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Abstract

Artificial intelligence (AI) technologies can play a key role in preventing, detecting, and monitoring epidemics. In this paper, we
provide an overview of the recently published literature on the COVID-19 pandemic in four strategic areas: (1) triage, diagnosis,
and risk prediction; (2) drug repurposing and development; (3) pharmacogenomics and vaccines; and (4) mining of the medical
literature. We highlight how AI-powered health care can enable public health systems to efficiently handle future outbreaks and
improve patient outcomes.
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Introduction

The ongoing COVID-19 pandemic has highlighted the fragility
of the health care system during unexpected events, testing the
endurance of even the top-performing ones [1]. As noted by
several scholars, embracing artificial intelligence (AI) for health
care optimization and outcome improvement is not an option
anymore [2]. Concerning the ongoing COVID-19 pandemic,
several studies have highlighted that the timely inclusion of
AI-powered technologies would have accelerated the
identification of and effective response to COVID-19 outbreaks

worldwide. An example is the widely reported algorithm from
the Canadian company BlueDot, based on natural language
processing (NLP) and machine learning, which forecasted the
emerging risk of a virus spread in Hubei province in late
December 2019, by screening news reports and airline ticketing
[3].

Awareness of the benefits of employing AI to support and
manage the COVID-19 crisis and its aftermath is increasing,
particularly in the medical and research community. Notable
examples of early AI-powered contributions include the
discovery of relevant SARS-CoV-2 target proteins by
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DeepMind’s AlphaFold [4] and the design by Infervision of a
computer vision algorithm for the detection of coronavirus
pneumonia based on lung images [5].

Benefits do, however, come with technical challenges and
related risks that still need to be properly assessed. For example,
the absence of transparency and interpretability in AI models
obscures the fact that the efficacy of these technologies is not
equal across population groups. COVID-19 incidence and
outcomes vary according to a large number of individual factors,
including age, sex, ethnicity, health status, drug utilization, and
others [6]. Sensitizing AI technologies to the diversity of the
patient population and ensuring data security [7] is imperative
to avoid biased decisions [8-10]. Therefore, a crucial step to
obtain robust, trustworthy, and intelligible applications that
account for demographic equity is to assess potential biases in
the resources used to train AI models for precision medicine
[11].

As of today, AI systems are, regrettably, rarely endowed with
robustness to class imbalances, such as sex and gender groups
[12]. In this regard, sex differences in COVID-19 cases, as well
as sex-specific risk factors and socioeconomic burden, have
been recently highlighted in a case study by the European
Commission [13]. Dataset multidimensionality that can fairly
represent the population constitutes one of the main challenges
for biobanking and cohort design efforts that collect different
axes of health data [14]. In this regard, fair and broad data
collection systems are of primary importance. Two essential
international references for COVID-19 genomic and medical
data are the EMBL-EBI COVID-19 Data Portal [15] and the
NIH National COVID Cohort Collaborative (N3C) [16]. The
COVID-19 Host Genetics Initiative [17] is an international
collaborative undertaking to share resources to investigate the
genetic determinants of COVID-19 susceptibility, severity, and
outcomes [18]. The Coronavirus Pandemic Epidemiology
(COPE) consortium aims to involve experts in the development
of a personalized COVID-19 Symptom Tracker mobile app that
works as a real-time data capture platform [6], which garnered
over 2.8 million users in a few days. Moreover, COVID-19
sex-disaggregated data are collected by Global Health 50/50
[19], an initiative housed at University College London,
advocating for gender equity.

Other ethical concerns include life-or-death decisions through
risk prediction models, which may help optimize resource
allocation in times of scarcity. The application of nonoptimal
models may incur the risk of worsening biases and exacerbating
disparities for people with serious illnesses and different
treatment priorities, potentially causing the reduction in the use
of services rather than achieving the best patient care [20].
Nevertheless, the power of prediction models is impressive, and
it may play a key role in the future if properly exploited. For
instance, a study from Cambridge University [21] shows how
the use of secure AI operating on anonymized COVID-19 data
can accurately predict the patient journey, allowing an optimal
allocation of resources and enabling well-informed and
personalized health care decision-making. This is a particularly
important point, especially considering the difficulty in
managing the increasing need for intensive care units (ICUs)
during the COVID-19 pandemic peak [22,23].

