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Abstract

Background: Timely identification of patients at a high risk of clinical deterioration is key to prioritizing care, allocating
resources effectively, and preventing adverse outcomes. Vital signs–based, aggregate-weighted early warning systems are
commonly used to predict the risk of outcomes related to cardiorespiratory instability and sepsis, which are strong predictors of
poor outcomes and mortality. Machine learning models, which can incorporate trends and capture relationships among parameters
that aggregate-weighted models cannot, have recently been showing promising results.

Objective: This study aimed to identify, summarize, and evaluate the available research, current state of utility, and challenges
with machine learning–based early warning systems using vital signs to predict the risk of physiological deterioration in acutely
ill patients, across acute and ambulatory care settings.

Methods: PubMed, CINAHL, Cochrane Library, Web of Science, Embase, and Google Scholar were searched for peer-reviewed,
original studies with keywords related to “vital signs,” “clinical deterioration,” and “machine learning.” Included studies used
patient vital signs along with demographics and described a machine learning model for predicting an outcome in acute and
ambulatory care settings. Data were extracted following PRISMA, TRIPOD, and Cochrane Collaboration guidelines.

Results: We identified 24 peer-reviewed studies from 417 articles for inclusion; 23 studies were retrospective, while 1 was
prospective in nature. Care settings included general wards, intensive care units, emergency departments, step-down units, medical
assessment units, postanesthetic wards, and home care. Machine learning models including logistic regression, tree-based methods,
kernel-based methods, and neural networks were most commonly used to predict the risk of deterioration. The area under the
curve for models ranged from 0.57 to 0.97.

Conclusions: In studies that compared performance, reported results suggest that machine learning–based early warning systems
can achieve greater accuracy than aggregate-weighted early warning systems but several areas for further research were identified.
While these models have the potential to provide clinical decision support, there is a need for standardized outcome measures to
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allow for rigorous evaluation of performance across models. Further research needs to address the interpretability of model outputs
by clinicians, clinical efficacy of these systems through prospective study design, and their potential impact in different clinical
settings.

(J Med Internet Res 2021;23(2):e25187) doi: 10.2196/25187
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Introduction

Patient deterioration and adverse outcomes are often preceded
by abnormal vital signs [1-3]. These warning signs frequently
appear a few hours to a few days before the event, which can
provide sufficient time for intervention. In response, clinical
decision support early warning systems (EWS) have been
developed that employ periodic observations of vital signs along
with a predetermined criteria or cut-off range for alerting
clinicians of patient deterioration [4].

EWS typically employ heart rate (HR), respiratory rate (RR),
blood pressure (BP), peripheral oxygen saturation (SpO2),
temperature, and sometimes the level of consciousness [5].
Aggregate-weighted EWS incorporate several vital signs and
other patient characteristics with clearly defined thresholds.
Weights are assigned to each of these vital signs and
characteristics based on a threshold, and an overall risk score
is calculated by adding each of the weighted scores [6].

Some of the commonly used aggregate-weighted EWS for
predicting cardiorespiratory insufficiency and mortality are the
Modified Early Warning Score (MEWS) [7], National Early
Warning Score (NEWS) [8], and Hamilton Early Warning Score
[9], which all incorporate vital signs and the level of
consciousness (Alert, Verbal, Pain, Unresponsive [AVPU]) but
have varying thresholds for assigning scores.

The predictive ability of aggregate-weighted EWS has
limitations. First, the scores indicate the present risk of the
patient but do not incorporate trends nor provide information
about the possible risk trajectory [6]; thus, the scores do not
communicate whether the patient is improving or deteriorating
and the rate of this change [10]. Second, these scores do not
capture any correlations between the parameters, as the score
for each parameter is calculated independently through simple
addition [6] (eg, HR or RR can be interpreted differently when
body temperature is taken into consideration).

A newer approach to EWS relies on machine learning (ML).
ML models learn patterns and relationships directly from data
rather than relying on a rule-based system [11]. Unlike
aggregate-weighted EWS, ML models are computationally
intensive, but can incorporate trends in risk scores, adjust for
varying numbers of clinical covariates, and be optimized for
different care settings and populations [12]. Like other EWS,
ML models can be integrated into electronic health records to
analyze vital sign measurements continuously and provide
predictions of patient outcomes as part of a clinical decision
support system [13].

Two systematic reviews in 2019 [14,15] evaluated the ability
of ML models to predict clinical deterioration in adult patients
using vital signs. The review by Brekke et al [15] examined the
utility of trends within intermittent vital sign measurements
from adult patients admitted to all hospital wards and emergency
departments (ED) but identified only 2 retrospective studies
that met their inclusion criteria. The review identified that vital
sign trends were of value in detecting clinical deterioration but
concluded that there is a lack of research in intermittently
monitored vital sign trends and highlighted the need for
controlled trials.

The review conducted by Linnen et al [14] compared the
accuracy and workload of ML-based EWS with that of
aggregate-weighted EWS. This review focused on studies that
reported adult patient transfers to intensive care units (ICUs)
or mortality as the outcome(s) and excluded all other clinical
settings; 6 studies were identified that reported the performance
metrics for both the ML-based EWS and aggregate-weighted
EWS. The review identified that ML modelling consistently
performed better than aggregate-weighted models while
generating clinical workload. They also highlighted the need
for standardized performance metrics and deterioration outcome
definitions.

These are important findings, but to date no review has
systematically reviewed the evidence from studies using
ML-based EWS using vital sign measurements of varying
frequencies, across different care settings and clinical outcomes
in order to identify common methodological trends and
limitations with current approaches to generate
recommendations for future research in this area.

The objective of this study was to scope the state of research in
ML-based EWS using vital signs data for predicting the risk of
physiological deterioration in patients across acute and
ambulatory care settings and to identify directions for future
research in this area.

Methods

A systematic scoping review was conducted by following the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) extension for scoping reviews
(PRISMA-ScR) framework [16]. This process provides an
analysis of the available research, current state of utility of
ML-based EWS, challenges facing their clinical implementation,
and how they compare to aggregate-weighted EWS by
identifying, synthesizing, and appraising the relevant evidence
in the area. The literature search, assessment of eligibility of
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full-text articles, inclusion in the review, and extraction of study
data were carried out by a single author.

Search Strategy
We searched PubMed, CINAHL, Cochrane Library, Web of
Science, Embase, and Google Scholar for peer-reviewed studies
without using any filters for study design and language. Searches
were also conducted without any date restrictions. The reference
lists of all studies that met the inclusion criteria were screened
for additional articles. The search strategy involved a series of
searches using a combination of relevant keywords and
synonyms, including “vital signs,” “clinical deterioration,” and
“machine learning.” See Multimedia Appendix 1 for search
terms.

Eligibility Criteria
The inclusion criteria covered the following:

• Peer-reviewed studies evaluating continuous or intermittent
vital sign monitoring in adult patients so that all data
collection or sampling frequencies (eg, 1 measurement per
minute vs 1 measurement every 2 hours) wedre taken into
consideration;

• Studies conducted using data gathered from all acute and
ambulatory care settings including medical or surgical
hospital wards, ICUs, step-down units, ED, and in-home
care;

• Quantitative, observational, retrospective, and prospective
cohort studies and randomized controlled trials;

• Studies that involved ML or multivariable statistical or ML
models and reported some model performance measure (eg,
area under the curve) [17];

• Studies that reported mortality or any outcomes related to
clinical deterioration so that EWS models and performance
can be examined for all explored outcomes.

