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Abstract

Background: Forecasting methods rely on trends and averages of prior observations to forecast COVID-19 case counts.
COVID-19 forecasts have received much media attention, and numerous platforms have been created to inform the public.
However, forecasting effectiveness varies by geographic scope and is affected by changing assumptions in behaviors and
preventative measures in response to the pandemic. Due to time requirements for developing a COVID-19 vaccine, evidence is
needed to inform short-term forecasting method selection at county, health district, and state levels.

Objective: COVID-19 forecasts keep the public informed and contribute to public policy. As such, proper understanding of
forecasting purposes and outcomes is needed to advance knowledge of health statistics for policy makers and the public. Using
publicly available real-time data provided online, we aimed to evaluate the performance of seven forecasting methods utilized
to forecast cumulative COVID-19 case counts. Forecasts were evaluated based on how well they forecast 1, 3, and 7 days forward
when utilizing 1-, 3-, 7-, or all prior–day cumulative case counts during early virus onset. This study provides an objective
evaluation of the forecasting methods to identify forecasting model assumptions that contribute to lower error in forecasting
COVID-19 cumulative case growth. This information benefits professionals, decision makers, and the public relying on the data
provided by short-term case count estimates at varied geographic levels.

Methods: We created 1-, 3-, and 7-day forecasts at the county, health district, and state levels using (1) a naïve approach, (2)
Holt-Winters (HW) exponential smoothing, (3) a growth rate approach, (4) a moving average (MA) approach, (5) an autoregressive
(AR) approach, (6) an autoregressive moving average (ARMA) approach, and (7) an autoregressive integrated moving average
(ARIMA) approach. Forecasts relied on Virginia’s 3464 historical county-level cumulative case counts from March 7 to April
22, 2020, as reported by The New York Times. Statistically significant results were identified using 95% CIs of median absolute
error (MdAE) and median absolute percentage error (MdAPE) metrics of the resulting 216,698 forecasts.

Results: The next-day MA forecast with 3-day look-back length obtained the lowest MdAE (median 0.67, 95% CI 0.49-0.84,
P<.001) and statistically significantly differed from 39 out of 59 alternatives (66%) to 53 out of 59 alternatives (90%) at each
geographic level at a significance level of .01. For short-range forecasting, methods assuming stationary means of prior days’
counts outperformed methods with assumptions of weak stationarity or nonstationarity means. MdAPE results revealed statistically
significant differences across geographic levels.

Conclusions: For short-range COVID-19 cumulative case count forecasting at the county, health district, and state levels during
early onset, the following were found: (1) the MA method was effective for forecasting 1-, 3-, and 7-day cumulative case counts;
(2) exponential growth was not the best representation of case growth during early virus onset when the public was aware of the
virus; and (3) geographic resolution was a factor in the selection of forecasting methods.
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Introduction

The scientific community responded quickly to the global
outbreak following COVID-19’s identification in December of
2019 [1,2]. Numerous platforms and studies have been created
to forecast the spread of the pandemic and meet the need for
intervention measures in support of public health and awareness
[1,3-5]. Many forecasting efforts focused on the long-term
identification of COVID-19 and the flattening of and getting
over the curve [3,4,6]. Forecasts assist in identifying and
evaluating long-term preventions. Short-range forecasts provide
benefit by supporting local understanding for individuals and
policy makers and supporting short-range decisions. To inform
public health and support awareness of proper forecast
interpretation when making decisions, it is important to
understand the basics of the generation of forecasts and the
boundaries under which their interpretations are valid. To this
point, this study explores the error levels of seven common
forecasting methods in estimating COVID-19 cumulative case
counts at county, health district, and state levels over the
upcoming week. Comparing error levels across forecasting
methods and geographic granularities provides insight into the
assumptions contributing to more accurate forecasts.

Small numbers of COVID-19 cases can lead to large outbreaks
[7]. Isolation and preventative measures are recommended
practices to reduce the spread of COVID-19 [1-3,8-14].
Forecasts with high error magnitudes can provide expectations
that grossly underestimate or overestimate case counts. This
can lead to problems, such as the creation of unanticipated hot
spots resulting from underestimation, or can cause unnecessary
public alarm from overestimation. Interpreting COVID-19
forecasts depends on assumptions such as the geographic area,
preventative measures in place, and the population’s knowledge
of, and behaviors toward, the virus. As assumptions change,
the usefulness of the forecasting method should be re-evaluated.
The impact of nonpharmaceutical interventions can be delayed
1 to 3 weeks and should factor into policy makers’ decisions
[15]. Intervention methods can result in secondary effects, such
as decreasing levels of physical activity while people practice
social distancing [16]. As a result, understanding of the
assumptions pertaining to short-range COVID-19 forecasting
is needed to properly interpret their findings [17].

