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Abstract

Background: Studies have shown that artificial intelligence achieves similar or better performance than dermatologists in
specific dermoscopic image classification tasks. However, artificial intelligence is susceptible to the influence of confounding
factors within images (eg, skin markings), which can lead to false diagnoses of cancerous skin lesions. Image segmentation can
remove lesion-adjacent confounding factors but greatly change the image representation.

Objective: The aim of this study was to compare the performance of 2 image classification workflows where images were either
segmented or left unprocessed before the subsequent training and evaluation of a binary skin lesion classifier.

Methods: Separate binary skin lesion classifiers (nevus vs melanoma) were trained and evaluated on segmented and unsegmented
dermoscopic images. For a more informative result, separate classifiers were trained on 2 distinct training data sets (human against
machine [HAM] and International Skin Imaging Collaboration [ISIC]). Each training run was repeated 5 times. The mean
performance of the 5 runs was evaluated on a multi-source test set (n=688) consisting of a holdout and an external component.

Results: Our findings showed that when trained on HAM, the segmented classifiers showed a higher overall balanced accuracy
(75.6% [SD 1.1%]) than the unsegmented classifiers (66.7% [SD 3.2%]), which was significant in 4 out of 5 runs (P<.001). The
overall balanced accuracy was numerically higher for the unsegmented ISIC classifiers (78.3% [SD 1.8%]) than for the segmented
ISIC classifiers (77.4% [SD 1.5%]), which was significantly different in 1 out of 5 runs (P=.004).

Conclusions: Image segmentation does not result in overall performance decrease but it causes the beneficial removal of
lesion-adjacent confounding factors. Thus, it is a viable option to address the negative impact that confounding factors have on
deep learning models in dermatology. However, the segmentation step might introduce new pitfalls, which require further
investigations.

(J Med Internet Res 2021;23(3):e21695) doi: 10.2196/21695
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Introduction

Deep learning models have achieved impressive results in
dermoscopic image skin cancer classification, as exemplified
by a range of studies on binary and multiclass classification
tasks [1-5]. The creation of open-source dermoscopic image
databases [6-8] has enabled much of the current research in this
area by facilitating the training and evaluation of deep learning
models. Supervised learning is commonly used, where the deep
learning model is trained on labeled training data (eg,
dermoscopic image plus its corresponding diagnosis), and it
continually optimizes its internal parameters. This produces an
inferred function that ideally classifies previously unseen data
correctly based on a valid strategy (eg, in the case of skin
lesions, based on relevant biological and structural features).
However, it is not uncommon for deep learning models to learn
spurious correlations within the training data. As a result, these
models fail when evaluating data not exhibiting the respective
correlations. In image analysis, such correlations are often
introduced by visual artifacts, which act as confounding factors
and have been observed to result in performance degradation
[9,10]. A recent dermatology study showed that skin markings
significantly interfered with the correct diagnosis of nevi by
deep learning convolutional neural networks (CNNs) by
increasing the melanoma probability scores and consequently,

the false-positive rate [11]. Besides skin markings with
stains/ink, a variety of artifacts are encountered in public and
proprietary dermoscopic image databases, such as dark image
corners, gel bubbles, color charts, ruler marks, or skin hairs (see
Figure 1).

A variety of strategies have been proposed to tackle confounding
factors such as digital hair removal, image cropping, or image
segmentation [12]. In image segmentation, an image is
partitioned into 2 or more regions so that each region can be
analyzed on its own. Dermoscopic image segmentation usually
partitions the image into foreground (lesion) and background
(surrounding skin, see Figure 1). This preprocessing approach
has the advantage that it not only simplifies the representation
of the image but also removes the surrounding artifacts.
Theoretically, the image fed to the deep learning model after
segmentation consists mainly of the lesion, which presumably
contains the most information but the least confounding factors.

In this study, we therefore determined if and how image
segmentation affects skin lesion classification performance of
deep learning–based algorithms. We compared the performance
of 2 workflows: one where skin lesion classifiers were trained
by a traditional end-to-end approach on unsegmented
dermoscopic images and one where classifiers were trained by
a two-step approach on images that have undergone prior
segmentation.

Figure 1. Typical artifacts encountered in dermoscopic image databases. Panels A-D show an exemplary range of artifacts often found in dermoscopic
images, which are (left to right) color charts and hair, text, ruler markings, and marker ink. Panels E-H show how a corresponding segmented image
could look like, with the surrounding artifacts removed but artifacts within the lesion (Panel E) still visible.