The way the AI systems will be exploited is probably the most
delicate topic in this adoption process, particularly if we refer
to the decisional independence of the medical staff. As humans,
in fact, clinicians are also affected by numerous cognitive biases,
including the confirmation bias, which may lead them to give
excessive importance to the evidence supporting automated
prediction (eg, risk prediction, diagnosis, and treatment
suggestion) and ignore evidence that refutes it [8,24].

Despite the abovementioned concerns, there are numerous
success stories in the adoption of risk prediction models. For
example, Duke University adopted a system called Sepsis Watch
that identifies in advance the inflammation leading to
sepsis—one of the leading causes of hospital deaths. Within
two years from the tool introduction, the number of
sepsis-induced patients drastically decreased [25], thanks to
three key elements: (1) adaptation of the predictive model to a
highly specific context; (2) scalability through integration with
hospital workflows; and (3) the adopted user experience–based
approach, which places clinicians and health care professionals
at the center of the software development process, adhering
with the human-in-the-loop paradigm [26,27].

The COVID-19 crisis is accelerating anticipated changes
towards a stronger collaboration between computer science and
medicine. In particular, the crisis has exposed the need for
increased scrutiny of the relationship between AI and patients
as well as health care personnel under the lens of human and
emotional needs, as demonstrated by the surge of mental health
consequences of the pandemic [28] and the growing
development of AI-based mental health apps and related digital
tools [29]. Such aspects, together with others related to general
data access and the use of AI for disease outcome prediction,
are fueling the current debate about the convergence of AI and
medicine [30,31] and the actionable realization of AI-powered
innovations to bridge the gap between technological research
and medical practice, including applications in medical triage
and advice, diagnostics and risk-adjusted paneling, population
health management, and digital devices integration [32].
Concerning this aspect, it is important to mention the recent
publication of guidelines for the rigorous and transparent
adoption of AI in the clinical practice: CONSORT-AI
(Consolidated Standards of Reporting Trials–Artificial
Intelligence) [33] and SPIRIT-AI (Standard Protocol Items:
Recommendations for Interventional Trials–Artificial
Intelligence) [34].

Translating patient data to successful therapies is the major
objective of implementing AI for health [35], especially in times
of a pandemic crisis, with the ultimate goal of achieving a
successful bench-to-bedside model for better clinical
decision-making [36,37]. In this work, we review some major
examples of what AI has achieved during the COVID-19
pandemic and the challenges that this technology and the
medical community are currently facing in four main strategic
areas of research and development (Figure 1): (1) triage,
diagnosis, and risk prediction; (2) drug repurposing and
development; (3) pharmacogenomics and vaccines; (4) mining
of the medical literature.
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Figure 1. Main strategic areas of research and development for the realization of artificial intelligence (AI) to fight COVID-19: (1) triage, diagnosis,
and risk prediction; (2) drug repurposing and development; (3) pharmacogenomics and vaccines; and (4) mining of the medical literature. The text
within the four panels enlists the advantages and actionable solutions exhibited by the AI-aided precision medicine approaches surveyed in this work.