This study explores seven commonly utilized forecasting
approaches, including the following: naïve [18], moving average
(MA) [9,10], autoregressive (AR) [17], growth rate [19],
Holt-Winters (HW) exponential smoothing [20,21],
autoregressive moving average (ARMA) [22], and
autoregressive integrated moving average (ARIMA) [23]. Each
forecasting method utilizes different assumptions about how
the past values impact the forecast values. The naïve approach
is the simplest method and assumes no change from the current
value. The MA approach assumes equal weighting of prior
values, while exponential smoothing assigns exponentially
decreasing weight to older values. The AR approach assumes

linear dependency of prior values but with an added stochastic
component. The growth rate approach assumes a linear
relationship to its prior values and applies sampling with growth
based on the number of increased cases from the prior day. The
ARMA approach combines the AR approach to provide a
regression based linearly on its past values with the MA
approach to account for the error terms within the prior values.
The ARIMA approach applies to data that is nonstationary
around a mean value and applies a distancing measure one or
more times to make the data stationary [24].

Error represents the inability to account for all the variability
contributing to changes in COVID-19 case counts. Forecast
error represents the under- or overestimation of the actual value
[18]. Additionally, assumptions are unlikely to remain constant
over time due to shifting public behaviors and implemented
public policies. Error magnitude communicates the accuracy of
a forecast and can be utilized as a metric to select from a set of
potential forecasting methods. Interpreting forecast outcomes
relies on the error magnitude as well as situating the assumptions
underlining the forecast [25,26]. This means that the
effectiveness of a current forecasting method is likely to be
impacted as new preventative measures are put into place that
alter spread dynamics. Conveying this understanding to the
public advances knowledge of health statistics and statistical
literacy in public health [21,27-29].

Recommendations for models of infectious diseases in support
of public health involve incorporating policy questions, available
data, and scientific understanding to yield policy advice, data
collection, and scientific insight [30]. By evaluating forecasts
by aggregating information from lower levels, such as at the
county and health district levels, intervention strategies can be
more readily applied based on the relevant demographic
characteristics shared by the smaller population samples.
Forecasting methods operate under differing assumptions
pertaining to how the prior values relate to forecasted values.
This study evaluates seven forecasting methods with varied
look-back and forecast lengths at the county, health district, and
state levels. By evaluating short-range forecasting methods
combined with varied look-back and forecast lengths, forecasts
can be more effectively used for informing health planning and
aiding individuals in evaluating the safety levels of their local
and neighboring communities.

Methods

Data
We obtained 3464 Virginia county–level COVID-19 cumulative
case count observations from March 7 to April 22, 2020, using
data provided by The New York Times and aggregated these
observations to the health district and state levels as presented
in Figure 1. This period captured the first 3 weeks following
the first confirmed COVID-19 case within Virginia and the 3
weeks following the governor’s executive order limiting
gatherings to groups of less than 10 people. As intervention
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measures can take up to 3 weeks to impact the virus spread [15],
this time frame was expected to cover Virginia’s case growth

prior to experiencing the benefits resulting from the governor’s
imposed group size limit.

Figure 1. Experimental design and data overview at the county, health district, and state levels. The generation and aggregation of county-level forecasts
are shown on the left path (red), health district–level forecasts on the middle path (blue), and state-level forecasts on the right path (green). The information
on the right provides additional detail on each stage in the experimental design. AR: autoregressive; ARIMA: autoregressive integrated moving average;
ARMA: autoregressive moving average; HW: Holt-Winters; MA: moving average; MdAE: median absolute error; MdAPE: median absolute percentage
error; VA: Virginia.

Forecasting Methods and Assumptions
For the naïve forecasts, the prior day’s value is used for each
of the following j forecasted days. For the HW forecasts,
exponential smoothing of the prior k day’s values is used to
forecast values over the next j days. For the growth rate
forecasts, the prior 1 day’s value is used to calculate the current
growth rate over the following j days. Then, the prior day’s
values for all the counties are used to calculate the growth rate
for Virginia for the same j days. A group of n forecasts are
generated for the county by uniformly sampling a growth rate
between the county’s rates and Virginia’s rates. The average of
the n forecasts is utilized as the final forecast for the county.
For the MA (1), AR (1), ARMA (1, 1), and ARIMA (1, 1, 1)
forecasts, the prior k days are given equal weighting to forecast
the next j days.