Methods

Study Design
Binary classifiers (nevus vs melanoma) were trained on 2
different data sets and on unsegmented or segmented images,
respectively, resulting in 4 separate types of classifiers. All
classifiers were evaluated on a test set (n=688) consisting of 1

holdout component (n=200) and 3 external components (n=488).
For each classifier type, 5 training and testing runs were
performed in order to obtain robust performance estimates,
which encompass the stochastic nature of the training process
(see Figure 2). Ethics approval was waived by the ethics
committee of the University of Heidelberg, as images were open
source and anonymous.
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Figure 2. Flowchart of the study design. A training data set consisting of images from 2 different sources was either segmented or not segmented and
split into 2 smaller partitions based on image origin (HAM or ISIC). An individual classifier was then trained on each of the 4 training sets and evaluated
on a multi-source test set, which underwent a preprocessing step that equaled the training data preprocessing. Training and evaluation were repeated a
total of 5 times for a more robust measure. HAM: human against machine data set; ISIC: international skin imaging collaboration data set; PH2: hospital
Pedro Hispano data set; PROP: proprietary data set.

Data Sets
Dermoscopic images for developing the segmentation model
were obtained from task 1 of the International Skin Imaging
Collaboration (ISIC) 2018 challenge [7,13]. This data set is
already split into a training, validation, and test set by the
challenge organizers and contains dermoscopic lesion images
together with a binary image mask, which partitions the image
into a background (areas outside the primary lesion) and
foreground (areas inside the primary lesion). This mask
represents the “ground truth” with respect to the correct
partitioning of the images. Dermoscopic images for developing
the skin lesion classifiers were obtained from 2 sources: from
part 3 of the ISIC 2017 challenge [6] and from the human
against machine (HAM) data set [7]. Both data sets are mutually
exclusive, with the HAM data set showing considerably fewer
artifacts than the ISIC data set. Duplicated images within the
HAM data set were removed prior to splitting the data set into
the training, validation, and test set. The ISIC 2017 challenge
data set had already been split by the challenge organizers.

Two additional external data sets were used for classifier
evaluation. The first data set is publicly available and contains
dermoscopic images acquired at the Dermatology Service of
Hospital Pedro Hispano (PH2), Matosinhos, Portugal [8]. The
second data set is proprietary (PROP) and contains dermoscopic
images acquired from the Department of Dermatology and
Allergy, University Hospital, LMU Munich, Munich and from
the Department of Dermatology, Heidelberg University,
Mannheim. Both data sets also contain some of the artifacts
observed in ISIC and HAM, such as black image corners, rulers,
or skin markings. As PH2 also contains binary image masks
from dermatologists, this data set was also used for the
evaluation of the segmentation model. Details on the training,

validation, and test set composition are listed in Table S1 of
Multimedia Appendix 1.

Segmentation Model and Classifier Development
For image segmentation, a CNN in the form of a U-Net was
employed [14]. The model’s raw output, which consists of a
binary image mask, was further automatically processed by
removing noise, closing holes, and replacing empty masks. Skin
lesion classifiers were generated using a ResNet50 architecture,
which was pretrained on ImageNet. For details on segmentation
model and classifier development, refer to the supplementary
methods (Multimedia Appendix 1).

Analysis
The segmentation model’s performance was evaluated using a
thresholded mean Jaccard index, a score between 0 and 1, which
measures the similarity between the ground truth mask and the
model’s output mask. The threshold was based on the ISIC 2018
challenge and set to 0.65, meaning that any lower scores were
set to 0. The performance for each individual classifier was
measured using balanced accuracy as the primary endpoint,
with sensitivity, specificity, and area under the receiver
operating characteristic curve (AUROC) as secondary endpoints.
As we repeated each classifier training and evaluation step 5
times, metrics were first computed for each individual classifier
and then averaged to obtain a mean performance measure.
Performance comparisons were carried out between the
preprocessing methods (ie, segmented vs unsegmented) and not
between the underlying training data sets (ie, not HAM vs ISIC).
Thus, we compared HAM segmented to HAM unsegmented
and ISIC segmented to ISIC unsegmented but not HAM
segmented to ISIC segmented. Statistical significance was
evaluated for the primary endpoint by using a two-sided
McNemar test and considered significant at P<.005 (Bonferroni
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correction by a factor of 10) to account for multiple testing when
comparing the individual segmented HAM/ISIC classifiers to
unsegmented HAM/ISIC classifiers for each of the 5 runs
(one-on-one comparison). P values are listed only for significant
runs.

Results

Segmentation Model Performance
The thresholded Jaccard index on the ISIC holdout test set for
the segmentation model after mask postprocessing was 0.75
and increased to 0.81 on the external PH2 set.