Triage, Diagnosis, and Risk Prediction

AI has been applied to determine treatment priorities in patients
with COVID-19 or triage and to better allocate limited resources.
A group of researchers at the General Hospital of the People’s
Liberation Army (PLAGH), Beijing, China, has developed an
online triage tool model [38] to manage suspected COVID-19
pneumonia in adult patients with fever [39]. Using clinical
symptoms, routine laboratory tests, and other clinical
information available at admission (eg, clinical features), they
trained a model based on logistic regression with the least
absolute shrinkage and selection operator (LASSO), obtaining
an area under the receiver operating characteristic curve
(AUROC) of 0.841 (100% sensitivity and 72.7% specificity).
Based on data from two hospitals in Wenzhou, Zhejiang, China,
another study group recently used an entropy-based feature
selection approach: they modeled combinations of clinical
features that could identify initial presentation patients who are
at a higher risk of developing severe illness, with an accuracy
of 80% [40]. Their results show that mildly elevated alanine
aminotransferase levels, the presence of myalgias (body aches),
and an elevated hemoglobin level (red blood cells), in this order,
are predictive of the later development of acute respiratory
distress syndrome.

A thorough study on risk prediction was carried out at the
University of Cambridge based on the development of a proof
of concept system to model the full patient journey through risk
prediction models [21]. By identifying the risk of mortality and
ICU/ventilator need, the system aims at enabling doctors to
answer questions such as: Which patients are most likely to
need ventilators within a week? How many free ICU beds in
the hospital are we likely to have in a week from now? Which

of two patients will get more benefits from going on a ventilator
today? The predictive models showed accuracies ranging from
77% for ventilator need to 83% for ICU admission and 87% for
mortality.

Risk prediction models are not new to the AI-aided health care
approach. They have already been successfully utilized for tasks
such as predicting the risk of developing cancer [41,42] and
identifying which patients are likely to benefit from heart-related
procedures [43]. However, the COVID-19 crisis has accelerated
the utilization of such models. In a recent study, Wynants and
collaborators [44] screened 14,217 published titles about the
pandemic from PubMed and Embase (Ovid, arXiv, medRxiv,
and bioRxiv), finding over 107 studies describing 145 prediction
models. Among them, 4 models aimed to identify people at risk
and 50, to predict the mortality risk, progression to severe
disease, ICU admission, ventilation, intubation, or length of
hospital stay. These models not only provide interesting results
but also inform about the most valuable predictors, such as age,
body temperature, lymphocyte count, and lung imaging features.
Despite this, these models cannot be directly applied in the
clinical setting without further validation, in order to guarantee
data and experiment transparency and robustness, together with
decision interpretability and model generalizability.

The remaining 91 models from this study were dedicated to the
diagnosis of COVID-19, 60 of which exploited medical imaging.
This number clearly shows that diagnosis is another important
field for the application of AI techniques [45], with digital
pathology exhibiting high effectiveness. In particular,
convolutional neural networks (CNNs) have been supporting
radiologists in their expert decisions [46]. In a recent study, a
CNN was trained to automatically learn patterns related to
COVID-19 (ie, ground-glass opacities, multifocal patchy
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consolidation, and/or interstitial changes with a predominantly
peripheral distribution), achieving an AUROC of 0.996 (98.2%
sensitivity and 92.2% specificity) and outperforming the
reverse-transcription polymerase chain reaction, which also
suffers from a significant time lag. In addition to accuracy, these
approaches put the speed of the diagnosis on the table: CNNs
can analyze up to 500 images in a few seconds, whereas
radiologists would need hours to complete the same task.

Although chest computed tomography (CT) scans represent a
commonly exploited source of information to train AI to rule
out SARS-CoV-2 infection, the rapid detection of patients with
COVID-19 can greatly benefit from learning approaches that
utilize heterogeneous types of data. In this regard, it is crucial
to consider the importance of training CNNs in a correct gender
balance in medical imaging datasets to avoid producing distorted
classifications for assisted diagnosis [12]. Moreover, it is crucial
to rely on high-quality benchmarking and robust validation
strategies to assess the generalization of the model to other
datasets and populations [47,48].