This study only relies on the daily reported case numbers since
the date of first onset within each location and does not
incorporate assumptions about the basic reproductive number

of COVID-19. Forecasts are influenced by the reliability of the
data, the variables utilized, and the perceptions and reactions
to danger and they assume the continuation of past patterns
[4,31]. When exploring real-time forecasts of infectious disease
models, real-time models have shown higher absolute error
values, on average, than full-data models as a result of factors
such as significant differences in population sizes between
compared areas [32].

Statistical Analysis
We aggregated median absolute error (MdAE) and median
absolute percentage error (MdAPE) variables and expressed
them as medians, IQRs, and notch ranges representing 95% CIs.
Notch ranges are calculated as ±1.58 × IQR/√n [33,34] as
implemented using the R function geom_boxplot within the
package ggplot2 (The R Foundation) [35]. Nonoverlapping
comparisons of confidence intervals represent statistically
significant differences [36,37] with P values less than .01
[38-41]. P values conveying significant differences between
groups are calculated using Mood’s median test [42,43]. MdAE
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compared forecasting outcomes at shared geographic levels due
to similarities in scale [44]. MdAPE compared each forecasting
method’s outcomes across geographic level due to differing
scales [45].

We created 226,468 forecasts across the county, health district,
and state levels over the period of March 7 through April 22,
2020. Due to the naïve and growth rate methods only utilizing
1-day look-backs and the ARMA and ARIMA methods
requiring more than 1-day look-backs, five forecast methods
exist for each comparison. Analyses were performed with R
software, version 3.6.3 (The R Foundation).

Verification, Validation, and Reproducibility
The data set and code are provided in Lynch and Gore [46] and
the experimental methods and steps needed for reproducibility
are provided in Lynch and Gore [47]. Code inspections and unit
tests were utilized for code verification [48]. MdAE and MdAPE
error metrics were used for validation. A comparison of
COVID-19 case count data sources found that the differences
in reported case counts between The New York Times, Johns
Hopkins University, and USAFacts do not indicate inferior or
superior sources [49].

Results

Overview
Comparing all forecast methods’ MdAE values across the
county, health district, and state levels over the first 46 days of
infection revealed that MA forecasts using 3-day look-back and
1-day forecast length achieved the lowest MdAE. This MA
forecast combination was statistically significantly different in
MdAE  from 39 of the 59 other combinations at the county level
(66 %),  53 of 59 (90%) at the health district level, and 51 of
59 (86%) at the state level. This result shows that the use of an
equally weighted linear dependency with a stationary mean
between the prior 3-day COVID-19 cumulative case counts,

within the MA forecasts, is an effective assumption when
forecasting next-day case growths for Virginia at the county,
health district, and state levels. Table 1 provides the method
with the lowest MdAE and the percentage of other methods
from which the difference is determined to be statistically
significant at the county level. Table 2 provides this information
at the health district level and Table 3 provides this information
at the state level.

For the methods using single-day look-back across all levels,
the growth rate and naïve methods provided the lowest MdAE
at the county, health district, and state levels for all forecast
lengths. In general, all five methods achieved similar error
confidence intervals when utilizing 1-day look-back. Only at
the health district and state levels for 1-day forecast lengths was
the growth rate method’s difference from the other methods
statistically significant, with the growth rate method performing
better than all combinations at the state level.

For the methods using 7-day look-backs across all levels, the
MA and AR methods were the only ones with MdAE instances
that were statistically significantly lower than the other methods.
The HW and ARIMA methods achieved the lowest MdAE in
two instances but did not perform significantly better than the
other methods in either instance. In no instance did the ARMA
method obtain the lowest MdAE. The performance of the MA
and AR methods supports the assumption of linear dependence
between the 7-day prior days’cases and the forecast case counts.
However, for the MA method the mean weighting of past values
was stationary, while for the AR method it was nonstationary.

For the methods using look-backs of all prior-day case counts
across all levels, the MA method achieved the lowest MdAE
in all cases. This provides evidence in support of forecasting
cumulative case counts using the assumption of a linear
dependency and stationary mean among past values to forecast
1, 3, and 7 days when incorporating all prior cumulative cases.
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Table 1. County-level median absolute error (MdAE) outcomes by forecasting method, look-back length, and forecast length.