The exclusion criteria included the following:

• Studies that used any laboratory values as predictors for
the ML-based EWS, as this review focuses on examining
time-sensitive predictions of clinical deterioration using
patient parameters that are readily available across all care
settings;

• Studies involving pediatric or obstetric populations due to
these patients having different or altered physiologies that
cannot be compared to standard adult patients;

• Qualitative studies, reviews, preprints, case reports,
commentaries, or conference proceedings.

Study Selection
References from the preliminary searches were handled using
Mendeley reference management software. After duplicates
were removed, titles and abstracts were screened to assess
preliminary eligibility. Eligible studies were then read in full
length to be assessed against the inclusion and exclusion criteria.

Data Extraction
Data were extracted from eligible studies using an extraction
sheet that followed the PRISMA [18] and Cochrane
Collaboration guidelines for systematic reviews [19] and the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) guidelines [20]
for the reporting of predictive models. Study characteristics,
setting, demographics, patient outcomes, ML model
characteristics, and model performance data were extracted.
The model performance results were extracted from the
validation data set rather than from the model derivation or
training data set to decrease the potential for model overfitting.
When studies explored multiple ML models, the model with
the best performance was selected for reporting and comparison.
If studies compared the performance of ML models to
aggregate-weighted EWS, then the performance data of these
warning systems were also extracted.

Results

Search Results and Study Selection
The search for “vital signs” AND “clinical deterioration” AND
“machine learning” using the same query terms and filters
identified 417 studies after duplicate removal. During the title
and abstract screening process, 386 studies were excluded. Of
the 31 full-text articles that were assessed, 7 studies were
excluded for not meeting the eligibility criteria: 2 studies did
not use ML models to predict deterioration, 3 studies included
vital sign measurements in addition to laboratory values as
predictors, 1 study focused on a cohort of pregnant women, and
1 study did not meet the criteria for model performance
measures. A review of the reference lists of the 24 selected
studies did not yield any additional studies fulfilling the
eligibility criteria (refer to Figure 1).
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Figure 1. PRISMA flowchart of the search strategy and study selection.

Study Characteristics
Of the selected studies, 23 conducted a retrospective analysis
of the vital signs data, while 1 study [21] used a prospective
cohort study design. Seventeen studies only analyzed continuous
vital signs measurements collected through wearable devices
and bedside monitors, whereas 3 [22-24] studies analyzed vital
signs that were collected both manually and intermittently by
clinical staff. Two studies [25,26] analyzed vital signs that were
collected both continuously and intermittently, while the
remaining 2 studies did not report how the vital sign data were
collected.

Studies were conducted in a variety of settings within hospitals
while the study by Larburu et al [22] was conducted in an
ambulatory setting. While 3 studies [27-29] aimed to develop
a remote home-based monitoring tool, the vital sign data used
were obtained from the Medical Information Mart for Intensive
Care (MIMIC and MIMIC-II) databases [30,31] consisting of
data captured from patient monitors in different ICUs. Regarding
location, 5 studies [24,26,32-34] were conducted on general
wards, 4 studies [11,23,35,36] were conducted in EDs, 7 studies
[26,34,37-41] were conducted in ICUs, 2 studies [25,42] were
conducted in postoperative wards, and 4 studies [21,43-45] in
acute stay wards (medical admission unit, step-down units).
Cohort sizes for the studies ranged from 12 patients [39] to
10,967,518 patient visits [11] (refer to Table 1).
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Table 1. Study characteristics.

OutcomeMeasurement
frequency

PredictorsStudy purposeEvent rateCohort descrip-
tion

Data collec-
tion

Setting(s)Authors,
year

Cardiac arrest,
unanticipated

Not specifiedHRc, RRd,

SBPe, tempera-

Compare the per-
formance of a de-
cision tree analy-

sis with NEWSb

199 (0.56%),
cardiac arrest;

1161 (3.26%)
unanticipated

ICUa admis-

35,585 admis-
sions

Personal digi-
tal assistants
running Vital-
PAC software

Medical as-
sessment
unit for 24
hours

Badriyah et
al, 2014
[45] ICU admission,

or death, each
within 24 hours
of a given vital

ture, SpO2,

AVPUf level,
% breathing
air at the timesions; 1789

(5.02%) deaths;
sign observa-
tionof SpO2 mea-

surement
3149 (8.85%)
any outcome

CRIEvery 2 hoursHR, RR,
SPO2 (at 1/20

Describe the dy-
namic and person-
al character of

997 patients
(53%) or 1056
admissions

1880 patients
(1971 admis-
sions)

Bedside moni-
tors

Step-down
unit

Chen at al,
2017 [44]

Hz), SBP,

DBPhCRI risk evolu-
tion observed

(53.6%) who
experienced

CRIg events through continu-
ous vital sign
monitoring of in-
dividual patients

Development of
critical illness

Every 4 hoursTemperature,
HR, RR,

Whether adding
trends improves

16,452 out-
comes (6.09%)

269,999 admis-
sions

Data collected
manually, doc-
umented elec-
tronically

All wards at
the Universi-
ty of Chica-
go and 4
North Shore

Churpek et
al, 2016
[24] on the wards:

deaths, cardiac
arrest, ICU
transfers

SpO2, DBP,
SBP

accuracy of early
detection of clini-
cal deterioration
and which meth-
ods are optimal

University
Health Sys-
tem hospitals for modelling

trends

30-day mortali-
ty due to sepsis

At triageAge, gender,
ethnicity, tem-
perature, HR,

Compare the per-
formance of HR
variability–based

40 patients
(18.7%) met
outcome

214 patientsMeasurements
at triage; hospi-

tal EHRj

EDi at Singa-
pore general
hospital

Chiew et
al, 2019
[23]

RR, SBP,machine learning

DBP, GCSk,
HR variability

models vs conven-
tional risk stratifi-
cation tools to
predict 30-day
mortality

Death, cardiac
arrest, un-

Not specifiedRR, SpO2,
SBP, HR,

Using logistic re-
gression to model
the association of

578 patients
(4.2%) with an
outcome; 499

Adults under-
going risk-
stratified ma-

VitalPac to
electronically
capture pa-

Postopera-
tive surgical
wards at 4

Chiu et al,
2019 [42]

planned ICU
readmissions

temperature,
consciousness
level

NEWS variables
with a serious pa-
tient event in the

patients
(3.66%) with
unplanned ICU
readmissions

jor cardiac
surgery,
n=13,631

tients’ vital
signs

UK adult
cardiac surgi-
cal centers

subsequent 24
hours; secondary
objectives: com-
paring the dis-
criminatory pow-
er of each model
for events in the
next 6 hours or
12 hours

Physiological
deterioration

Continuously
(SpO2, HR),
intermittently
(BP, RR)

SpO2, HR
(256 Hz), BP,
RR

Using continuous
vitals monitoring
to provide early
warning of physi-
ological deteriora-