Classifier Performance
The overall balanced accuracy was numerically higher for the
unsegmented ISIC classifiers (78.3% [SD 1.8%]) than for the

segmented ISIC classifiers (77.4% [SD 1.5%]). This was
significantly different in 1 out of 5 runs (P=.004). When trained
on HAM, the segmented classifiers showed a higher overall
balanced accuracy (75.6% [SD 1.1%]) than the unsegmented
classifiers (66.7% [SD 3.2%]). This difference was significant
for 4 out of the 5 classifiers (P<.001). A subanalysis of the
performance on the holdout and external test set component
shows that segmented classifiers had a numerically higher
overall balanced accuracy on the external component than
unsegmented classifiers, regardless of the data set source (see
Table 1). The reverse trend was observed for the holdout
component. AUROC followed the same trends as mean balanced
accuracy.

Table 1. Overview of the balanced accuracy and area under the receiver operating characteristic curve for each type of classifier across the holdout,
external, and overall test set.

Trained classifiersTest set components, metric

ISIC unsegmented (%)ISICb segmented (%)HAM unsegmented (%)HAMa segmented (%)

Holdout

80.0 (2.6)77.1 (1.5)89.4 (0.9) c87.6 (1.4)Balanced accuracy, mean (SD)

0.89 (0.1)0.839 (0.008)0.964 (0.002)0.95 (0.006)AUROCd, mean (SD)

External

77.6 (1.7)78.2 (1.6)57.6 (4.1)69.9 (1.3)Balanced accuracy, mean (SD)

0.851 (0.018)0.874 (0.005)0.647 (0.025)0.765 (0.011)AUROC, mean (SD)

Overall

78.3 (1.8)77.4 (1.5)66.7 (3.2)75.6 (1.1)Balanced accuracy, mean (SD)

0.862 (0.014)0.856 (0.005)0.763 (0.02)0.841 (0.008)AUROC, mean (SD)

aHAM: human against machine data set.
bISIC: International Skin Imaging Collaboration data set.
cThe italicized data indicate the higher metric when comparing between classifiers trained on a segmented/unsegmented version of the same data set.
dAUROC: area under the receiver operating characteristic curve.

ISIC classifiers (regardless of preprocessing) show a comparable
balanced accuracy across the holdout and external test set
components, resulting in a similar balanced accuracy for the
overall test set. In contrast, the segmented HAM classifiers
show a substantially higher overall balanced accuracy to the
unsegmented HAM classifiers. This better overall balanced
accuracy stems from a visible performance difference on the

external test set component, which is largely driven by a drop
in the balanced accuracy for PH2. Here, the balanced accuracy
of unsegmented HAM classifiers was 63.2% (SD 7.1%)
compared to 84.4% (SD 2.9%) for the segmented HAM
classifiers (see Table 2). Equivalent tables showing the results
for the metric sensitivity and specificity are found in Table S2
and Table S3 of Multimedia Appendix 1.
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Table 2. Overview of the balanced accuracy and area under the receiver operating characteristic curve for each type of classifier across the external
test set’s 3 individual components.

Trained classifiersExternal test set components, metric

ISIC unsegmented (%)ISICb segmented (%)HAM unsegmented (%)HAMa segmented (%)

HAM/ISICc

76.5 (1.8)74.1 (3.6)58.9 (3.1)61.0 (1.3) dBalanced accuracy, mean (SD)

0.851 (0.022)0.827 (0.019)0.636 (0.023)0.628 (0.005)AUROCe, mean (SD)

PH2f

83.7 (0.8)86.4 (1.3)63.2 (7.1)84.4 (2.9)Balanced accuracy, mean (SD)

0.912 (0.018)0.947 (0.007)0.894 (0.021)0.928 (0.022)AUROC, mean (SD)

PROPg

74.6 (2.8)68.7 (1.6)75.7 (4.2)71.1 (1.8)Balanced accuracy, mean (SD)

0.814 (0.015)0.88 (0.025)0.857 (0.034)0.825 (0.033)AUROC, mean (SD)

aHAM: human against machine data set.
bISIC: International Skin Imaging Collaboration data set.
cIf classifiers were trained on HAM images, the first external test set component consists of ISIC and vice versa.
dThe italicized data indicate the higher metric when comparing between classifiers trained on a segmented/unsegmented version of the same data set.
eAUROC: area under the receiver operating characteristic curve.
fPH2: hospital Pedro Hispano data set.
gPROP: proprietary data set.