Statistically significantly
lower MdAE than other

methodsc, n (%)

P valuebMedian (95% CI)
(cumulative cases)

Forecasting
method with
lowest MdAE

dfaLook-ahead length
(days), n

Look-back length
(days), n

Methods

39 (66)<.0010.67 (0.49-0.84)MA (3, 1)d59AllAllAll (N=60)

0 (0).090.67 (0.43-0.90)Naïve411G1e (n=5)

0 (0).661.30 (0.88-1.73)Naïve431G1 (n=5)

0 (0).502.43 (1.69-3.18)Naïve471G1 (n=5)

0 (0).090.67 (0.49-0.84)MA413G2f (n=5)

4 (100)g<.0010.76 (0.59-0.94)MA433G2 (n=5)

3 (75)<.0011.69 (1.36-2.01)MA473G2 (n=5)

0 (0).030.91 (0.63-1.18)HW417G2 (n=5)

1 (25).0021.30 (0.95-1.65)MA437G2 (n=5)

0 (0).012.32 (1.75-2.90)MA477G2 (n=5)

0 (0).330.70 (0.53-0.87)MA41All priorG2 (n=5)

4 (100)g<.0010.83 (0.67-1.00)MA43All priorG2 (n=5)

1 (25)<.0011.73 (1.36-2.10)MA47All priorG2 (n=5)

aDegrees of freedom represent the number of forecasting combinations minus one.
bP values were calculated for statistically significant differences in medians across groups.
cThis was based on comparisons of notch ranges. MdAE was interpreted within geographic levels.
dMA: moving average; (3, 1) represents a 3-day look-back and a single-day forecast length.
eG1 includes naïve, MA, autoregressive (AR), growth rate, and Holt-Winters (HW) methods.
fG2 includes MA, AR, growth rate, HW, autoregressive moving average, and autoregressive integrated moving average methods.
gMA (3, 3) and MA (all prior, 3) achieved statistically significantly smaller MdAE than all four alternatives.
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Table 2. Health district–level median absolute error (MdAE) outcomes by forecasting method, look-back length, and forecast length.

Statistically significantly
lower MdAE than other

methodsc, n (%)

P valuebMedian (95% CI)
(cumulative cases)

Forecasting
method with
lowest MdAE

dfaLook-ahead length
(days), n

Look-back length
(days), n

Methods

53 (90)<.0013.07 (2.41-3.74)MA (3, 1)d59AllAllAll (N=60)

1 (25).314.03 (3.01-5.04)Growth rate411G1e (n=5)

0 (0).938.96 (6.56-11.36)Growth rate431G1 (n=5)

0 (0).9616.48 (11.67-21.28)Growth rate471G1 (n=5)

1 (25).013.07 (2.41-3.74)MA413G2f (n=5)

4 (100)g<.0013.20 (2.50-3.90)MA433G2 (n=5)

1 (25)<.0017.88 (5.71-10.05)MA473G2 (n=5)

0 (0).013.57 (2.67-4.47)AR417G2 (n=5)

2 (50)<.0015.52 (3.96-7.08)MA437G2 (n=5)

1 (25)<.00111.83 (8.16-15.49)AR477G2 (n=5)

1 (25).043.14 (2.47-3.80)MA41All priorG2 (n=5)

3 (75)<.0013.16 (2.54-3.78)MA43All priorG2 (n=5)

3 (75)<.0017.68 (6.22-9.14)MA47All priorG2 (n=5)

aDegrees of freedom represent the number of forecasting combinations minus one.
bP values were calculated for statistically significant differences in medians across groups.
cThis was based on comparisons of notch ranges. MdAE was interpreted within geographic levels.
dMA: moving average; (3, 1) represents a 3-day look-back and a single-day forecast length.
eG1 includes naïve, MA, autoregressive (AR), growth rate, and Holt-Winters (HW) methods.
fG2 includes MA, AR, growth rate, HW, autoregressive moving average, and autoregressive integrated moving average methods.
gMA (3, 3) achieved statistically significantly smaller MdAE than all four alternatives.
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Table 3. State-level median absolute error (MdAE) outcomes by forecasting method, look-back length, and forecast length.

