most important factors that influenced
respondents’ preferences.

The success of a DCE questionnaire always depends on the
response rate. In other words, people who actively click the
website link and complete the questionnaire are essential for
expanding sample sizes and the scope of a study. By using the
PSM method, we were able to easily assess whether people’s
preferences during normal times changed during unusual times
(ie, the COVID-19 pandemic).

In this study, we used two different models—the MNL model
and the LCM. Both models have various advantages and
drawbacks with regard to quantifying respondents’preferences.
According to the general PSM logit model, respondents in both
groups consistently believed that accuracy was the most
important diagnosis attribute, regardless of their preferences for
diagnosis methods. Moreover, diagnosis expense was an

important factor that influenced respondents’ decisions in both
2017 and 2020. Respondents believed that this attribute was the
second most important attribute. The limited accessibility and
availability of medical resources are big problems in China,
especially in several rural areas of China. These problems are
the result of insufficient medical insurance distribution [27,28]
and the country’s low per capita income.

We found that people’s preferences for different diagnoses were
largely similar. This indicates that people’s decisions and their
preferences for different diagnoses are not considerably affected
by pandemic-related factors. However, according to our LCM,
there was slight heterogeneity in the preferences of different
groups of respondents (eg, male and female respondents). This
heterogeneity was not observed in the logit model. Although
the weighted importance of accuracy remained consistent across
all classes, it might not be the most important factor that affects
people’s decisions. In class 1, the respondents from the 2017
and 2020 groups believed that diagnosis expense was the most
important factor that affected their decisions, followed by
diagnosis method. Based on the LCM results, male respondents
in the 2017 and 2020 groups believed that diagnosis accuracy
was the most important attribute to consider when choosing a
diagnosis strategy.

With regard to attribute levels, we found that respondents
typically preferred to receive a combined diagnosis from both
AI and human clinicians over a diagnosis from a single source
(ie, AI diagnoses or human clinician diagnoses). This is
understandable, since respondents typically believed that
diagnosis accuracy could be improved by combining different
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modes of diagnosis. Additionally, it should be noted that several
respondents preferred longer diagnosis and outpatient queuing
times. Although no studies have reported that diagnosis time
and outpatient time correlate with diagnosis accuracy, it is
possible that some patients prefer waiting for a doctor over
receiving a quicker diagnosis, as they may believe that waiting
results in more accurate diagnoses. The low accessibility and
high price of AI services are important issues, especially in rural
or low-income areas. Therefore, before pricing an AI
technology–based service, it is advisable to survey residents
and analyze their disposable income. With regard to residents
in rural areas, governments should consider adding AI diagnoses
to health insurance plans or related subsidy projects. Another
AI diagnosis factor that should be considered is accuracy, since
companies should only promote and advertise products/services
with a high accuracy. When an AI technology–based service
enters the market, relevant users should consider combining AI
technology with human wisdom during the early stage of market
penetration. Therefore, in the future, AI diagnosis technology
developers should focus on improving diagnosis accuracy and
reducing the cost of diagnoses to make such technology
accessible to a wide range of patients.

Limitations
Our study has several shortcomings and limitations, especially
with regard to our data collection process. It was clear that our

small sample size limited the power of our analyses.
Additionally, our sample might not be representative of the
entire Chinese population. Furthermore, the
deployment/distribution of AI technology–based medical
services is limited, especially in rural areas [29] and areas that
consist of uneducated residents. Thus, there are still many
obstacles to overcome before AI technology becomes popular;
many developments are still needed to popularize conceptual
projects.

Conclusion
Our study shows that respondents’preferences for AI clinicians
in 2017 did not substantially differ from those in 2020.
Therefore, people’s preferences for AI diagnoses and clinical
diagnoses were unaffected by the COVID-19 pandemic.
However, preferences for high diagnostic accuracy and low
diagnosis expenses were evident, regardless of people’s
preferences for diagnosis methods, waiting times, and follow-up
services.

In summary, affordability and accuracy are the two principal
factors that should be considered when promoting AI-based
health care. The combination of AI-based and professional
health care will be more easily accepted by the general public
as AI technology develops.
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