Not specified200 patients in
the postopera-
tive ward fol-
lowing upper
gastrointesti-

Continuous vi-
tals monitored
by wearable
devices; inter-
mittent vitals

Postopera-
tive ward of
the cancer
center, Ox-
ford Univer-

Clifton et
al, 2014
[25]

tion, such thatnal cancer
surgery

monitored
manually by
ward staff

sity Hospi-

tals NHSl

Trust, Unit-
ed Kingdom

preventative clini-
cal action may be
taken
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OutcomeMeasurement
frequency

PredictorsStudy purposeEvent rateCohort descrip-
tion

Data collec-
tion

Setting(s)Authors,
year

Onset of sepsisAt least 1
measurement
per hour

GCS, HR, RR,
SpO2, temper-
ature, invasive
and noninva-
sive SBP and
DBP

Validate a sepsis
prediction
method, InSight,
for the new Sep-
sis-3 definitions
and make predic-
tions using a min-
imal set of vari-
ables

2577 (11.28%)
stays with con-
firmed sepsis

22,853 ICU
stays

ICU bedside
monitors and
medical
records (MIM-

ICm-III)

Beth Israel
Deaconess
Medical
Center ICU

Desautels
et al, 2016
[37]

Abnormal clini-
cal events

All samples
converted to
per-minute
sampling

HR, SBP,
DBP, mean
BP, RR, SpO2

Develop a proba-
bilistic model for
predicting the fu-
ture clinical
episodes of a pa-
tient using ob-
served vital sign
values prior to
the clinical event

Not specified1023 patientsICU bedside
monitors and
medical
records (MIM-
IC-II)

Beth Israel
Deaconess
Medical
Center ICU

Forkan et
al, 2017
[28]

Patient-specific
anomalies, dis-
ease symptoms,
and emergen-
cies

Per-minute
sampling

HR, SBP,
DBP, mean
BP, RR, SpO2

Develop an intel-
ligent method for
personalized
monitoring and
clinical decision
support through
early estimation
of patient-specif-
ic vital sign val-
ues

Not specified85 patientsICU bedside
monitors and
medical
records (MIM-
IC & MIMIC-
II)

Beth Israel
Deaconess
Medical
Center ICU

Forkan et
al, 2017
[27]

Dangerous clini-
cal events

Per-minute
sampling

HR, SBP,
DBP, mean
BP, RR, SpO2

Build a prognos-
tic model, ViSi-
BiD, that can ac-
curately identify
dangerous clini-
cal events of a
home-monitored
patient in ad-
vance

Not specified4893 patientsICU bedside
monitors and
medical
records (MIM-
IC-II)

Beth Israel
Deaconess
Medical
Center ICU

Forkan et
al, 2017
[29]

At least 1 event
threshold limit
criteria exceed-
ed for >80% of
last 3 minutes

Every 20 sec-
onds (HR,
RR, SPO2),
every 2 hours
(SBP, DBP,
and mean BP)

HR, RR,
SPO2, SBP,
DBP, mean
BP

Forecast CRI uti-
lizing data from
continuous moni-
toring of physio-
logic vital sign
measurements

127 patients
(43%) exhibited
at least 1 real
event during
their stay

297 admis-
sions

Bedside moni-
tor measure-
ments over 8
weeks

Step-down
unit

Guillame-
Bert et al,
2017 [43]

Cardiac arrest1 reading per
hour

Temperature,
SpO2, HR,
RR, DBP,
SBP, pulse
pressure index

Build a cardiac
arrest risk predic-
tion model capa-
ble of early notifi-
cation at time z (z
≥5 hours prior to
the event)

197 patients
(25.8%) experi-
enced a cardiac
arrest event

763 patientsICU bedside
monitors and
medical
records (MIM-
IC-II)

Beth Israel
Deaconess
Medical
Center ICU

Ho et al,
2017 [38]

Development of
cardiac arrest
within 24 hours
after prediction

Not specifiedAge, sex,
chief com-
plaint, SBP,
DBP, HR, RR,
temperature,
AVPU

Develop and test
artificial neural
network classi-
fiers for early de-
tection of patients
at risk of cardiac
arrest in EDs

374,605 eligible
ED visits of
233,763 pa-
tients; 1097
(0.3%) patients
with cardiac ar-
rest

Nontraumatic
ED visits

EHR data
from ED visits

ED visits to
a tertiary
academic
hospital

Jang et al,
2019 [35]
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OutcomeMeasurement
frequency

PredictorsStudy purposeEvent rateCohort descrip-
tion

Data collec-
tion

Setting(s)Authors,
year

Primary out-
come: first car-
diac arrest; sec-
ondary out-
come: death
without attempt-
ed resuscitation

3 times a day
on general
wards, every
10 minutes in
ICUs

SBP, HR, RR,
temperature

Predict whether
an input vector
belonged within
the prediction
time window
(0.5-24 hours be-
fore the outcome)

419 patients
(0.8%) with car-
diac arrest; 814
(1.56%) deaths
without attempt-
ed resuscitation

52,131 pa-
tients

Data collected
manually by
staff on gener-
al wards, by
bedside moni-
tors in ICUs

Cardiovascu-
lar teaching
hospital and
community
general hos-
pital

Kwon et al,
2018 [26]

Primary out-
come: in-hospi-
tal mortality;
secondary out-
come: critical
care; tertiary
outcome: hospi-
talization

At ED admis-
sion

Age, sex,
chief com-
plaint, time
from symptom
onset to ED
visit, arrival
mode, trauma,
initial vital
signs (SBP,
DBP, HR, RR,
temperature),
mental status

Validate that a

DTASn identifies
high-risk patients
more accurately
than existing
triage and acuity
scores

153,217 (1.4%)
in-hospital
deaths; 625,117
(5.7%) critical
care admis-
sions;
2,964,367
(27.0%) hospi-
talizations

10,967,518
ED visits

Korean Nation-
al Emergency
Department
Information
System
(NEDIS)

151 EDs in
Korea

Kwon et al,
2018 [11]

Heart failure
decompensation

At diagnosis
and 3-7 times
per week in
ambulatory
patients

SBP, DBP,
HR, SaO2,
weight

Prevent mobile
heart failure pa-
tients’decompen-
sation using pre-
dictive models

202 predictable
decompensa-
tions

242 patientsCollected
manually by
clinicians and
patients

OSI Bilbao-
Basurto (Os-
akidetza)
Hospital and
ED admis-
sions, ambu-
latory

Larburu et
al, 2018
[22]

Signs of deterio-
ration

At least 1
measurement
per hour

HR, SBP,

DBP, MAPo,
RR

Adaptive online
monitoring of pa-
tients in ICUs

Not specified12 patientsICU bedside
monitors and
medical
records (MIM-
IC-II)

Beth Israel
Deaconess
Medical
Center ICU

Li et al,
2016 [39]

Composite of
events such as
death and car-
diac arrest with-
in 72 hours of
arrival at the
ED

Not specifiedSBP, RR, HRDiscover the
most relevant
variables for risk
prediction of ma-
jor adverse car-
diac events using
clinical signs and
HR variability