Statistically significantly
lower MdAE than other

methodsc, n (%)

P valuebMedian (95% CI)
(cumulative cases)

Forecasting
method with low-
est MdAE

dfaLook-ahead length
(days), n

Look-back length
(days), n

Methods

51 (86)<.00117.43 (7.74-27.11)MA (3, 1)d59AllAllAll (N=60)

4 (100)f<.00131.50 (6.11-56.89)Growth rate411G1e (n=5)

0 (0).94317.50 (163.15-
471.85)

Growth rate431G1 (n=5)

0 (0).18325.00 (169.49-
480.51)

Growth rate471G1 (n=5)

4 (100)f<.00117.43 (7.74-27.11)MA413G2g (n=5)

1 (25)<.00164.94 (45.93-83.96)MA433G2 (n=5)

1 (25).03206.57 (148.57-
264.94)

MA473G2 (n=5)

1 (25).0969.37 (34.23-
104.51)

AR417G2 (n=5)

2 (50).0282.14 (42.83-
121.47)

MA437G2 (n=5)

0 (0).012312.36 (146.54-
478.17)

ARIMA477G2 (n=5)

0 (0).2725.13 (11.61-38.65)MA41All priorG2 (n=5)

2 (50).00232.67 (21.20-44.14)MA43All priorG2 (n=5)

2 (50).09104.85 (70.67-
139.03)

MA47All priorG2 (n=5)

aDegrees of freedom represent the number of forecasting combinations minus one.
bP values were calculated for statistically significant differences in medians across groups.
cThis was based on comparisons of notch ranges. MdAE was interpreted within geographic levels.
dMA: moving average; (3, 1) represents a 3-day look-back and a single-day forecast length.
eG1 includes naïve, MA, autoregressive (AR), growth rate, and Holt-Winters (HW) methods.
fGrowth rate (1, 1) and MA (3, 1) achieved statistically significantly smaller MdAE than all four alternatives.
gG2 includes MA, AR, growth rate, HW, autoregressive moving average, and autoregressive integrated moving average (ARIMA) methods.

County-Level MdAE Results
At the county level, the MA method always achieved a lower
MdAE than the ARMA method. Similarly, the ARMA method
always achieved a lower MdAE than the ARIMA method. Thus,
the ARIMA method’s aggregated error was greater than the
ARMA method’s aggregated error, which was greater than the
MA method’s aggregated error. This indicates that the
assumption of a stationary mean (ie, MA) in prior case counts
is more effective than the assumption of a weakly stationary
mean (ie, ARMA), which is more effective than a nonstationary

mean (ie, ARIMA) when forecasting at the county level. The
ARIMA method had the widest confidence interval for the
median error range, indicating the least consistency in
COVID-19 forecasts among these methods. Figure 2 provides
the county-level MdAE outcomes for each look-back and
forecast length combination. The individual results of each of
the 60 forecasting combinations at the county level are provided
in Multimedia Appendix 1, including median values, confidence
intervals, whiskers, sample sizes, and P values. An interactive
version of Figure 2 is provided in Multimedia Appendix 2.
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Figure 2. County-level forecasts’ aggregated median MdAE values and 95% CI. CI ranges are calculated using box plot notch ranges around the
median. Statistically significant differences at a P value of .01 are identified by nonoverlapping CI ranges of forecasting methods at each combination
of forecast length and look-back length. Units are in terms of COVID-19 cumulative case counts. Y-axis scales differ on each row based on the scale
of the contained data. Due to differing assumptions, five of the seven forecasting methods are present for each look-back length as indicated on the
x-axis. AR: autoregressive; ARIMA: autoregressive integrated moving average; ARMA: autoregressive moving average; HW: Holt-Winters; MA:
moving average; MdAE: median absolute error.

Health District–Level MdAE Results
At the health district level, the MA method always achieved
lower MdAE than the ARMA method, which achieved lower
MdAE than the ARIMA method. This further provided evidence
that effective forecasting of cumulative COVID-19 case counts
contains an assumption of stationary means in past observations.
For 3-day look-back lengths with 3-day forecasts, the MA

method achieved statistically significantly lower MdAE than
all other methods. Figure 3 provides the MdAE at the
intersection of look-back length and forecast length at the health
district level. The individual results of each of the 60 forecasting
combinations at the health district level are provided in
Multimedia Appendix 3, including median values, confidence
intervals, whiskers, sample sizes, and P values. An interactive
version of Figure 3 is provided in Multimedia Appendix 4.
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Figure 3. Health district–level forecasts’ aggregated median MdAE values and 95% CI. CI ranges are calculated using box plot notch ranges around
the median. Statistically significant differences at a P value of .01 are identified by nonoverlapping CI ranges of forecasting methods at each combination
of forecast length and look-back length. Units are in terms of COVID-19 cumulative case counts. Y-axis scales differ on each row based on the scale
of the contained data. Due to differing assumptions, five of the seven forecasting methods are present for each look-back length as indicated on the
x-axis. AR: autoregressive; ARIMA: autoregressive integrated moving average; ARMA: autoregressive moving average; HW: Holt-Winters; MA:
moving average; MdAE: median absolute error.