Indeed, AI can exploit multidimensional data, including the
series of epidemiological, clinical, biological, and radiological
criteria defined by the World Health Organization [49]. In a
collaboration between researchers at hospitals in China and in
the USA, CNN and other machine learning methods (eg, support
vector machine, random forest, and neural networks) have been
used to model and integrate CT scans and clinical information
for diagnostic purposes [45]. The joint model that uses both
information sources achieved a 0.92 AUROC (84.3% sensitivity
and 82.8% specificity), outperforming the individual models.
Moreover, the models allowed the identification of age, viral
exposure, fever, cough, cough with sputum, and white blood
cell counts as the main features associated with SARS-CoV-2
infection status.

Recently, the National Institute of Biomedical Imaging and
Bioengineering has launched the Medical Imaging and Data
Resource Center with the goal of coupling AI and medical
imaging for COVID-19 early detection and personalized
therapies [50].

AI has also been utilized to identify patients at higher risk of
mortality. Researchers at the Tongji Hospital, Wuhan, China,
have screened electronic health records of 375 discharged
patients to use clinical measurements as features and have
trained a gradient-boosted decision tree model to predict
mortality risk [51]. The accuracy of the system was 93%. Its
utilization would make it possible for physicians to immediately
identify critical cases and act accordingly. The model was also
able to detect three key clinical features, that is, lactic
dehydrogenase, lymphocyte count, and high-sensitivity
C-reactive protein.

Drug Repurposing and Development

Although triage, diagnosis, and risk prediction are three of the
most relevant tasks that AI has helped with during the peaks of
the pandemic, other objectives are currently being addressed
for long-term solutions. Among them are target selection for

drug repurposing [52] and approaches for drug development,
including de novo drug design [53].

Drug repurposing comprises identifying existing drugs that
could effectively act on proteins targeted by the virus. Recently,
332 high-confidence SARS-CoV-2 protein–human protein
interactions have been experimentally identified, as well as 69
ligands, comprising drugs approved by the US Food and Drug
Administration (FDA) and compounds in preclinical and clinical
trials, which specifically target these interactions [54].
Understanding which proteins and pathways in the host the
virus targets during infection is crucial for the development of
AI systems for drug repurposing.

For instance, algorithms modeling the interaction between drugs
and proteins have helped identify baricitinib, which was
previously used for the treatment of arthritis, as a useful drug
against COVID-19 [55]. This drug inhibits the proteins that
help the virus penetrate the host cell. Thanks to approaches that
exploit the computational identification of relations between
existing drugs and target molecules, research published by a
team of Korean and American scientists has allowed the
identification of FDA-approved antivirals that could potentially
target the key proteins for COVID-19 [56].

The molecular processes of virus-host interactions have been
recently reconstructed in an international effort coordinated by
domain experts, called the COVID-19 Disease Map project
[57]. The project aims to maintain an open-access resource for
continuous, curated integration of data and knowledge bases to
support computational analysis and disease modeling. It
represents a milestone of paramount importance for the
development of AI systems for SARS-CoV-2 and their
comparison with models of other coronaviruses. Moreover, by
providing information about the intermolecular wiring of
virus-host interactions, the project enables network-based AI
modeling for COVID-19 drug repurposing, which has recently
shown promising results by using network diffusion and network
proximity [58]. Moreover, deep neural networks largely
employed in NLP, such as the Transformer architecture, have
also been proposed for COVID-19 drug repurposing [56].

In the field of drug development, that is, the
pharmacotherapeutic course of a newly identified lead
compound, computational models have been proven extremely
successful in facilitating a quicker, cheaper, and more effective
development of new drugs [59]. For instance, AI can map
multidimensional characteristics of proteins to considerably
speed up the research process in comparison to traditional
methodologies such as x-ray crystallography. In this regard, AI
is crucial in optimizing drug discovery pipelines and improving
drug development outcomes, with estimated costs of US $2.6
billion [59].