29 (4.13%) pa-
tients met prima-
ry outcome

702 patients
with undiffer-
entiated, non-
traumatic
chest pain

Manual vital
measurements
by nurses or
physicians

ED of a ter-
tiary hospital
in Singapore

Liu et al,
2014 [36]

Sepsis, severe
sepsis, septic
shock

HourlySBP, DBP,
HR, RR,
SpO2, temper-
ature

Sepsis predictionUCSF: 1179
(1.3%) sepsis,
349 (0.39%) se-
vere sepsis, 614
(0.68%) septic
shock; MIMIC-
III: sepsis
(1.91%), severe
sepsis (2.82%),
septic shock
(4.36%)

UCSF: 90,353
patients;

MIMIC-III:
21,604 pa-
tients

UCSFp

dataset:inpa-
tient and outpa-
tient visits;
MIMIC-III:
ICU bedside
monitors

ICU, inpa-
tient wards,
outpatient
visits

Mao et al,
2018 [34]

Signs of deterio-
ration

Every minute
(SpO2, SBP,
HR), every 15
minutes
(MAP)

SpO2, SBP,
HR, MAP

Develop a predic-
tive algorithm de-
tecting early
signs of deteriora-
tion in the PACU
using continuous-
ly collected car-
diopulmonary vi-
tal signs

160 (89.9%)
had ≥1 mi-
croevent occur-
ring during ad-
mission; 116
patients
(65.2%) had ≥1
microevent with
a duration >15
minutes

178 patientsIntelliVue
MP5, BM-
EYE Nexfin
bedside moni-
tors during ad-
mission to
post anesthetic
care unit

PACUq,
Rigshospi-
talet, Univer-
sity of
Copenhagen,
Denmark

Olsen et al,
2018 [46]
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OutcomeMeasurement
frequency

PredictorsStudy purposeEvent rateCohort descrip-
tion

Data collec-
tion

Setting(s)Authors,
year

Onset of sepsis≥1 measure-
ment per hour

MAP, HR,
SpO2, SBP,
DBP, RR,
GCS, tempera-
ture, comorbid-
ity, clinical
context, admis-
sion unit, sur-
gical special-
ty, wound
type, age, gen-
der, weight,
race

Predict onset of
sepsis 4 hours
ahead of time, us-
ing commonly
measured vital
signs

242 sepsis casesPatients with
unselected
mixed surgical
procedures

ICU bedside
monitors, Bed-
master sys-
tem; up to 24
hours of moni-
toring

Adult ICU
units

Shashiku-
mar et al,
2017 [40]

Signs of deterio-
ration

Every 30 min-
utes (BP), ev-
ery 5 seconds
(other vitals)

HR, RR,
SpO2, skin
temperature,
average SBP -
average DBP

A real-time auto-
mated system,
BioSign, which
tracks patient sta-
tus by combining
information from
vital signs

Not specified150 general-
ward patients

Bedside moni-
tors for at
least 24 hours
per patient

General
wards at
John Rad-
cliffe Hospi-
tal in Ox-
ford, United
Kingdom

Tarassenko
et al, 2006
[32]

Sepsis detectionEvery minuteHR, MAP,
DBP, SBP,
SpO2, age,
race, gender,
fraction of in-
spired oxygen

Classify patients
into sepsis and
nonsepsis groups
using data collect-
ed at various fre-
quencies from the
first 12 hours af-
ter admission

343 patients
(11.5%) diag-
nosed with sep-
sis

2995 patientsBedside moni-
tors: Cerner
CareAware
iBus system

Methodist
LeBonheur
Hospital,
Memphis,
TN

Van Wyk
et al, 2017
[33]

Tachycardia
episode

1/60 Hz or 1
Hz

Arterial DBP,
arterial SBP,
HR, RR,
SpO2, MAP

Predicting tachy-
cardia as a surro-
gate for instabili-
ty

787 tachycardia
episodes

2809 subjectsICU bedside
monitors and
medical
records (MIM-
IC-II)

Beth Israel
Deaconess
Medical
Center ICU

Yoon et al,
2019 [41]

aICU: intensive care unit.
bNEWS: National Early Warning Score.
cHR: heart rate.
dRR: respiratory rate.
eSBP: systolic blood pressure.
fAVPU: alert, verbal, pain, unresponsive.
gCRI: cardiorespiratory instability.
hDBP: diastolic blood pressure.
iED: emergency department.
jEHR: electronic health record.
kGCS: Glasgow Coma Score.
lNHS: National Health Service.
mMIMIC: Medical Information Mart for Intensive Care.
nDTAS: Deep learning–based Triage and Acuity Score.
oMAP: mean arterial pressure.
pUCSF: University of California, San Francisco.
qPACU: postanesthesia care unit.

Predictor Variables
The most commonly used vital sign predictors were HR, RR,
systolic BP, diastolic BP, SpO2, body temperature, level of
consciousness through either the Glasgow Coma Score or the
AVPU scale, and mean arterial pressure. Measurement
frequencies for these variables ranged from once every 5 seconds

[32] in hospital wards to 3-7 times per week [22] in an
ambulatory setting. Other commonly used predictors included
age, gender, weight, ethnicity, chief complaint, and
comorbidities.
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Outcomes
The outcomes being predicted in most studies focused on
cardiorespiratory insufficiency–related events. Cardiac arrest
was the primary outcome in 7 [24,26,35,36,38,42,45] studies,
while general cardiorespiratory deterioration or decompensation
was the primary outcome in 5 studies [25,39,41,43,44]. Another
commonly predicted outcome was sepsis, which included the
time of onset of sepsis [34,37,40], severe sepsis [33,34], septic
shock [34], and sepsis-related mortality [23]. Other outcomes
explored within the studies include unanticipated ICU
admissions [24,42,45], development of critical illness [24],
general physiological deterioration [25,32,39,46], abnormal or
dangerous clinical events [27-29], and mortality [11,24,42].

Outcomes were first identified, and baseline models were created
using predefined parameter thresholds (ground truth) consistent
with the MEWS [23,26,35] or NEWS [23,42,46] criteria for
cardiorespiratory instability and general physiological
deterioration, while the sepsis-related outcomes were identified
based on the thresholds set within the systemic inflammatory
response syndrome [34], quick Sequential Organ Failure
Assessment (qSOFA) [23], and SOFA [37] criteria. Some
studies [22,27-29,43,44] also used thresholds and criteria based
on the population served by their individual care setting.

ML Models and Performance
All included studies consider the prediction of deterioration risk
to be a classification task and therefore use different types of
classification models in the process, including tree-based
models, linear models, kernel-based methods, and neural
networks (refer to Table 2 for a full inventory of methods used,
model performance achieved, and prediction windows, and see
Multimedia Appendix 2 for a description of ML methods).

Measures used to assess model performance varied across the
studies. The most common measure was the area under the
receiver operator characteristic (AUROC) along with model
accuracy, sensitivity, and specificity. Area under the
precision-recall, F-score, Hamming’s score, and precision
(positive predictive value) were reported less commonly.

Prediction windows ranged from 30 minutes to 30 days before
an event.

Model performance varied substantially based on outcome
measure being predicted (eg, cardiorespiratory insufficiency vs
sepsis), ML method used (eg, linear vs tree-based), and
prediction window (eg, 30 minutes before an event vs 4 hours
before).
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Table 2. Machine learning (ML) models and comparisons used for outcome prediction.

Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

NEWSd AU-
ROC: cardiac

Within 24
hours pre-
ceding
events

Not specifiedDecision tree pre-
dicted cardiac ar-
rest: AU-

ROCc=0.708;

unanticipated ICU
admission: AU-
ROC=0.862;

death: AU-
ROC=0.899; any

Not speci-
fied

Decision tree
analysis

199 (0.56%), car-
diac arrest;

1161 (3.26%)
unanticipated

ICUb admissions;
1789 (5.02%)
deaths; 3149
(8.85%) any out-
come

35,585 ad-
missions

Badriyah et
al, 2014 [45]

arrest, 0.722;
unanticipated
ICU admis-
sion, 0.857;

death, 0.894;
any outcomes,
0.873

outcomes: AU-
ROC=0.877

No compari-
son

Within 4
hours pre-
ceding
events

Logistic regres-
sion: AUC=0.7;
lasso logistic re-
gression:
AUC=0.82

Random forest

AUCf initially re-
mained constant
(0.58-0.60), fol-
lowed by an in-

Not speci-
fied

Variant of the
random forest
classification
model using
nonrandom
splits

997 patients
(53%) or 1056
admissions
(53.6%) who ex-

perienced CRIe

events

1880 pa-
tients (1971
admissions)

Chen at al,
2017 [44]

creasing trend,
with AUCs rising
from 0.57 to 0.89
during the 4 hours
immediately pre-
ceding events

No compari-
son

Within 4
hours pre-
ceding
events

Not specifiedTrends increased
model accuracy
compared to a
model containing
only current vital

Forward im-
putation, me-
dian value
imputation

Univariate
analysis, bi-
variate analy-
sis

16,452 outcomes
(6.09%)

269,999 ad-
missions

Churpek et
al, 2016 [24]

signs (AUC 0.78
vs 0.74); vital sign
slope improved
AUC by 0.013

SEDSi:
F1=0.40,

Within 30
days pre-
ceding
event

K-nearest neigh-
bor: F1
score=0.10,
AUPRC=0.10,
precision

Gradient boosting
predicted 30-day
sepsis-related mor-
tality: F1
score=0.50,

Not speci-
fied

K-nearest
neighbor, ran-
dom forest,
adaptive
boosting, gra-

40 patients
(18.7%) met out-
come

214 patientsChiew et al,
2019 [23]

AUPRC=0.22;

qSOFAj:
F1=0.32,(PPV)=0.33, re-AUPRC=0.35, pre-dient boost-
AUPRC=0.21;call=0.6; randomcisioning, support
NEWS;forest: F1(PPVg)=0.62, re-

call=0.5

vector ma-
chine F1=0.38,

AUPRC=0.28;
score=0.35,
AUPRC=0.27,

MEWSk:precision
F1=0.30,
AUPRC=0.25

(PPV)=0.26, re-
call=0.56; adap-
tive boosting: F1
score=0.40,
AUPRC=0.31,
precision
(PPV)=0.43, re-

call=0.38; SVMh:
F1 score=0.43,
AUPRC=0.29,
precision
(PPV)=0.33, re-
call=0.63
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

NEWS: 24
hours before
event,

AU-
ROC=0.754;
12 hours be-
fore event,
AU-
ROC=0.789; 6
hours before
event, AU-
ROC=0.813

Within
24, 12,
and 6
hours pre-
ceding
event

Not specifiedLogistic regression
predicted the event
24 hours in ad-
vance: AU-
ROC=0.779; 12
hours in advance:
AUROC=0.815; 6
hours in advance:
AUROC=0.841

Observations
with missing
values were
excluded

Logistic re-
gression

578 patients
(4.2%) with an
outcome; 499 pa-
tients (3.66%)
with unplanned
ICU readmissions

Adults under-
going risk-
stratified ma-
jor cardiac
surgery
(n=13,631)

Chiu et al,
2019 [42]

No compari-
son

Not speci-
fied

Conventional
SVM: accura-
cy=0.90, partial
AUC=0.26, sensi-
tivity=0.92,
specificity=0.87;
Gaussian mixture
models: accura-
cy=0.9, partial
AUC=0.24, sensi-
tivity=0.97,
specificity=0.84;
Gaussian process-
es: accura-
cy=0.90, partial
AUC=0.26, sensi-
tivity=0.91,
specificity=0.89;
kernel density es-
timate: accura-
cy=0.91, partial
AUC=0.26, sensi-
tivity=0.94,
specificity=0.87

SVM predicted de-
terioration: accura-
cy=0.94, partial
AUC=0.28, sensi-
tivity=0.96, speci-
ficity=0.93

Missing
channels re-
placed by
mean of that
channel

Classifiers,
Gaussian pro-
cess, one-class
support vector
machine, ker-
nel estimate

Not specified200 patients
in the postop-
erative ward
following
upper gas-
trointestinal
cancer
surgery

Clifton et al,
2014 [25]

SIRSm: AU-
ROC= 0.609,
APR= 0.160;
qSOFA: AU-
ROC= 0.772,
APR=0.277;
MEWS: AU-
ROC=0.803,
APR=0.327;

SAPSn II:
AU-
ROC=0.700,
APR=0.225;
SOFA: AU-
ROC=0.725,
APR=0.284

Within 4
hours pre-
ceding
event and
at time of
event on-
set

Not specifiedClassifier predicts
sepsis at onset:
AUROC=0.880,

APRl=0.6, accura-
cy=0.8; classifier
predicts sepsis 4
hours before onset:
AUROC=0.74,
APR=0.28, accura-
cy=0.57

Carry for-
ward imputa-
tion

Insight classifi-
er

2577 (11.28%)
stays with con-
firmed sepsis

22,853 ICU
stays

Desautels et
al, 2016 [37]
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

No compari-
son

Within 30
minutes
preceding
event

Neural network:
accuracy=93%

Hidden Markov
Model event predic-
tion: accura-
cy=97.8%, preci-
sion=92.3, sensitiv-
ity=97.7, specifici-
ty=98, F-
score=95%

Data with
consecutive
missing val-
ues over a
long period
are eliminat-
ed

PCAo used to
separate pa-
tients into
multiple cate-
gories; hidden
Markov Mod-
el adopted for
probabilistic
classification
and future pre-
diction

Not specified1023 pa-
tients

Forkan et al,
2017 [28]

No compari-
son

Within 1
hour pre-
ceding
event

Not specifiedPredictions across
24 classifier combi-
nations yielded a
Hamming score of
90%-95%; F1-mi-
cro average of
70.1%-84%; accu-
racy of 60.5%-
77.7%

Where ≥1 vi-
tal signs data
are missing
while clean
values of
others are
available,
considered
as recover-
able and im-
puted using
median-pass
and k-near-
est neighbor
filter

Multilabel
classification
algorithms are
applied in
classifier de-
sign; result
analysis with
J48 decision
tree, random
tree and se-
quential mini-
mal optimiza-
tion (SMO, a
simplified ver-
sion of SVM)

Not specified85 patientsForkan et al,
2017 [27]