Additional Analyses
Some additional analyses were carried out based on the obtained
results. As the unsegmented HAM classifiers showed poor
performance on PH2 with high sensitivity (95.5% [SD 1.9%])
but low specificity (30.9% [SD 13.6%], Table S3 of Multimedia
Appendix 1), their performance was again evaluated on cropped
unsegmented PH2 images. As the PH2 data set consists of
images with predominantly black corners (see Figure 3), we
speculated that these could be artifacts, which caused the drop
in performance. We therefore manually cropped all unsegmented
PH2 images just enough so that any black corner was removed.
On cropped PH2 images, specificity increased to 65.8% (SD
8.3%) at almost unchanged sensitivity of 93.5% (SD 3%),
resulting in an overall mean balanced accuracy of 79.6% (SD
3.8%). As the unsegmented ISIC classifiers showed a
comparable performance to the segmented ISIC classifiers, there
was no reason to assume that these classifiers are also negatively
influenced by black image corners. However, when its
performance was evaluated on cropped PH2, sensitivity

decreased from 82% (SD 2.9%) (unsegmented) to 67.5% (SD
5.7%) (cropped) with specificity increasing from 85.4% (SD
2.8%) to 89.4% (SD 1.7%), resulting in a change of mean
balanced accuracy from 83.7% (SD 0.8%) to 78.4% (SD 3.6%).

As ground truth segmentation masks were available for the PH2
data set, PH2 images were experimentally segmented using
these masks instead of the masks produced by the segmentation
model and subsequently used for evaluation. These masks were
produced by an expert dermatologist; therefore, a similar
performance was expected. However, segmented HAM and
ISIC classifiers showed a lower balanced accuracy for PH2
images when processed by the ground truth masks (82% [SD
2.2%] and 76.1% [SD 2.9%], respectively) as opposed to the
segmentation model mask (84.4% [SD 2.9%] and 86.4% [SD
1.3%], respectively). This change resulted from a drop in
specificity from 80.2% (SD 3.8%) and 82.4% (SD 5.0%) to
76.5% (SD 5.6%) and 63.2% (SD 9.7%) at almost constant
sensitivity (88.5% [SD 5.1%] and 90.5% [SD 3.7%] vs 87.5%
[SD 5.0%] and 89.0% [SD 5.1%], respectively).
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Figure 3. Exemplary predictions of a classifier trained on unsegmented HAM (left) and ISIC (right) images and evaluated on unsegmented and cropped
PH2 images. The target class (ground truth) for each lesion is displayed to the left, with the classifier’s output probability for the target class on top. An
output probability larger than 50% corresponds to a correct classification, which is also indicated by a blue frame, whereas an orange frame denotes an
incorrect classification. HAM: human against machine data set; ISIC: international skin imaging collaboration data set; PH2: hospital Pedro Hispano
data set.

Discussion

Overview of the Study
In this study, we established and compared the performance of
2 classification workflows. The first workflow did not include
a preprocessing step, and training and test set images were
unmodified. The second included preprocessing where images
were segmented prior to classifier training and evaluation. For
training, we used 2 distinct training data sets (HAM and ISIC)
and established the performance on a multi-source test set. Our
findings show that while performance is highly dependent on
the source of the training and test set, segmentation does not

lead to an overall decrease in the performance of a ResNet50
architecture and may even lead to an improved classifier, which
is presumably at a decreased risk to suffer from common
lesion-adjacent confounding factors.

Principal Results
The overall comparable performance of classifiers trained on
segmented and unsegmented images shows that classifiers are
able to distinguish melanoma from nevus images based largely
on the lesion itself without requiring the surrounding skin area
for additional information. This is not unexpected as visual
inspection by dermatologists also mainly focuses on global and
local features within the lesion, although features such as
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increased vascularization of the surrounding skin and lesions
on sun-damaged or aged skin are associated with a higher risk
of skin cancer and can thus be used as cues. While segmentation
requires an extra step compared to end-to-end classification, it
may be worthwhile as proper segmentation removes potential
preexisting confounding factors surrounding the lesion (albeit
not within the lesion, eg, hairs, overlapping rulers). Given the
prevalence and large variety of artifacts in public dermoscopic
databases such as ISIC, such measures are warranted to
counteract the possibility of the classifier incorporating
confounding factors in its decision process. For example, gentian
violet skin markers were previously shown to be associated
with a higher melanoma probability by a CNN approved for
use as a medical device in the European market [11]. As artifact
perception by a CNN-based classifier is dependent on the
constitution of the underlying training data, this finding is not
necessarily applicable to other CNN-based classifiers but
highlights the negative impact of artifacts that may manifest
themselves in a variety of ways. In this study, we hypothesize
that classifiers trained on unsegmented HAM and ISIC images
correlate black image corners with the occurrence of melanoma,
albeit to varying degrees. Both unsegmented classifiers were
evaluated on unsegmented and cropped PH2 images, where
cropping completely removed the black corners (see Figure 3).
In both cases, specificity increased when using cropped PH2
images. Sensitivity remained almost unchanged for the HAM
classifiers and decreased for the ISIC classifiers, suggesting
that classifiers trained on either training set associate black
image corners with melanoma, but weigh its importance
differently. Alternatively, it cannot be ruled out that the observed
performance change stems from the cropping process, which
introduces resolution changes, image distortions, and the
removal of potentially relevant biological information if parts
of the lesion are cropped out. However, given the one-sided
performance increase (ie, for specificity) for classifiers from
both data sets and the large prevalence of black image corners
in the HAM and ISIC training data, a correlation is not unlikely.