State-Level MdAE Results
At the state level, the growth rate method was the most effective
method. In every case, it either (1) attained the lowest MdAE
value compared to the other methods or (2) had the smallest
notch range. The ARMA and ARIMA methods both maintained
MdAE notch bands that were similar to the other methods when
utilizing all prior day and 7-day look-back lengths. However,
the HW method’s MdAE notch bands increased as that of the
ARMA and ARIMA methods decreased. These results make it

unclear as to which of the assumptions related to stationary
means were most effective for forecasting with the ARMA and
ARIMA methods at the state level. Figure 4 provides MdAE
values at the intersection of look-back length and forecast length
at the state level. The individual results of each of the 60
forecasting combinations at the state level are provided in
Multimedia Appendix 5, including median values, confidence
intervals, whiskers, sample sizes, and P values. An interactive
version of Figure 4 is provided in Multimedia Appendix 6.
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Figure 4. State-level forecasts’ aggregated median MdAE values and 95% CI. CI ranges are calculated using box plot notch ranges around the median.
Statistically significant differences at a P value of .01 are identified by nonoverlapping CI ranges of forecasting methods at each combination of forecast
length and look-back length. Units are in terms of COVID-19 cumulative case counts. Y-axis scales differ on each row based on the scale of the contained
data. Due to differing assumptions, five of the seven forecasting methods are present for each look-back length as indicated on the x-axis. AR:
autoregressive; ARIMA: autoregressive integrated moving average; ARMA: autoregressive moving average; HW: Holt-Winters; MA: moving average;
MdAE: median absolute error.

Cross-Geographic-Level MdAPE Results
MdAE reflects the scale of the data and is not appropriate for
making inferences about changes in confirmed case counts
between county, health district, and state levels [26,44]. Figures
2-4 convey differing scales of error values across the three
levels. As a result, it was not possible to evaluate results featured
in these figures against each other. To remedy this shortcoming,
we applied MdAPE to identify statistically significant

differences for each forecasting method individually when
applied to county, health district, and state levels as provided
in Figure 5. The individual results of each of the 60 forecasting
combinations at the county, health district, and state levels are
provided in Multimedia Appendices 7-9, including median
values, confidence intervals, whiskers, sample sizes, and P
values. An interactive version of Figure 5 is provided in
Multimedia Appendix 10.
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Figure 5. Aggregated median MdAPE values and 95% CI ranges at the county, health district (HD), and state levels differentiated by forecasting
method. Comparing CI ranges for a forecast method across each geographic level reveals statistically significant differences in median values for the
forecasting method due to geographic scale. Nonoverlapping CI ranges indicate statistically significant differences at a P value of .01. MdAPE provides
a comparison within each forecast method separately, not a comparison across different methods. AR: autoregressive; ARIMA: autoregressive integrated
moving average; ARMA: autoregressive moving average; HW: Holt-Winters; MA: moving average; MdAPE: median absolute percentage error.

Statistically significant differences were observable within a
forecasting method across the county, health district, and state
levels during the initial 46 days of confirmed COVID-19 case
spread within Virginia. The growth rate method was the only
one whose performance did not statistically significantly differ
across levels; thereby, it was the only method unaffected by
geographic level. The naïve method achieved a statistically
significantly lower MdAPE at the county level than at the health
district and state levels. The MA, HW, AR, ARMA, and ARIMA
methods all contained instances of achieving statistically
significantly lower MdAPE scores at the county and/or state
levels than at the health district level.

Discussion

Principal Findings
Our results show the effectiveness of seven forecasting methods
for the first 46 days of virus spread within Virginia at the county,
health district, and state levels. In addition, a daily view of the
growth rate forecast at the county level from March 7, 2020, to
the present is publicly available online [50]. Tracking case and
death counts yield insight into the virus’s impact on a geographic
region at a given point in time. Forecasts utilize the trends and
averages of prior case count observations to provide expectations

of case counts into the future. These forecasts keep the public
informed on the state of the virus across the world and on virus
levels within their own geographic areas of interest.
Additionally, forecasts inform public policy for combatting the
spread of the virus, supporting public health, and helping to
anticipate the impacts of medical burdens across regions [51].
However, interpreting forecast outcomes requires understanding
the assumptions behind the forecasting method as well as the
assumptions pertaining to the geographic area and the presence
of intervention strategies. Therefore, we compared the error
levels pertaining to 60 forecasting combinations using the MA,
AR, naïve, growth rate, HW, ARMA, and ARIMA forecasting
methods. Our findings support public health with respect to
forecasting by reinforcing health statistics and statistical literacy
of forecasted COVID-19 outcomes.