No compari-
son

1 hour
preceding
event

J48 decision tree:
within a 60-
minute forecast
horizon, F
score=0.93, accu-
racy=92.46; with-
in a 90-minute
forecast horizon,
F score=0.92, ac-
curacy=91.59;
within a 120-
minute forecast
horizon, F
score=0.91, accu-
racy=91.30;
Event prediction
with sequential
minimal optimiza-
tion: within a 60-
minute forecast
horizon, F
score=0.91, accu-
racy=90.72; with-
in a 90-minute
forecast horizon,
F score=0.90, ac-
curacy=90.08;
within a 120-
minute forecast
horizon,

F score=0.89, ac-
curacy=89.23

Event prediction
by random forest:
within a 60-minute
forecast horizon, F
score=0.96, accura-
cy=95.86; within a
90-minute forecast
horizon, F-
score=0.95, accura-
cy=95.35; within a
120-minute fore-
cast horizon, F-
score=0.95, accura-
cy=95.18

Data with
consecutive
missing val-
ues over a
long period
are eliminat-
ed

J48 decision
tree, random
forest, sequen-
tial minimal
optimization,
MapReduce
random forest

Not specified4893 pa-
tients

Forkan et al,
2017 [29]
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

No compari-
son

Within 17
minutes,
51 sec-
onds pre-
ceding
CRI onset

Random forest:
event forecast
alert within 11
minutes, 25 sec-
onds before onset
of CRI (false
alert every 12
hours); event
forecast alert
within 5 minutes,
52 seconds be-
fore onset of CRI
(false alert every
24 hours)

Event forecast alert
within 17 minutes,
51 seconds before
onset of CRI (false
alert every 12
hours); event fore-
cast alert within 10
minutes, 58 sec-
onds before onset
of CRI (false alert
every 24 hours)

Not speci-
fied

TITAp rules,
rule fusion al-
gorithm; map-
ping function
from rule-
based features
to forecast
model learned
using random
forest classifi-
er

127 patients
(43%) exhibited
at least 1 real
CRI event during
their stay in the
step-down unit

297 admis-
sions

Guillame-
Bert et al,
2017 [43]

No compari-
son

Within 6
hours pre-
ceding
event

Not specifiedTTL-Reg predicts
events with an
AUC of 0.63

Imputed val-
ues based on
the median
from patients
of the same
gender and
similar ages

Temporal
transfer learn-
ing-based
model (TTL-
Reg)

197 patients
(25.8%) experi-
enced a cardiac
arrest event

763 patientsHo et al,
2017 [38]

MEWS: AU-
ROC=0.886

Within 24
hours pre-
ceding
event

Random forest,
AUROC=0.923;
logistic regres-
sion, AU-
ROC=0.914

Event prediction:
ANN with multilay-
er perceptron, AU-
ROC=0.929; ANN
with LSTM, AU-
ROC=0.933; hy-
brid ANN, AU-
ROC=0.936

Not speci-
fied

ANNq with
multilayer per-
ceptron, ANN

with LSTMr,
hybrid ANN;
comparison
with random
forest and lo-
gistic regres-
sion

374,605 eligible
ED visits of
233,763 patients;
1097 (0.3%) pa-
tients with car-
diac arrest

Non-traumat-
ic ED visits

Jang et al,
2019 [35]

MEWS: AU-
ROC=0.603,
AUPRC=0.003

30 min-
utes to 24
hours pre-
ceding
event

Random forest,
AUROC=0.78,
AUPRC=0.014;

logistic regres-
sion, AU-
ROC=0.613,
AUPRC=0.007

Event prediction:
RNNs, AU-
ROC=0.85,

AUPRCt=0.044

Most recent
value was
used; if no
value avail-
able, then
median val-
ue used

3 RNNs layers
with LSTM to
deal with time
series data;
compared to
random forest
and logistic re-
gression

419 patients
(0.8%) with car-
diac arrest; 814
(1.56%) deaths
without attempt-
ed resuscitation

52,131 pa-
tients

Kwon et al,
2018 [26]

Korean triage
and acuity
score: AU-
ROC =0.785,
AUPRC=0.192;

MEWS: AU-
ROC=0.810,
AUPRC=0.116;

Not speci-
fied

Random forest:
AUROC= 0.89,
AUPRC= 0.14;
logistic regres-
sion: AUROC=
0.89,
AUPRC=0.16

Event prediction:
DTAS using multi-
layer perceptron,
AUROC=0.935,
AUPRC=0.264

ExcludedDTASu using
multilayer per-
ceptron with 5
hidden

layers

153,217 (1.4%)
in-hospital
deaths; 625,117
(5.7%) critical
care admissions;
2,964,367
(27.0%) hospital-
izations

10,967,518
ED visits

Kwon et al,
2018 [11]

No compari-
son

Not speci-
fied

Decision tree,
neural network,
random forest,
support vector
machine, stochas-
tic gradient de-
scent

Decompensation
event prediction:
naïve Bayes,
AUC=67%

Not speci-
fied

Naïve Bayes,
decision tree,
random forest,
SVM

202 predictable
decompensations

242 patientsLarburu et
al, 2018 [22]
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

No compari-
son

Not speci-
fied

Not specifiedFault detection rate
with L-PCA: 20%
higher than with
PCA; 47% higher
than with fast
moving-window
PCA; best detec-
tion rate achieved
was 99.8%

Not speci-
fied

L-PCA (com-
bination of
just-in-time
learning and
PCA)

Not specified12 patientsLi et al,
2016 [39]

TIMIv:
AUC=0.637;
MEWS:
AUC=0.622

Within 72
hours of
arrival at
ED

Not specifiedEvent prediction
with ensemble
learning model:
AUC=0.812, cut-
off score=43, sensi-
tivity=82.8%,
specificity=63.4%

Not speci-
fied

Novel variable
selection
framework
based on en-
semble learn-
ing; random
forest was the
independent
variable selec-
tor for creat-
ing the deci-
sion ensemble

29 (4.13%) pa-
tients met prima-
ry outcome

702 patients
with undiffer-
entiated,
non-traumat-
ic chest pain

Liu et al,
2014 [36]

MEWS: AU-
ROC=0.76;
SOFA: AU-
ROC=0.65;
SIRS: AU-
ROC=0.72

At onset
of sepsis
and se-
vere sep-
sis; with-
in 4 hours
preceding
septic
shock and
severe
sepsis

Not specifiedDetection with gra-
dient tree boosting:
AUROC=0.92 for
sepsis; AU-
ROC=0.87 for se-
vere sepsis at on-
set; AUROC=0.96
for septic shock 4
hours before; AU-
ROC=0.85 for se-
vere sepsis predic-
tion 4 hours before

Carry for-
ward imputa-
tion

Gradient tree
boosting +
transfer learn-
ing using
MIMIC-III as
source and
UCSF as tar-
get

UCSF: 1179
(1.3%) sepsis,
349 (0.39%) se-
vere sepsis, 614
(0.68%) septic
shock; MIMIC-
III: sepsis
(1.91%), severe
sepsis (2.82%),
septic shock
(4.36%)

UCSFw:
90,353 pa-
tients; MIM-

ICx-III:
21,604 pa-
tients

Mao et al,
2018 [34]

