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Abstract

Background: Timely identification of patients at a high risk of clinical deterioration is key to prioritizing care, allocating
resources effectively, and preventing adverse outcomes. Vital signs-based, aggregate-weighted early warning systems are
commonly used to predict the risk of outcomes related to cardiorespiratory instability and sepsis, which are strong predictors of
poor outcomes and mortality. Machinelearning models, which can incorporate trends and capture relationships among parameters
that aggregate-weighted models cannot, have recently been showing promising results.

Objective: This study aimed to identify, summarize, and eval uate the available research, current state of utility, and challenges
with machine learning—based early warning systems using vital signsto predict the risk of physiological deterioration in acutely
ill patients, across acute and ambulatory care settings.

Methods: PubMed, CINAHL, Cochrane Library, Web of Science, Embase, and Google Scholar were searched for peer-reviewed,
original studies with keywords related to “vital signs,” “clinical deterioration,” and “machine learning.” Included studies used
patient vital signs along with demographics and described a machine learning model for predicting an outcome in acute and
ambulatory care settings. Data were extracted following PRISMA, TRIPOD, and Cochrane Collaboration guidelines.

Results:  We identified 24 peer-reviewed studies from 417 articles for inclusion; 23 studies were retrospective, while 1 was
prospectivein nature. Care settingsincluded general wards, intensive care units, emergency departments, step-down units, medical
assessment units, postanesthetic wards, and home care. Machine learning model sincluding | ogi stic regression, tree-based methods,
kernel-based methods, and neural networks were most commonly used to predict the risk of deterioration. The area under the
curve for models ranged from 0.57 to 0.97.

Conclusions: Instudiesthat compared performance, reported results suggest that machine learning—based early warning systems

can achieve greater accuracy than aggregate-weighted early warning systemsbut several areasfor further research wereidentified.
While these models have the potential to provide clinical decision support, there is aneed for standardized outcome measures to
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allow for rigorous evaluation of performance across models. Further research needsto address the interpretability of model outputs
by clinicians, clinical efficacy of these systems through prospective study design, and their potential impact in different clinical

settings.

(J Med Internet Res 2021;23(2):€25187) doi: 10.2196/25187
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Introduction

Patient deterioration and adverse outcomes are often preceded
by abnormal vital signs[1-3]. These warning signs frequently
appear afew hours to a few days before the event, which can
provide sufficient time for intervention. In response, clinical
decision support early warning systems (EWS) have been
devel oped that employ periodic observations of vital signsalong
with a predetermined criteria or cut-off range for alerting
clinicians of patient deterioration [4].

EWS typically employ heart rate (HR), respiratory rate (RR),
blood pressure (BP), peripheral oxygen saturation (SpO,),
temperature, and sometimes the level of consciousness [5].
Aggregate-weighted EWS incorporate severa vital signs and
other patient characteristics with clearly defined thresholds.
Weights are assigned to each of these vital signs and
characteristics based on a threshold, and an overall risk score
is calculated by adding each of the weighted scores[6].

Some of the commonly used aggregate-weighted EWS for
predicting cardiorespiratory insufficiency and mortality arethe
Modified Early Warning Score (MEWS) [7], National Early
Warning Score (NEWS) [8], and Hamilton Early Warning Score
[9], which al incorporate vita signs and the level of
consciousness (Alert, Verbal, Pain, Unresponsive [AVPU]) but
have varying thresholds for assigning scores.

The predictive ability of aggregate-weighted EWS has
limitations. First, the scores indicate the present risk of the
patient but do not incorporate trends nor provide information
about the possible risk trajectory [6]; thus, the scores do not
communicate whether the patient isimproving or deteriorating
and the rate of this change [10]. Second, these scores do not
capture any correlations between the parameters, as the score
for each parameter is calculated independently through simple
addition [6] (eg, HR or RR can beinterpreted differently when
body temperature is taken into consideration).

A newer approach to EWS relies on machine learning (ML).
ML models learn patterns and relationships directly from data
rather than relying on a rule-based system [11]. Unlike
aggregate-weighted EWS, ML models are computationally
intensive, but can incorporate trends in risk scores, adjust for
varying numbers of clinical covariates, and be optimized for
different care settings and populations [12]. Like other EWS,
ML models can be integrated into electronic health records to
analyze vital sign measurements continuously and provide
predictions of patient outcomes as part of a clinical decision
support system [13].

https://www.jmir.org/2021/2/e25187

Two systematic reviews in 2019 [14,15] evaluated the ability
of ML modelsto predict clinical deterioration in adult patients
using vital signs. Thereview by Brekke et a [15] examined the
utility of trends within intermittent vital sign measurements
from adult patients admitted to all hospital wards and emergency
departments (ED) but identified only 2 retrospective studies
that met their inclusion criteria. The review identified that vital
sign trends were of value in detecting clinical deterioration but
concluded that there is a lack of research in intermittently
monitored vital sign trends and highlighted the need for
controlled trials.