Structural modeling and chemoinformatics methods for
COVID-19 (eg, docking-based binding conformation studies
of small molecules to target human or viral proteins) can greatly
benefit from AI solutions. For instance, AI-based approaches
have been used to infer structural similarities among molecules,
such as algorithms that can model the graphical structure of
chemical compounds through graph convolutional networks or
other approaches [60]. AI systems can also leverage knowledge
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about protein sequences to infer the activity of similar ones. As
previously mentioned, Google DeepMind has managed to
predict the structure of five proteins targeted by SARS-CoV-2,
namely SARS-CoV-2 membrane protein, Nsp2, Nsp4, Nsp6,
and papain-like proteinase (C-terminal domain) [4]. The deep
learning approach uses amino acid features from similar
sequences, based on multiple sequence alignment, to infer the
distribution of structural distances to predict the protein
structures [61].

Finally, AI can also be used to synthetically generate new
molecules, such as new chemical compounds. For instance, the
biotech company Insilico Medicine used reinforcement learning
to model small molecules and identify those that inhibit specific
infection pathways. The team created a generative chemistry
pipeline to design novel SARS-CoV-2 inhibitors to later be
synthesized and tested. The pipeline employs a large array of
generative models, including autoencoders, generative
adversarial networks, and genetic algorithms optimized with
reinforcement learning [53].

Pharmacogenomics and Vaccines

Pharmacogenomics, which is the study of the role of genomic
characteristics of an individual in drug response, represents a
key gateway to personalized medicine [62-64]. Although the
translation of genomic information into clinical practice is
recognized as one of the most challenging aspects of the future
of medicine [65], the information about the genetic makeup of
individual patients has the potential to guide clinical decision
support and to facilitate biomedical research in many different
areas. For instance, genomics can inform drug discovery by
providing simultaneous insights into the disease mechanisms
and potential targets for treating individual patients [66].

Pharmacogenomics approaches to COVID-19 are still in their
infancy. Indeed, although the SARS-CoV-2 genome was
published in draft on January 10, 2020 [67], and real-time
tracking of the pathogen evolution is now available [68], much
less genomic information is currently available about the host.
Several studies focus on genetic variations associated with
susceptibility to infection and clinical manifestations, including
human leukocyte antigen (HLA) variants in the UK Biobank
population-based cohort [69] and angiotensin-converting enzyme
2 (ACE2) variants in the Italian population [70]. Retrospective
and prospective studies focusing on COVID-19 disease
susceptibility and severity have been collected by the COVID-19
Host Genetics Initiative [17,18].

Despite the absence of direct evidence of pharmacogenomics
data in COVID-19 patients, the related literature for COVID-19
therapies, including hydroxychloroquine, ribavirin, and
baricitinib, has been recently surveyed [71]. Potential actionable
genetic markers have been reported, namely, several genetic
variants that can alter the pharmacokinetics of drugs that may
affect the response to COVID-19 treatments. Importantly, as
age, race, gender, and comorbidities have been associated with
COVID-19 risk [72], these factors are deemed warranted to
assess their role in the variation of treatment responses and need
further investigation.

Population genetics is also needed to better understand the
association between genetic variability and COVID-19. The
importance and complexity of population genetic information,
such as genome-wide association studies (GWAS), for drug
discovery are exemplified by a study showing that 8% of drugs
approved by the FDA target molecules with genetic support,
whereas only 2% of phase-1 drugs are genetically supported
[73]. Despite such low rates, GWAS can help identify
therapeutics that can be repurposed to treat individuals affected
by diseases that are mechanistically related to those for which
the drugs were developed [74]. Insights from GWAS can also
inform about better patient management and therapy, such as
the case of variants in six genes on chromosome 3, namely
SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and XCR1, which
have been recently associated with severe COVID-19 cases
with respiratory failure [75].