Compared
with hospital's
current alarm
system: num-
ber of false
alarms de-
creased by
85%, number
of missed ear-
ly signs of de-
terioration de-
creased by
73%

Not speci-
fied

Not specifiedDetection of early
signs of deteriora-
tion with random
forest: accura-
cy=92.2%, sensitiv-
ity=90.6%, speci-
ficity=93.0%, AU-
ROC=96.9%

Not speci-
fied

Random forest
classifier

160 (89.9%) had
≥1 microevent
occurring during
admission; 116
patients (65.2%)
had ≥1 mi-
croevent with a
duration >15
minutes

178 patientsOlsen et al,
2018 [46]
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

No compari-
son

4 hours
prior to
onset

Not specifiedEvent prediction:
elastic net logistic
classifier using en-
tropy features
alone, AU-
ROC=0.67, accura-
cy=47%; elastic
net logistic classifi-
er using social de-
mographics +

EMRy features,
AUROC=0.7, accu-
racy=50%; elastic
net logistic classifi-
er using all fea-
tures, AU-
ROC=0.78, accura-
cy=61%

Median val-
ues (if multi-
ple measure-
ment were
available);
otherwise,
the old val-
ues were
kept (sam-
ple-and-hold
interpola-
tion); mean
imputation
for replacing
all remaining
missing val-
ues

Elastic net lo-
gistic classifi-
er

242 sepsis casesPatients with
unselected
mixed surgi-
cal proce-
dures

Shashikumar
et al, 2017
[40]

No compari-
son

Within
120 min-
utes of
event

Not specified95% of Biosign
alerts were classi-
fied as “True” by
clinical experts

Historic, me-
dian filtering

Biosign; data
fusion
method: proba-
bilistic model
of normality
in five dimen-
sions

Not specified150 general-
ward pa-
tients

Tarassenko
et al, 2006
[32]

No compari-
son

Not speci-
fied

Event classifica-
tion with a 1-
minute observa-
tion frequency:
multilayer percep-
tron, accura-
cy=76.5%;

event classifica-
tion with a 10-
minute observa-
tion frequency:
multilayer percep-
tron, accura-
cy=71%

Event classifica-
tion with a 1-
minute observation
frequency: CNN,
accuracy=86.1%;
event classification
with a 10-minute
observation fre-
quency: CNN, ac-
curacy=78.2%

Not speci-
fied

CNNz (con-
structed im-
ages using raw
patient data)
with random
dropout to re-
duce overfit-
ting; multilay-
er perceptron
with random
dropout be-
tween layers
to avoid over-
fitting

343 patients
(11.5%) diag-
nosed with sepsis

2995 pa-
tients

Van Wyk et
al, 2017 [33]
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Aggregate
weighted

EWSa compar-
isons

Predic-
tion win-
dow

ML model com-
parisons

Best ML model
performance

Missing data
handling

ML model(s)Event rateCohortStudy

No compari-
son

Within 3
hours pre-
ceding
onset

Logistic regres-
sion with L1 regu-
larization,
AUC=0.8284, ac-
curacy=0.7668

Event prediction:
random forest,
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aEWS: early warning system.
bICU: intensive care unit.
cAUROC: area under the receiver operator characteristic.
dNEWS: National Early Warning Score.
eCRI: cardiorespiratory instability.
fAUC: area under the curve.
gPPV: positive predictive value.
hSVM: support vector machine.
iSEDS: Singapore Emergency Department Sepsis.
jqSOFA: quick Sequential Organ Failure Assessment.
kMEWS: Modified Early Warning Score.
lAPR: area under the precision-recall curve.
mSIRS: systemic inflammatory response syndrome.
nSAPS II: simplified acute physiology score.
oPCA: principal component analysis.
pTITA: temporal interval tree association.
qANN: artificial neural network.
rLSTM: long short-term memory.
sRNN: recurrent neural network.
tAUPRC: area under the precision-recall curve.
uDTAS: Deep learning–based Triage and Acuity Score.
vTIMI: Thrombolysis in Myocardial Infarction.
wUCSF: University of California, San Francisco.
xMIMIC: Medical Information Mart for Intensive Care.
yEMR: electronic medical record.
zCNN: convolutional neural network.

Comparison With Aggregate-Weighted EWS
Nine studies compared the performance of ML-based EWS with
aggregate-weighted EWS. Studies exploring cardiorespiratory
outcomes, general physiological deterioration, or mortality
carried out comparisons with NEWS [42,45], MEWS
[11,26,35,36], and the Thrombolysis in Myocardial Infarction
score [36]. The 3 studies exploring sepsis-related outcomes
additionally included the SOFA, qSOFA, and SIRS criteria and
the simplified acute physiology (II) score [23,34,37]. A few
studies also drew comparisons with other customized scoring
systems individual to their care setting or region such as the
Korean Triage and Acuity Score [11], Singapore Emergency

Department Sepsis model [23], and postanesthesia care unit
alarm system [46].

In all 9 studies, the ML models performed better than the
aggregate-weighted EWS systems for all clinical outcomes
except for cardiac arrest in the study by Badriyah et al [45]. For
example, in the study by Jang et al [35], a long short-term
memory neural network achieved an AUROC of 0.933, an
improvement over MEWS, which achieved an AUROC of 0.886
using the same data. Similarly, in the study by Kwon et al [26],
recurrent neural networks achieved an AUROC of 0.85
compared to 0.603 for MEWS and 0.785 for the Korean Triage
and Acuity Score. Some studies reported much more modest
improvements, such as the study by Chiu et al [42] that achieved
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an AUROC of 0.779 using logistic regression, compared to
0.754 using MEWS for the same 24-hour prediction window.
A full side-by-side comparison of ML vs aggregate-weighted
EWS is presented in Multimedia Appendix 3.

Discussion

Based on this scoping review, ML-based EWS models show
considerable promise, but there exist several important avenues
for future research if these models are to be effectively
implemented in clinical practice.

Prediction Window
A model’s prediction window refers to how far in advance a
model is predicting an adverse event. Most studies included in
our review used a prediction window between 30 minutes [26]
and 72 hours [36] before the clinical deterioration took place.
The length of a model’s prediction window is important because
a prediction window that is too short will not yield any real
clinical benefit (it would not give a clinical team sufficient time
to intervene), but a number of studies [29,34,37,42] showed a
decrease in model performance when the prediction window
was longer (eg, AUROC drops from 0.88 at the time of onset
to 0.74 at 4 hours before the event). Future research seeking to
maximize the clinical benefit of ML EWS should strive to
achieve an optimum balance between a clinically relevant
prediction window and clinically acceptable model performance,
rather than simply maximizing a model performance metric,
such as AUROC.