The review conducted by Linnen et a [14] compared the
accuracy and workload of ML-based EWS with that of
aggregate-weighted EWS. This review focused on studies that
reported adult patient transfers to intensive care units (ICUSs)
or mortality as the outcome(s) and excluded al other clinical
settings; 6 studieswereidentified that reported the performance
metrics for both the ML-based EWS and aggregate-weighted
EWS. The review identified that ML modelling consistently
performed better than aggregate-weighted models while
generating clinical workload. They also highlighted the need
for standardized performance metrics and deterioration outcome
definitions.

These are important findings, but to date no review has
systematically reviewed the evidence from studies using
ML-based EWS using vital sign measurements of varying
frequencies, across different care settings and clinical outcomes
in order to identify common methodologica trends and
limitations with  current approaches to generate
recommendations for future research in this area.

The objective of this study wasto scope the state of researchin
ML-based EWS using vital signsdatafor predicting therisk of
physiological deterioration in patients across acute and
ambulatory care settings and to identify directions for future
research in this area.

Methods

A systematic scoping review was conducted by following the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) extension for scoping reviews
(PRISMA-ScR) framework [16]. This process provides an
analysis of the available research, current state of utility of
ML-based EWS, challengesfacing their clinical implementation,
and how they compare to aggregate-weighted EWS by
identifying, synthesizing, and appraising the relevant evidence
in the area. The literature search, assessment of eligibility of
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full-text articles, inclusion in the review, and extraction of study
data were carried out by a single author.

Search Strategy

We searched PubMed, CINAHL, Cochrane Library, Web of
Science, Embase, and Google Scholar for peer-reviewed studies
without using any filtersfor study design and language. Searches
were also conducted without any date restrictions. Thereference
lists of al studies that met the inclusion criteria were screened
for additional articles. The search strategy involved a series of
searches using a combination of relevant keywords and
synonyms, including “vital signs,” “clinical deterioration,” and
“machine learning.” See Multimedia Appendix 1 for search
terms.

Eligibility Criteria
Theinclusion criteria covered the following:

«  Peer-reviewed studies evaluating continuous or intermittent
vital sign monitoring in adult patients so that all data
collection or sampling frequencies (eg, 1 measurement per
minute vs 1 measurement every 2 hours) wedre taken into
consideration;

«  Studies conducted using data gathered from all acute and
ambulatory care settings including medical or surgical
hospital wards, ICUs, step-down units, ED, and in-home
care

«  Quantitative, observational, retrospective, and prospective
cohort studies and randomized controlled trials,

- Studiesthat involved ML or multivariable statistical or ML
models and reported some model performance measure (eg,
area under the curve) [17];

«  Studies that reported mortality or any outcomes related to
clinical deterioration so that EWS modelsand performance
can be examined for all explored outcomes.

The exclusion criteriaincluded the following:

« Studies that used any laboratory values as predictors for
the ML-based EWS, as this review focuses on examining
time-sensitive predictions of clinical deterioration using
patient parametersthat are readily available across all care
settings,

- Studiesinvolving pediatric or obstetric populations due to
these patients having different or altered physiologies that
cannot be compared to standard adult patients;
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- Qualitative studies, reviews, preprints, case reports,
commentaries, or conference proceedings.

Study Selection

References from the preliminary searches were handled using
Mendeley reference management software. After duplicates
were removed, titles and abstracts were screened to assess
preliminary eligibility. Eligible studies were then read in full
length to be assessed against theinclusion and exclusion criteria.

Data Extraction

Data were extracted from eligible studies using an extraction
sheet that followed the PRISMA [18] and Cochrane
Collaboration guidelines for systematic reviews [19] and the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) guidelines [20]
for the reporting of predictive models. Study characteristics,
setting, demographics, patient outcomes, ML model
characteristics, and model performance data were extracted.
The model performance results were extracted from the
validation data set rather than from the model derivation or
training data set to decrease the potential for model overfitting.
When studies explored multiple ML models, the model with
the best performance was sel ected for reporting and compari son.
If studies compared the performance of ML models to
aggregate-weighted EWS, then the performance data of these
warning systems were also extracted.

Results

Search Resultsand Study Selection

Thesearch for “vital signs” AND “clinical deterioration” AND
“machine learning” using the same query terms and filters
identified 417 studies after duplicate removal. During the title
and abstract screening process, 386 studies were excluded. Of
the 31 full-text articles that were assessed, 7 studies were
excluded for not meeting the eligibility criteria: 2 studies did
not use ML modelsto predict deterioration, 3 studies included
vital sign measurements in addition to laboratory values as
predictors, 1 study focused on acohort of pregnant women, and
1 study did not meet the criteria for model performance
measures. A review of the reference lists of the 24 selected
studies did not yield any additional studies fulfilling the
eligibility criteria (refer to Figure 1).
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Figurel. PRISMA flowchart of the search strategy and study selection.
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Study Char acteristics