Understanding population genetic heterogeneity is crucial for
vaccine design, in particular, as it concerns the individual
variability of the major histocompatibility complex (MHC-I
and MHC-II) proteins, encoded by the HLA gene, which present
SARS-CoV-2 epitopes to the immune system. Such individual
variability, coupled with the importance of cellular immunity
in the severity of the response to the infection, makes the
identification of actionable targets for COVID-19 vaccines a
challenging endeavor. AI models for COVID-19 vaccine
development focus on the prediction of potential epitopes by
using a variety of techniques, such as deep docking [76], long
short-term memory networks [77], extreme gradient boosting
[78], as well as approaches that account for different HLA alleles
by combining several existing machine learning tools [79]. A
recent survey of AI-based approaches to COVID-19 vaccine
design [80] suggests that the most popular candidate is the
SARS-CoV-2 spike protein, which initiates the interaction with
the host through the attachment to the ACE2 receptor [81].

Mining of the Medical Literature

The staggering rate of publications about COVID-19, both in
the form of preprints and peer-reviewed articles, is posing
unprecedented challenges to knowledge acquisition and the
information quality assessment process. A large part of content
is produced by humans for humans, in the form of free text,
where crucial pieces of information end up being buried.
Because free text is not intelligible by machines, human
intervention must identify the relevant pieces of information
from the publications and turn it into a tabular form. Recent
developments in NLP techniques have helped the automation
of this process through machine learning and, in particular, deep
learning algorithms [82,83]. Symptoms, patient demographics,
clinical data, algorithms, performance, and limitations are
identifiable in the texts by properly trained models, which can
obtain comparable accuracy to humans at a much faster rate,
making it finally possible to monitor the enormous volume of
the literature produced [84]. The resulting structured data can
be exploited to enrich knowledge graphs (KGs) [85-87], which
provide a means to represent and formalize information [85,88],
analytical, relational, and inferential investigations and fill the
knowledge gaps in the community. Moreover, to rationalize the
immense quantity of information on COVID-19, new algorithms
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can generate low-dimensional representations of the KGs,
allowing researchers for clustering and classification [85,89].

We list here representative KG efforts that have been directed
at the fight against COVID-19 (see Textbox 1).

Textbox 1. Knowledge graph resources for COVID-19.

Project names and references:

• KG-Covid-19 Knowledge Graph Hub [90]

• COVID-19 Community Project [91]

• COVID-KG [92]

• CovidGraph [93]

• COVID-19 Miner [94]

• COVID-19 Biomedical Knowledge Miner [95]

• COVID-19 Taxila [96]

The KG-Covid-19 Knowledge Graph Hub project is the first
Knowledge Graph Hub (KG-Hub) [90] dedicated to COVID-19.
KG-Hub is a software to download and transform data to a
central location for building KGs from different combinations
of data sources. The Covid-19 KG-Hub downloads and
transforms data from more than 50 different COVID-19
databases of drugs, genes, proteins, ontologies, diseases,
phenotypes, and publications and generates a KG that can be
used for machine learning.

The COVID-19 Community Project [91] is a community-based
KG that links heterogeneous datasets about COVID-19, in three
main areas: the host, the virus, and the cellular environment.
These KGs use several publicly available datasets, such as the
CORD-19 dataset, a set of over 51,000 scholarly articles about
coronaviruses [97].

Other notable databases used in KGs are the COVID-19 Data
Portal (see Introduction) and The COVID-19 Drug and Gene
Set Library [98]. One of the tools that use these is the
COVID-KG [92], which embeds entities in the KG, such as
papers, authors, or journals [99].

CovidGraph [93] is a collaboration of researchers to build a
research and communication platform that encompasses over
40,000 publications, case statistics, genes and functions,
molecular data, and much more. The output is a KG in which
entity relationships can be found and new pieces of literature
can be discovered. Another tool that uses the CORD-19 dataset
is COVID-19 Miner [94], which provides access to a database
of interactions among genes or proteins, chemicals, and
biological processes related to SARS-CoV-2, which are
automatically extracted using NLP from the CORD-19 dataset
and manuscripts updated daily from the preprint servers
medRxiv and bioRxiv [100].