COVID-19 cumulative case growth is such that the growth
curve is exponential in the absence of preventative measures.
The larger error observed in HW forecasts over MA forecasts
provides support that an exponential model is not the best fit at
the start of the virus spread for Virginia. The preventative
measures taken by the population appear to have shifted the
virus’s growth behavior from exponential to linear. This finding
is also supported by Lammers et al [21]. This finding supports
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the idea that population interventions are effective at impacting
the spread of the virus. However, as the virus continues to spread
and reoccur, the inability to manufacture a vaccine for
COVID-19 quickly enough to immunize the population remains
a concern [52]. As such, combining short-range forecasts at the
county and health district levels with targeted intervention
strategies can improve planning, support, and response time.
The use of rigorous government interventions may slow the rate
of infections, but early detection, isolation, treatment, and
adequate medical supplies are required for continued
intervention against the virus [53,54].

Our cross-geographic validation checks using MdAPE indicate
that the level of geographic resolution should be considered
when creating forecasts of expected case counts. A forecast
utilized at the state level is not likely to be as useful for
determining expected growth when disaggregated across its
counties during early virus onset. This results from the differing
geographic assumptions present within counties or health
districts when compared to the state. This finding is consistent
with the literature reporting that case growths vary across
countries and across states [14]. Variations result from factors
such as population behaviors in response to the pandemic,
implemented policy interventions, and population densities
[7,9,10,15]. Furthermore, since the growth rate method did not
produce statistically significant MdAPE differences across
geographic levels, it may be a good choice for decision makers
whose region does not match the county, health district, or state
levels.

To identify a best option among our tested combinations, we
compared MdAE ranges against each other within each
geographic tier. The MA method using a 3-day look-back length
and a single-day forecast length provided the smallest error (ie,
lowest MdAE) at the county level (median 0.67, 95% CI
0.49-0.84; P<.001), the health district level (median 3.07, 95%
CI 2.41-3.74; P<.001), and the state level (median 17.43, 95%
CI 7.74-27.11; P<.001). Compared to the other forecasting
combinations, the MA method’s confidence intervals statistically
significantly differed from 39 out of 59 alternatives (66%;
county level) to 51 out of 59 alternatives (86%; state level) to
53 out of 59 alternatives (90%; health district level) at a P value
level of .01. When relying on only the prior day’s case counts,
the growth rate method stood out as the best option at the health
district and state levels; however, the naïve, growth rate, HW,
MA, and AR methods performed similarly well at the county
level.

When utilizing 3 or more days of prior observations, a diverse
range of options is available. For next-day forecasts, there was
no method that performed better at a level that was statistically
significant among the five options. For 3-day forecasts, the MA
method was statistically significantly better than 25% to 100%
of the other four options in all cases. For 7-day forecasts, the
MA method performed statistically significantly better than
25% to 75% of the other four options when using a 3-day
look-back or an all prior–day look-back. When using a 7-day
look-back, the AR method performed the best and its difference
from the ARIMA method was statistically significant. The
ARMA and ARIMA methods achieved the lowest error in any
of the combinations.

These findings support the assumption of stationarity within
the mean of the prior days’ cumulative case counts. This is
reflected in how well the MA method performed and how poorly
the ARIMA method performed at forecasting cumulative case
counts. Rarely do the ARIMA or ARMA methods achieve lower
error values than any other combination. This reflects the idea
that the assumption of stationary means of past observations is
a more effective representation of cumulative COVID-19 growth
than assumptions of weak stationarity or nonstationarity. The
need to apply a differencing step to remove nonstationarity
using the ARIMA method is not present within the data during
this period. Additionally, placing extra weight on the recent
past does not improve forecasting during this period, as the HW
and AR methods were consistently less effective than the MA
method. These findings suggest that the ARIMA and ARMA
methods are unlikely to be good fits and should not be used to
forecast case counts during early onset within areas that have
only a few weeks of historical data collected, whose residents
are aware of the existence of the virus and are engaging in
preventative behaviors, and that contain similar population
densities to Virginia.

Several studies utilized forecasts to estimate case fatality and
recovery ratios, epidemiological parameters, and transmission
dynamics based on data from the start of the outbreak [55,56].
Studies also support the idea that epidemiological differences
contribute to variations in the severity of the contracted disease
[2,57]. Based on historical similarities to previous influenza
strains, social distancing can potentially reduce transmission of
the virus; however, the effectiveness may vary alongside
changes in seasonal factors in travel as well as between tropical
and temperate climates [58,59]. Distancing may be especially
beneficial in rural areas, where fewer hospitals and health care
facilities exist, by emphasizing strategies oriented toward
specific population age groups [60].