Of the selected studies, 23 conducted a retrospective analysis
of the vital signs data, while 1 study [21] used a prospective
cohort study design. Seventeen studies only analyzed continuous
vital signs measurements collected through wearable devices
and bedside monitors, whereas 3 [22-24] studies analyzed vital
signs that were collected both manually and intermittently by
clinical staff. Two studies[25,26] analyzed vital signsthat were
collected both continuously and intermittently, while the
remaining 2 studies did not report how the vital sign datawere
collected.

https://www.jmir.org/2021/2/e25187
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Studies were conducted in avariety of settings within hospitals
while the study by Larburu et a [22] was conducted in an
ambulatory setting. While 3 studies [27-29] aimed to develop
a remote home-based monitoring tool, the vital sign data used
were obtained from the Medical Information Mart for Intensive
Care (MIMIC and MIMIC-I1) databases [30,31] consisting of
data captured from patient monitorsin different ICUs. Regarding
location, 5 studies [24,26,32-34] were conducted on general
wards, 4 studies[11,23,35,36] were conducted in EDs, 7 studies
[26,34,37-41] were conducted in ICUs, 2 studies [25,42] were
conducted in postoperative wards, and 4 studies [21,43-45] in
acute stay wards (medical admission unit, step-down units).
Cohort sizes for the studies ranged from 12 patients [39] to
10,967,518 patient visits [11] (refer to Table 1).
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Authors, Setting(s) Datacollec-  Cohortdescrip-  Event rate Study purpose Predictors Measurement  Outcome
year tion tion frequency
Badriyahet Medical as= Persona digi- 35,585admis- 199 (0.56%), Comparethe per- HRS, RRd, Not specified Cardiac arrest,
a, 2014 sessment tal assistants  sions cardiac arrest;  formanceof ade- B tempaa unanticipated
[45] unitfor 24 running Vital- 1161 (3.260)  Cisiontreeandly- o ICU admission,
hours PAC software unanticipated  siswith NEWSP ' ) 2 or death, each
ICU admis. AVPU' level, within 24 hours
o % breathing of agiven vital
sions; 1789 air at thetime sign observa-
(5.02%) deaths; of SpO, mea- tion
3149 (8.85%)
any outcome surement
Chenatal, Step-down  Bedsidemoni- 1880 patients 997 patients Describethedy- HR, RR, Every 2 hours CRI
2017 [44]  unit tors (1971 admis-  (53%) or 1056  namicandperson- SPO, (at 1/20
sions) admissions a character of Hz), SBP,
(53.6%) who CRI risk evolu- DBP"
experienced tion observed
CRIY events through continu-
ous vital sign
monitoring of in-
dividual patients
Churpek et All wardsat Datacollected 269,999admis- 16,452 out- Whether adding  Temperature, Every 4 hours Development of
a, 2016 theUniversi- manually, doc- sions comes (6.09%) trendsimproves HR, RR, critical illness
[24] ty of Chicaz  umented elec- accuracy of early SpO,, DBP, on the wards:
goand 4 tronically detectionof clini- spp deaths, cardiac
North Shore cal deterioration arrest, ICU
University and which meth- transfers
Health Sys- ods are optimal
tem hospitals for modelling
trends
Chiew et ED' a Singa- Measurements 214 patients 40 patients Comparetheper- Age, gender, Attriage 30-day mortali-
a, 2019 pore general atriage; _hospi- (18.7%) met formarjge of HR  ethnicity, tem- ty dueto sepsis
[23] hospital tal EHR) outcome variability—based perature, HR,
machinelearning RR, SBP,
modelsvsconven- DBP, GCSK,
tional risk stratifi- HR variability
cation toolsto
predict 30-day
mortality
Chiueta, Postopera-  VitaPacto Adultsunder- 578 patients Usinglogisticre- RR, SpO,, Not specified Death, cardiac
2019[42] tivesurgical electronically going risk- (4.2%) withan gressontomodel SBP HR, arrest, un-
wards at 4 capture pa- stratified ma-  outcome; 499 theassociationof  temperature, planned ICU
UK adult tients' vital jor cardiac patients NEWS variables  consciousness readmissions
cadiacsurgi- signs surgery, (3.66%) with withaseriouspa-  |evel
cal centers n=13,631 unplanned ICU tient event in the
readmissions subsequent 24
hours; secondary
objectives. com-
paring the dis-
criminatory pow-
er of each model
for eventsin the
next 6 hours or
12 hours
Cliftonet  Postopera=  Continuousvi- 200 patientsin  Not specified Using continuous  SpO,, HR Continuously  Physiological
a, 2014 tiveward of talsmonitored the postopera- vitalsmonitoring (256 Hz), BP, (SpO2, HR),  deterioration
[25] the cancer by wearable  tiveward fol- toprovideearly RR intermittently
center, Ox-  devices; inter- lowing upper warning of physi- (BP,RR)
ford Univer- mittent vitals  gastrointesti- ologica deteriora-
sity Hospi-  monitored nal cancer tion, such that
tasNHY manually by  surgery preventativeclini-
Trust, Unit-  ward staff cal action may be
ed Kingdom taken
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Authors, Setting(s) Datacollec-  Cohortdescrip-  Event rate Study purpose Predictors Measurement  Outcome
year tion tion frequency
Desautels Bethlsrael  ICU bedside 22,853 ICU 2577 (11.28%) Vadidateasepsis GCS HR,RR, Atleast1 Onset of sepsis
eta, 2016 Deaconess monitorsand — stays stayswith con-  prediction SpO,, temper-  measurement
[37] Medical medical firmed sepsis method, InSight,  ature, invasive per hour
Center ICU  records(MIM- for thenew Sep-  and noninva-
1IC™-111) sis-3 definitions  sjve SBP and
and make predic- pBp
tionsusingamin-
imal set of vari-
ables
Forkanet Bethlsrael  ICU bedside 1023 patients Not specified Developaproba HR, SBP, All samples  Abnormal clini-
a, 2017 Deaconess  monitors and bilistic model for DBP, mean convertedto  cal events
[28] Medical medical predictingthefu- BP RR, SpO, per-minute
Center ICU  records(MIM- tureclinical sampling
I1C-11) episodes of apa-
tient using ob-
served vital sign
values prior to