Furthermore, COVID-19 Biomedical Knowledge Miner [85,95]
is an intent to lay the foundation for a comprehensive and
interactive KG in the context of COVID-19 that connects the
causes and effects and enables users to completely explore the
information contained therein. Data are supplied from papers
available in PubMed and preprints available from platforms
such as bioRxiv, chemRxiv, medRxiv, PrePrints, and Research
Square. Lastly, COVID-19 Taxila [96] is an AI and NLP system
that uses thousands of COVID-19–related publications, clinical

trials, and other relevant sources to enable users to search and
analyze the COVID-19 literature. Publications and data are
automatically updated.

Discussion

The COVID-19 pandemic has caused some of the most
significant challenges that national health care systems have
had to face in recent human history. These systems include not
only hospitals but also a multitude of clinicians, retirement and
nursing homes, families, and communities. Government
lockdown policies undertaken to reduce hospital strain has
impacted the society as a whole and has also had social and
economic consequences, which have been more severe for
minorities and vulnerable groups [101]. Moreover, this pandemic
is taking place in the age of social media and Web 2.0, which
contain plenty of misinformation and fake news, and with no
way for the average internet user to check the reliability of the
sources. Nevertheless, the COVID-19 crisis has also shown the
promise of technology in facilitating a better understanding of
a complex disease and its impact on public health.

Here, we illustrated examples of how AI can advance research
and clinical medicine and prepare governments for future similar
crises. AI shows promise to deliver models for outbreak
analytics and detection, prevention, early intervention, and
decision-making. We highlighted the unparalleled opportunity
for AI to fill the gap between translational research and clinical
medicine. Finally, in addition to the medical applications of AI,
it is worth mentioning the potential of NLP for monitoring the
quality of the information available to the public and fighting
fake news [102-104].

Thanks to the availability of big data and high-performance
computing, the fight against the novel coronavirus can leverage
the support of AI, as demonstrated by initiatives such as the
COVID-19 High Performance Computing Consortium [105].
This technology allows us to address, at a much higher speed
and a comparable performance, complex tasks that cannot be
executed by humans—who can now focus on more
intelligence-demanding activities such as emotional intelligence
and human-to-human bonding [106].
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Although AI is traditionally trained on large datasets for
identifying population-level patterns (ie, common characteristics
among people belonging to some clinical classes), recent efforts
have promoted the utilization of this technology in conjunction
with the principles of precision medicine, to substitute the
“average patient” [42] with a real individual, based on
geographical and socioeconomic signature as well as genetic,
epigenetic, and other molecular profiles [107]. Under this
paradigm, AI is meant to empower clinicians to tailor
interventions [108] (whether preventive or therapeutic) to the
nuanced—and often unique—features of every human being
[109]. To this end, multidimensional datasets, such as the variety
of data modalities that are currently collected and modeled for
COVID-19 [110-112], capture individual genetic, biochemical,
physiological, environmental, and behavioral variations [113]
that may interfere with the development, progression, and
treatment of a disease. Thanks to the drop in price of sequencing
the human genome (from billions to hundreds of dollars in 30
years [114]), it is now possible to exploit AI to study phenotypic,
genotypic, and environmental correlations among diseases [115].

With this approach, AI can predict the risk of an individual to
develop a disease and estimate the likelihood of success for a
treatment. In the case of COVID-19, this could lead to a better
allocation of resources and an improved match between
treatments and patients, consequently improving outcomes for
preventive and therapeutic interventions. Therefore, AI-aided
precision medicine connects some of the key benefits for a
sustainable and effective health care system: efficiency, efficacy,
and safety assessment [30].

AI is recognized as a necessity to achieve precision medicine
in COVID-19. The current crisis has highlighted that a huge
amount of work is still needed to exploit AI-based solutions to
their full potential in order to transform health care. AI
implementation in the clinical setting is still far from completion
[115]. The highly fragmented and diverse health care systems,
absence of a protocol for documenting patient data, ethical
constraints (such as privacy), and limitations of AI itself (eg,
bias and non-interpretability) still represent serious challenges
to extensive AI adoption [116].
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