The results of this study can be expanded to include areas’
demographic characteristics, geographic characteristics, and
preventative measures to strive for more accurate forecast
models. A recent study found COVID-19 growth to strongly
correlate with population density, percent of the population
living in rural areas, and yearly flu vaccination rate [14].
Exploring forecast behaviors of areas sharing these traits may
further reduce forecasting error and reveal subgroupings of
viable forecasting method options. Additionally, forecasting
models can be paired with mortality models [61] to gain better
estimates of infection forecasts per demographic characteristics.
Predictive methods derived from search engines’ data [62] can
also be incorporated within forecasting methods. This would
provide a way to connect forecasts with human search behaviors
based on the frequency of searched terms identified in relation
to COVID-19 prevention and recovery. Forecasting models can
be paired with models of local medical burden and pandemic
preparedness [51] for more detailed representations of expected
medical strains and greater flexibility in testing preventative
measures.

Stay-at-home orders have been successful as intervention
strategies to slow the spread of the virus. However, the impact
caused by a neighboring area’s removal of mobility restrictions
needs greater exploration [10]. The secondary effects of the
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starting or ending of proximity-based prevention methods on
neighboring areas can help assess the potential impact of a
mitigation strategy. For identified hot spots, the Centers for
Disease Control and Prevention provides outreach to local
officials and helps in identifying adapted interventions for the
local area [7]. Rapid identification and timeliness of response
are critical, especially if the impact of interventions can take up
to 3 weeks to be effective [15]. Reliable forecasting can aid in
the identification of emerging hot spots and support timely
response. To this end, increased knowledge of forecasting
characteristics based on geographic level, demographic
characteristics, population density characteristics, and population
behaviors can help reveal the primary drivers of upcoming cases.
This knowledge can be leveraged to inform early, targeted
interventions or to provide risk updates to targeted populations
within an area. People could then modify their mobility and
social decisions themselves in a timely manner separate from
population mandated measures.

Limitations
Here we discuss internal and external validity threats as well as
other limitations that affected our work. Internal validity threats
arise when factors affect the dependent variables without the
researchers’knowledge. It is possible that some implementation
flaws could have affected our modeling results or the ensuing
data analysis. However, the algorithms in our source code were
(1) built on established libraries, (2) passed several internal code
reviews, and (3) are publicly accessible, along with the data and
results. Threats to external validity occur when the results of
our analysis and our simulation cannot be generalized. Our
results are limited to Virginia, from March to April 2020 with
respect to COVID-19 cases reported by The New York Times.
Our results are not immediately generalizable to (1) different
infectious diseases, (2) other COVID-19 data sets, (3) different
periods of time, or (4) different geographic areas.

Several other assumptions and limitations pertain to this study.
Seven forecasting methods with differing baseline assumptions
were evaluated with respect to how well they forecast the early
growth of COVID-19 cases within Virginia; however, numerous
additional forecasting methods exist with different combinations
of assumptions that can also be explored with respect to this
pandemic. Conclusions should not be drawn about the
effectiveness of these findings for forecast lengths greater than
7 days, as the appropriateness of underlying assumptions, such
as stationarity of prior days’ values, would need to be
re-evaluated. Larger median error values of the 7-day forecasts,
versus their 1- and 3-day counterparts, were observable, further
supporting the need for evaluation of forecast assumptions
pertaining to the characteristics of COVID-19 beyond 7-day
forecast lengths. The selected forecasting methods assumed that
policies and population behaviors remained unchanged during
the forecast periods; therefore, the forecasts do not account for
future starts or ends of policies, such as stay-at-home orders or
return-to-work dates.

Finally, our results do not reflect how the spread of the virus
would occur for locations experiencing first contact with the
virus without yet having public awareness of the existence of
the virus. These findings are applicable under the assumption
that the general population was already aware of the presence
of COVID-19. At the starting point of Virginia cases, the local
population was already aware that cases had reached the United
States, the virus had been classified as a pandemic, and the virus
was receiving major media attention. Additionally, the governor
had issued an executive order declaring a state of emergency
due to COVID-19 on March 12, 2020 [10,63]. This provided
47 days for Virginians to prepare and modify their standard
movement and interaction behaviors as they deemed necessary
for their own safety. As a result, these results were not captured
in the same context as the period of time when areas within the
United States were first impacted by the virus (ie, areas of
Washington, California, and New York).
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