theclinical event
Forkanet Bethlsrael  ICU bedside 85 patients Not specified Developanintel- HR, SBP, Per-minute Patient-specific
a, 2017 Deaconess  monitors and ligent methodfor DBP, mean sampling anomadlies, dis-
[27] Medical medical personalized BP, RR, SpO, ease symptoms,
Center ICU  records(MIM- monitoring and and emergen-
IC & MIMIC- clinical decision cies
1) support through
early estimation
of patient-specif-
icvital sign val-
ues
Forkanet Bethlsrael ICU bedside 4893 patients  Not specified Build aprognoss HR, SBP, Per-minute Dangerousclini-
a, 2017 Deaconess  monitors and ticmodel, ViSi- DBP, mean sampling cal events
[29] Medical medical BiD, that canac- BP RR, SpO,
Center ICU  records(MIM- curately identify
I1C-11) dangerous clini-
cal eventsof a
home-monitored
patient in ad-
vance
Guillame- Step-down  Bedsdemoni- 297 admis- 127 patients Forecast CRI uti- HR, RR, Every 20 sec- At least 1 event
Berteta, unit tor measure-  sions (43%) exhibited lizing datafrom  SPO,, SBP, onds (HR, threshold limit
2017 [43] ments over 8 at least 1 red continuousmoni- DBP, mean RR, SPO,), criteria exceed-
weeks event during toring of physio- Bp every 2 hours  ed for >80% of
their stay logic vital sign (SBP, DBP, last 3 minutes
measurements and mean BP)
Hoet d, Bethlsrael  ICU bedside 763 patients 197 patients Buildacardiac ~ Temperature, 1readingper Cardiac arrest
2017[38] Deaconess  monitors and (25.8%) experi- arrestrisk predic-  SpO,, HR, hour
Medical medical enced acardiac tion model capa- RR, DBP,
Center ICU  records(MIM- arrest event bleof early notifi-  SBP, pulse
I1C-11) cationattimez(z pressureindex
=5 hours prior to
the event)
Jangetal, EDvisitsto EHRdata Nontraumatic 374,605€ligible Developandtest Age, sex, Not specified  Development of
2019[35] atertiary fromED visits ED visits ED visits of artificial neural  chief com- cardiac arrest
academic 233,763 pa- network classi- plaint, SBPR, within 24 hours
hospital tients; 1097 fiersfor early de- DBP,HR,RR, after prediction
(0.3%) patients tectionof patients temperature,
with cardiac ar-  at risk of cardiac AVPU
rest arrest in EDs
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Authors, Setting(s) Datacollec-  Cohortdescrip-  Event rate Study purpose Predictors Measurement  Outcome
year tion tion frequency
Kwonetal, Cadiovascu- Datacollected 52,131 pa- 419 patients Predict whether  SBP, HR, RR, 3timesaday Primary out-
2018[26] larteaching manualy by tients (0.8%) withcar- aninput vector  temperature  on genera come: first car-
hospital and  staff on gener- diac arrest; 814 belonged within wards, every  diac arrest; sec-
community  a wards, by (1.56%) deaths the prediction 10 minutesin  ondary out-
general hos-  bedside moni- without attempt-  time window ICUs come: death
pital torsin ICUs ed resuscitation  (0.5-24 hours be- without attempt-
forethe outcome) ed resuscitation
Kwonetal, 151 EDsin KoreenNation- 10,967,518 153,217 (1.4%) Validatethat a Age, sex, At ED admis- Primary out-
2018 [11] Korea al Emergency ED visits in-hospital DTAS" identifies Cchief com- sion come: in-hospi-
Department deaths; 625,117 high-risk patients plaint, time tal mortality;
Information (B.7%) critical  more accurately  fromsymptom secondary out-
System care admis- than existing onset to ED come: critical
(NEDIS) sions, triage and acuity  ViSit, arrival care; tertiary
2,964,367 scores mode, trauma, outcome: hospi-
(27.0%) hospi- initia vital talization
talizations signs (SBPR,
DBP, HR,RR,
temperature),
mental status
Larburuet OSl Bilbao- Collected 242 patients 202 predictable Prevent mobile  SBP, DBR, Atdiagnosis  Heart failure
a, 2018 Basurto (Os- manually by decompensa- heart fallurepa  HR, Sa0,, and 3-7 times  decompensation
[22] akidetza) clinicians and tions tients’ decompen-  weight per week in
Hospital and patients sation using pre- ambulatory
ED admis- dictive models patients
sions, ambu-
latory
Lietal, BethIsrael  ICU bedside 12 patients Not specified  Adaptiveonline  HR, SBP, Atleast 1 Signsof deterio-
2016[39] Deaconess  monitorsand monitoring of pa- DBP MAF®, Measurement ration
Medical medical tientsin ICUs RR per hour
Center ICU  records(MIM-
IC-11)
Livetal, ED of ater- Manual vital 702 patients 29 (4.13%) pa-  Discover the SBP, RR,HR  Not specified Composite of
2014 [36] tiary hospital measurements with undiffer- tientsmetprima  most relevant events such as
inSingapore by nursesor  entiated, non-  ry outcome variables for risk death and car-
physicians traumatic prediction of ma- diac arrest with-
chest pain jor adverse car- in 72 hours of
diac events using arrival at the
clinical signsand ED
HR variability
Maoeta, ICU,inpa  ycspEP UCSF: 90,353 UCSF: 1179 Sepsisprediction SBP, DBP, Hourly Sepsis, severe
2018[34] tientwards, (gtacet:i npa- patients; (1.3%) sepsis, HR, RR, Sepsis, septic
outpatient tientandoutpa MIMIC-II1: 349 (0.39%) se- SpO,, temper- shock
visits tient visits; 21,604 pa- veresepsis, 614 ature
MIMIC-III:  tients (0.68%) septic
ICU bedside shock; MIMIC-
monitors I1l: sepsis
(1.91%), severe
sepsis (2.82%),
septic shock
(4.36%)
Olsenetd, PACUY, IntelliVue 178 patients 160 (89.9%) Developapredic- SpO,, SBR, Every minute  Signsof deterio-
2018 [46] Rj gshospi- MP5, BM- had =1 mi- tivealgorithmde- HR, MAP (SpO,, SBP,  ration
talet, Univer- EYENexfin croevent occur-  tecting early HR), every 15
sity of bedsi de_ moni- ri ng _duri ng ad- s_igns_of deteriora minutes
Copenhagen,  torsduring ad- mission; 116 tioninthe PACU (MAP)
Denmark mission to patients using continuous-
post anesthetic (65.2%) had =1 |y collected car-
care unit microevent with  diopulmonary vi-
aduration>15 tal signs
minutes
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Authors, Setting(s) Datacollec-  Cohortdescrip-  Event rate