Clinically Actionable Explanations
The studies included in this review focused on ML model
development and did not explore how the output of these models
would be communicated to clinicians. Since many ML models
are “black boxes” [46,47], it may not be immediately clear to
clinicians what the likely reason for an alert might be until the
patient is assessed, which can cause further delays in
time-sensitive scenarios. However, in the broader ML field,
there has been significant recent progress in explainable ML
techniques, and it has been pointed out that these approaches
may be preferred by the medical community and regulators
[48,49]. Several explanation methods take specific, previously
black-box methods, such as convolutional neural networks [50],
and allow for post-hoc explanation of their decision-making
process. Other explainability algorithms are model-agnostic,
meaning they can be applied to any type of model, regardless
of its mathematical basis [51]. In the study by Lauritsen et al
[52], an explainable EWS was developed based on a temporal
convolutional network, using a separate module for explanations.
These methodologies are promising, but their application to
health care, including to EWS, has been limited. Objective
evaluation of the utility of explanation methods is a difficult,
ongoing problem, but is an important direction for future
research in the area of ML-based EWS if they are to be
effectively deployed in clinical practice [53].

Expanded Study Settings
Nearly all the studies included in this review were conducted
in inpatient settings. While EWS are highly valuable in an
inpatient context, there is also considerable need in the

ambulatory setting, particularly postdischarge. For example,
the VISION study [54] found that 1.8% of all patients die within
30 days postsurgery and 29.4% of all deaths occurred after
patients were discharged from hospital. Patients often receive
postoperative monitoring only 3-4 weeks [54] after discharge
during a follow-up visit with their surgeon. During this period,
it has been shown that many patients suffer from prolonged
unidentified hypoxemia [55] and hypotension [56], which are
precursors to serious postoperative complications. While EWS
research has historically focused on inpatient settings due to
the availability of continuous vital signs data, the increasing
availability of remote patient monitoring and wearable
technologies offer the opportunity to direct future EWS research
to the ambulatory setting to address a significant clinical need.

Retrospective Versus Prospective Evaluation
All but one study [21] included in this review were retrospective
in nature, leaving open the possibility that algorithm
performance in a clinical environment may be lower than the
performance achieved in a controlled retrospective setting [34].
It is also unclear how often these EWS were able to identify
clinical deterioration that had not already been detected by a
care team. Further, alerts for clinical deterioration may be easily
disregarded by clinicians due to alert fatigue, even when the
risk of deterioration has been correctly identified [43]. In the
single case where an ML-based EWS was studied prospectively,
Olsen et al [21] found that the random forest classifier decreased
false alarm rates by 85% and the rate of missed alerts by 73%
when compared to the existing aggregate-weighted alarm
system. While the predictions were independently scored for
severity by 2 clinician experts, the interpretation of the clinical
impact of these alerts was not explored any further, leaving the
question of clinical benefit unanswered. Future research into
ML-based EWS should begin to include prospective evaluation,
both of model accuracy (to understand how model performance
is affected when faced with real-world data) and of clinical
outcomes (to understand whether alerts in fact produce clinical
benefits).

Standardizations of Performance Metrics
A key observation from this review is the lack of an agreed-upon
standard among the research community for reporting
performance measures across studies. This makes meaningful
comparison between the outcomes of these studies difficult,
and where there is overlap, it is not clear that the most clinically
relevant metrics have been chosen. The majority of the studies
in this review report the AUROC as the main performance
metric, reflecting a common practice in the ML literature.
However, AUROC may not be adequate for evaluating the
performance of the EWS in a clinical setting [57].

As Romero-Brufau et al [58] discussed in their article, AUROC
does not incorporate information about the prevalence of
physiological deterioration, which can be lower than 0.02 daily
in a general inpatient setting. This can make AUROC a
misleading metric, leading to overestimation of clinical benefit
and underestimation of clinical workload and resources. [58]
When the prevalence is low (<0.1), even a model with high
sensitivity and specificity may not yield a high posttest
probability for a positive prediction [15]. Therefore, reporting
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metrics that incorporate the prevalence would be more
appropriate.

The performance of an EWS depends on the tradeoff between
2 goals: early detection of outcomes versus issuance of fewer
false-positive alerts to prevent alarm fatigue [43]. Sensitivity
can be a good metric to evaluate the first goal as it would
provide the percentage of true-positive predictions within a
certain time period. To evaluate the clinical burden of
false-positive alerts, the positive predictive value, which
incorporates prevalence, can be used as it gives a percentage of
useful alerts that lead to a clinical outcome. The number needed
to evaluate can be a useful measure of clinical utility and
cost-efficiency of each alert as it provides the number of patients
that need to be evaluated further to detect one outcome. Using
these metrics to evaluate tradeoffs between outcome detection
and workload would be essential for determining the clinical
utility of the EWS [58]. Additionally, the F1 score can also be
a useful metric as it provides a measure of the model’s overall
accuracy through the calculation of the harmonic mean of the
precision and recall (sensitivity). Balancing the use of these 2
metrics could yield a more realistic measure of the model’s
performance [58].

Comparison to “Gold Standard” EWS
On a related note, only 9 of the studies included in our review
made comparisons between their ML-based models and a “gold
standard” aggregate-weighted EWS, such as MEWS or NEWS.
Future research in the area should report a commonly used
aggregate-weighted EWS as a baseline model, which would aid
in making effective comparisons between them. NEWS may
be particularly well suited to this area of research as its input
variables can all be measured automatically and continuously
via devices.

Strengths of the Review
The search strategy was comprehensive while not being too
focused on specific clinical outcomes, sampling frequencies,
or filtering for time. This allowed for the identification of as
many studies as possible that examined the use of ML models
and vital signs to predict the risk of patient deterioration. No
additional studies were identified through citation tracking after

the original search, indicating our search strategy was
comprehensive. Unlike previous reviews, inclusion criteria for
the review supported the examination of findings from studies
conducted across a variety of clinical settings including specialty
units or wards and ambulatory care. This helped in
characterizing the use of ML-based prediction models in
different patient-care environments with varying clinical
endpoints. Wherever the original studies provided the data,
comparisons were drawn between the performance of the ML
models and that of aggregate-weighted EWS. This gives an
indication of the differences in accuracy of the models in
predicting clinical deterioration.

Limitations
The findings within this review are subject to some limitations.
First, the literature search, assessment of eligibility of full-text
articles, inclusion in the review, and extraction of study data
were carried out by only 1 author. Second, only the findings
from published studies were included in this scoping review,
which may affect the results due to publication bias. While
studies from a variety of settings were included, the
generalizability of our findings may be limited due to the
heterogeneity of patient populations, clinical practices, and
study methodologies. Sampling procedures and frequencies
varied across studies from single to multiple observations of
patient vital signs, and clinical outcome definitions were based
on different criteria or aggregate-weighted EWS. Finally, due
to this variation in ML methods, prediction windows, and
outcome reporting, a meta-analysis was not feasible.

Conclusion
Our findings suggest that ML-based EWS models incorporating
easily accessible vital sign measurements are effective in
predicting physiological deterioration in patients. Improved
prediction performance was also observed with these models
when compared to traditional aggregate-based risk stratification
tools. The clinical impact of these ML-based EWS could be
significant for clinical staff and patients due to decreased false
alerts and increased early detection of warning signs for timely
intervention, though further development of these models is
needed and the necessary prospective research to establish actual
clinical utility does not yet exist.
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HR: heart rate
ICU: intensive care unit
MEWS: Modified Early Warning Score
MIMIC: Medical Information Mart for Intensive Care
ML: machine learning
NEWS: National Early Warning Score
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
qSOFA: quick Sequential Organ Failure Assessment
RR: respiratory rate
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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