As the segmentation step lies upstream of the classifier training
and evaluation steps, the latter two are highly dependent on the

output quality of the former. While the model employed in this
study achieved a threshold Jaccard index lower than the score
obtained by the ISIC 2018 challenge winners (0.75 vs 0.80), a
general visual inspection of the segmentation masks suggested
sufficient quality (ie, lesions visible with large portions of the
background adequately removed). Further evaluation of its
performance on an external data set (PH2) indicated that the
segmentation model generalizes well and can be employed for
segmenting images from external data sets. Assuming that
classifier performance is partially indicative of segmentation
performance, the segmentation model generalized adequately
for HAM and PH2 images (known of course for the latter
already due to the ground truth masks, but confirmed here
again). In contrast, classifiers trained on segmented images
performed worse on PROP with low mean balanced accuracies.
Given that classifiers trained on unsegmented images did not
suffer from this issue, insufficient segmentation masks are a
possible candidate for the problem. This is, however, difficult
to verify due to the nonexisting ground truth masks. This
illustrates that the performance of segmented classifiers is
ultimately tied to the performance of the segmentation model.

In practice, identifying and fixing obviously faulty segmentation
masks manually at test time should be feasible but may not be
sufficient. As seen for the analysis of the PH2 set, where model
segmentation masks were compared to ground truth
segmentation masks, classifier performance may be strongly
influenced by the precise way that the segmentation is done,
with small differences causing large negative effects (see Figure
4). Training sets of automatically segmented images could
contain their own kind of artifacts introduced by the automated
segmentation process. We speculate that masks produced by
the segmentation model have distinctive visual characteristics
based on its training set and postprocessing methods. For
instance, a certain amount of the adjacent skin may be included
or the segmentation creates unique borders (eg, smoothness of
edges). Any classifier trained on images with such segmentation
masks might pick up on such subtleties and become susceptible
to segmentation masks of a different variety.
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Figure 4. Exemplary predictions of a classifier trained on unsegmented HAM (left) and ISIC (right) images and evaluated on PH2 images with different
segmentation masks. PH2 images in the SM column were segmented using the segmentation model. PH2 images in the GT column were segmented
using dermatologist-generated ground truth segmentation masks. The target class (ground truth) for each lesion is displayed to the left, with the classifier’s
output probability for the target class on top. An output probability larger than 50% corresponds to a correct classification, which is also indicated by
a blue frame, whereas an orange frame denotes an incorrect classification. GT: ground truth; HAM: human against machine data set; ISIC: international
skin imaging collaboration data set; PH2: hospital Pedro Hispano data set; SM: segmentation model.

Future Work and Limitations
While the study aimed at only comparing the performance of
2 classification workflows where classifiers were trained on
segmented/unsegmented images, there is notable performance
variation dependent on the training and test sets. While the
HAM training set contained more unique melanoma lesions
(514 vs 374, Table S1 of Multimedia Appendix 1), the ISIC
training data set contained more images of biopsy-verified
lesions and thus, probably more borderline cases. These distinct
features may be advantageous or detrimental for classifier
performance on any given test set. Future work should address

the issue of faulty segmentation masks and closely investigate
the potential artifacts arising from an upstream segmentation
step. As classification was done in a binary instead of a
multi-class setting due to limited data availability, these findings
might not generalize to a multi-class setting. Furthermore,
performance was only shown here for 1 architecture; thus,
generalizability to similar architectures, while expected, is not
guaranteed.

Conclusion
Skin lesion classifiers trained and evaluated on segmented
images have an overall comparable performance to classifiers
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trained and evaluated on unsegmented images that show the
exact same lesion. In addition, segmentation comes with the
added benefit of removing lesion-adjacent artifacts, which may
act as confounding factors. However, this benefit comes at a

cost, as classifier performance is tied to the segmentation quality.
Further, image segmentation may introduce new pitfalls. Hence,
further investigation is required to elucidate the effects of
segmentation observed in this study.
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