Study purpose Predictors Measurement  Outcome
frequency

Shashiku-  Adult ICU ICU bedside  Patientswith 242 sepsiscases Predict onset of MAP, HR, 21 measure-  Onset of sepsis

year tion tion
mar eta, units monitors, Bed- unselected
2017 [40] master sys- mixed surgical

tem; upto 24  procedures
hours of moni-

toring

Tarassenko Genera Bedsidemoni- 150 general-  Not specified
etal, 2006 wards at torsfor at ward patients
[32] John Rad- |east 24 hours

cliffe Hospi- per patient

tal in Ox-

ford, United

Kingdom

VanWyk  Methodist Bedsidemoni- 2995 patients 343 patients

sepsis 4 hours SpO,, SBR, ment per hour

aheadof time, uss DBP RR,

ing commonly GCS, tempera-

measured vital ture, comorbid-

signs ity, clinical
context, admis-
sion unit, sur-
gical special-
ty, wound
type, age, gen-
der, weight,
race

Ared-timeauto- HR, RR, Every 30min-  Signsof deterio-
mated system, SpO,, skin utes (BP), ev- ration

BioSign, which  temperature, ~ €ry 5 seconds

trackspatientsta-  average SBP-  (other vitals)

tusby combining  average DBP

information from

vital signs

Classify patients HR, MAP, Every minute  Sepsisdetection

eta, 2017 LeBonheur tors: Cerner (11.5%) diag-  into sepsisand DBP, SBPR,

[33] Hospital, CareAware nosed with sep- nonsepsisgroups SpO,, age,
Memphis, iBus system sis usngdatacollect-  race, gender,
TN ed at variousfre-  fraction of in-

quenciesfromthe  spired oxygen
first 12 hours af-

Yooneta, Bethlsrad ICUbedside 2809 subjects 787tachycardia Predictingtachy- Arterial DBP, 1/60Hzorl  Tachycardia

2019[41] Deaconess  monitorsand episodes
Medical medical
Center ICU  records(MIM-
IC-11)

ter admission

cardiaasasurro- arterial SBP, Hz episode
gateforinstabili- HR, RR,

ty SpO,, MAP

8 CU: intensive care unit.

PNEWS: National Early Warning Score.

°HR: heart rate.

4RR: respiratory rate.

€SBP: systolic blood pressure.

favPu: aert, verbal, pain, unresponsive.

9CRI: cardiorespiratory instability.

PDBP: diastolic blood pressure.

iED: emergency department.

JEHR: electronic health record.

kaes: Glasgow Coma Score.

INHS: National Health Service.

™MIMIC: Medical Information Mart for Intensive Care.
"DTAS: Deep learning—based Triage and Acuity Score.
°MAP: mean arterial pressure.

PUCSF: University of California, San Francisco.
9PACU: postanesthesia care unit.

Predictor Variables

The most commonly used vital sign predictors were HR, RR,
systolic BP, diastolic BR, SpO,, body temperature, level of

consciousness through either the Glasgow Coma Score or the
AVPU scale, and mean arterial pressure. Measurement
frequenciesfor these variablesranged from once every 5 seconds
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[32] in hospital wards to 3-7 times per week [22] in an
ambulatory setting. Other commonly used predictors included
age, gender, weight, ethnicity, chief complaint, and
comorbidities.
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Outcomes

The outcomes being predicted in most studies focused on
cardiorespiratory insufficiency—related events. Cardiac arrest
was the primary outcome in 7 [24,26,35,36,38,42,45] studies,
whilegeneral cardiorespiratory deterioration or decompensation
wasthe primary outcomein 5 studies[25,39,41,43,44]. Another
commonly predicted outcome was sepsis, which included the
time of onset of sepsis[34,37,40], severe sepsis[33,34], septic
shock [34], and sepsis-related mortality [23]. Other outcomes
explored within the studies include unanticipated ICU
admissions [24,42,45], development of critical illness [24],
general physiological deterioration [25,32,39,46], abnormal or
dangerous clinical events [27-29], and mortality [11,24,42].

Outcomeswerefirst identified, and baseline model swere created
using predefined parameter threshol ds (ground truth) consi stent
with the MEWS [23,26,35] or NEWS [23,42,46] criteria for
cardiorespiratory instability and general physiological
deterioration, while the sepsis-related outcomeswereidentified
based on the thresholds set within the systemic inflammatory
response syndrome [34], quick Sequential Organ Failure
Assessment (QSOFA) [23], and SOFA [37] criteria. Some
studies[22,27-29,43,44] & so used thresholds and criteriabased
on the population served by their individual care setting.

https://www.jmir.org/2021/2/e25187
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ML Models and Performance

All included studies consider the prediction of deterioration risk
to be a classification task and therefore use different types of
classification models in the process, including tree-based
models, linear models, kernel-based methods, and neura
networks (refer to Table 2 for afull inventory of methods used,
model performance achieved, and prediction windows, and see
Multimedia Appendix 2 for adescription of ML methods).

Measures used to assess model performance varied across the
studies. The most common measure was the area under the
receiver operator characteristic (AUROC) along with model
accuracy, sensitivity, and specificity. Area under the
precision-recall, F-score, Hamming's score, and precision
(positive predictive value) were reported less commonly.

Prediction windows ranged from 30 minutes to 30 days before
an event.

Model performance varied substantially based on outcome
measure being predicted (eg, cardiorespiratory insufficiency vs
sepsis), ML method used (eg, linear vs tree-based), and
prediction window (eg, 30 minutes before an event vs 4 hours
before).
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Table 2. Machine learning (ML) models and comparisons used for outcome prediction.

Muradlitharan et al

Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons
Badriyahet 35585ad-  199(0.56%), car- Decisiontree  Not speci- Decisiontreepre- Not specified Within24  nyews<d AU-
al, 2014 [45] missions diac arrest; analysis fied dicted cardiac ar- hourspre-  RoC: cardiac
1161 (3.26%) rest: AU- ceding  grest, 0.722;
unanticipated ROC®=0.708; &vents  ynanticipated
ICUP admissions; unanticipated ICU ICU admis-
1789 (5.02%) admission: AU- sion, 0.857;
deaths; 3149 ROC=0.862; death, 0.894;
(8.85%) any out- death: AU- any outcomes,
come ROC=0.899; any 0.873
outcomes: AU-
ROC=0.877
Chenata, 1880 pa 997 patients Variant of the  Not speci- Random forest Logisticregress  Within4  No compari-
2017 [44] tients (1971  (53%) or 1056 random forest fied Aucf initially re- sion: AUC=0.7;  hourspre- son
admissions) admissions classification mained constant  @sso logisticre-  ceding
(53.6%) who ex- model using (0.58-0.60), fol- gression: events
perienced CRI® ~ nonrandom lowed by anin- AUC=0.82
events splits creasing trend,
with AUCsrising
from 0.57 t0 0.89
during the 4 hours
immediately pre-
ceding events
Churpek et 269,999 ad- 16,452 outcomes Univariate Forwardim- Trendsincreased  Not specified Within4  No compari-
a,2016[24] missions (6.09%) analysis, bi- putation, me- model accuracy hourspre- son
variagteandy- dianvalue  comparedto a ceding
sis imputation  model containing events
only current vital
signs (AUC 0.78
vs 0.74); vital sign
slope improved
AUC by 0.013
Chiewetal, 214 patients 40 patients K-nearest Not speci- Gradient boosting ~ K-nearest neigh-  Within30 gepdi-
2019 [23] (18.7%) met out- neighbor, ran- fied predicted 30-day  bor: F1 days pre- F1=0.40,
come dom forest, sepsis-related mor-  score=0.10, ceding AUPRC=0.22:
adaptive tality: F1 AUPRC=0.10, event SOFAI-
boosting, gra- score=0.50, precision g 1-0.3 2
dient boost- AUPRC=0.35, pre- (PPV)=0.33, re- AU_Pé C=’ 021
ing, support cision call=0.6; random NEWS: o
vg:tor ma- (PPV9)=0.62, re-  forest: ('):\}35 F1-0.38
chine - score=0.35, e
call=05 AUPRC=0.27, AUPRC=028
precision MEWS®:
(PPV)=0.26, re- F1=0.30,
call=0.56; adap. AUPRC=0.25
tive boosting: F1
score=0.40,
AUPRC=0.31,
precision
(PPV)=0.43, re-
call=0.38; SYM™
F1 score=0.43,
AUPRC=0.29,
precision
(PPV)=0.33, re-
cal=0.63
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Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons
Chiuetal, Adultsunder- 578 patients Logistic re- Observations Logisticregression  Not specified Within NEWS: 24
2019 [42] goingrisk-  (4.2%) with an gression withmissing predicted the event 24,12, hours before
sratifiedma-  outcome; 499 pa- valueswere 24 hoursin ad- and 6 event,
jor cardiac  tients (3.66%) excluded vance: AU- hourspre-  py-
surgery with unplanned ROC=0.779; 12 ceding ROC=0.754:
(n=13,631)  ICU readmissions hours in advance: event 12 hours be-
AUROC=0.815; 6 fore event,
hours in advance: AU-
hours before
event, AU-
ROC=0.813
Cliftonet al, 200 patients Not specified Classifiers, Missing SVM predictedde- Conventiona Not speci- No compari-
2014 [25] inthe postop- Gaussian pro- channelsre- terioration: accuras  SVM: accura fied son
erative ward cess, one-class  placed by cy=0.94, partial cy=0.90, partial
following supportvector mean of that AUC=0.28, sensi- AUC=0.26, sensi-
upper gas- machine, ker-  channel tivity=0.96, speci- tivity=0.92,
trointestinal nel estimate ficity=0.93 specificity=0.87;
cancer Gaussian mixture
surgery models: accura-
cy=0.9, partia
AUC=0.24, sensi-
tivity=0.97,
specificity=0.84;
Gaussian process-
€s. accura
cy=0.90, partial
AUC=0.26, sensi-
tivity=0.91,
specificity=0.89;

kernel density es-
timate: accura-

cy=0.91, partial
AUC=0.26, sensi-
tivity=0.94,
specificity=0.87
Desautelset 22,853 1CU 2577 (11.28%) Insght dlassifi-  Carry for- Classifier predicts  Not specified Within4 g rg™ AU-
a,2016[37] stays stayswithcon-  er wardimputa-  sepsis at onset: hourspre-  Rroc= 0.609,
firmed sepsis tion AUROC=0.880, ceding APR= 0.160:
APR'=0.6, accura- eventand  4SOFA: AU-
cy=0.8; classifier atimeof Roc=0.772,
predicts sepsis 4 eventon-  ApR=0.277;
hours before onset: et MEWS: AU-
AUROC=0.74, ROC=0.803,
APR=0.28, accura- APR=0.327;
cy=0.57 SAPSII:
AU-
ROC=0.700,
APR=0.225;
SOFA: AU-
ROC=0.725,
APR=0.284
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Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons

Forkaneta, 1023 pa Not specified PCA® usedto Datawith Hidden Markov Neural network:  Within30 No compari-
2017 [28] tients separatepa-  Cconsecutive  Model eventpredic- - accuracy=93%  minutes  son

tientsinto missing val-  tion: accura- preceding

multiple cate-  Uesovera - cy=97.8%, preci- event

gories; hidden long period  sion=92.3, sensitiv-

Markov Mod- a@e€€éliminat- ity=97.7, specifici-

el adopted for €d ty=98, F-

probabilistic score=95%

classification

and future pre-

diction
Forkaneta, 85patients Not specified Multilabel Where>1vi- Predictionsacross Not specified Withinl  No compari-
2017 [27] classification tal signsdata 24 classifier combi- hour pre-  son

agorithmsare aremissing nationsyielded a ceding

applied in whileclean  Hamming score of event

classifier de-  valuesof 90%-95%; F1-mi-

sign; result othersare cro average of

analysiswith  available, 70.1%-84%; accu-

J8 decison  considered  racy of 60.5%-

tree, random  asrecover-  77.7%

tree and se- ableand im-

quential mini- puted using

mal optimiza- median-pass

tion (SMO,a and k-near-

simplified ver-  est neighbor

sion of SVM) filter
Forkaneta, 4893 pa Not specified J8 decison  Datawith Event prediction ~ J48decisiontree: 1 hour No compari-
2017 [29] tients tree, random  consecutive by random forest:  within a 60- preceding son

forest, sequen- missing val-  withina60-minute minute forecast ~ event

tial minimal uesover a forecast horizon, F  horizon, F

optimization, long period  score=0.96, accura-  score=0.93, accu-

MapReduce  areeiminat- cy=95.86; withina racy=92.46; with-

random forest ed 90-minuteforecast in a 90-minute

horizon, F-
score=0.95, accura-

forecast horizon,
F score=0.92, ac-

cy=95.35; withina curacy=91.59;
120-minutefore-  within a120-
cast horizon, F- minute forecast
score=0.95, accura-  horizon, F
cy=95.18 score=0.91, accu-
racy=91.30;
Event prediction
with sequential

minimal optimiza-
tion: within a 60-
minute forecast
horizon, F
score=0.91, accu-
racy=90.72; with-
in a90-minute
forecast horizon,
F score=0.90, ac-
curacy=90.08;
within a 120-
minute forecast
horizon,

F score=0.89, ac-
curacy=89.23
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Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons
Guillame- 297 admis- 127 patients TITAPrules, Not Speci- Event forecast dlert Random forest: ~ Within17 No compari-
Bertet d, sions (43%) exhibited e fusiona- fied within 17 minutes, event forecast minutes,  son
2017 [43] at least 1 rea gorithm; map- 51 seconds before  alert within 11 51 sec-
CRI event during  ping function onset of CRI (false  minutes, 25 sec-  onds pre-
their stay inthe  from rule- dert every 12 ondsbeforeonset  ceding
step-down unit  pased features hours); event fore-  of CRI (false CRI onset
to forecast castaertwithin10 aert every 12
mode! learned minutes, 58 sec-  hours); event
using random ondsbeforeonset  forecast alert
forest ¢l assifi- of CRI (falseaert within5minutes,
er every 24 hours) 52 seconds be-
fore onset of CRI
(false alert every
24 hours)
Hoet al, 763 patients 197 patients Temporal Imputedval- TTL-Reg predicts Not specified Within6  No compari-
2017 [38] (25.8%) experi-  transfer learn- uesbasedon eventswith an hourspre- son
enced acardiac  ing-based themedian  AUC of 0.63 ceding
arrest event model (TTL- from patients event
Reg) of the same
gender and
similar ages
Jang et d, Non-traumat- 374,605 eligible  aAnN9with ~ Notspeci-  Event prediction:  Randomforest,  Within24 MEWS: AU-
2019 [35] ic ED visits  ED visits of multilayer per- fied ANNwithmultilay- AUROC=0.923; hourspre- ROC=0.886
233,763 patients;  ceptron, ANN er perceptron, AU-  logisticregres-  ceding
1097 (0.3%) pa- A r ROC=0.929; ANN sion, AU- event
tientswithcar- ~ WINLSTM,, with LSTM, AU-  ROC=0.914
diac arrest hybrid ANN; ROC=0.933; hy-
\fmﬁﬁz‘:‘n brid ANN, AU-
forest and lo- ROC=0.936
gistic regres-
sion
Kwoneta, 52131pa 419 patients 3RNNSlayers Most recent  Event prediction:  Random forest, 30min- MEWS: AU-
2018 [26] tients (0.8%) withcar-  \ithLSTM to Vauewas RNNs, AU- AUROC=0.78,  utesto24 ROC=0.603,
diac arrest; 814 {eq withtime Used:ifno  ROC=0.85, AUPRC=0.014; hourspre- AUPRC=0.003
(1.56%) deaths  goriesdata; ~ VAueaval-  AUPRC'=0.044  logisticregres  Ceding
without attempt- compared to able, then sion, AU- event
ed resuscitation random forest median val- ROC=0.613,
andlogisticre  Ue used AUPRC=0.007
gression
Kwoneta, 10,967,518 153217 (14%) p1a<ug ng Excluded Event prediction:  Random forest:  Notspeci- Korean triage
2018 [11] ED visits in-hospital multilayer per- DTASusingmulti- AUROC=0.89, fied and acuity
deaths; 625,117 ceptronwith 5 layer perceptron,  AUPRC=0.14; score: AU-
(5.7%) critical hidden AUROC=0.935, logistic regres- ROC =0.785,
care admissions, AUPRC=0.264 sion: AUROC= AUPRC=0.192,
2,964,367 layers 0.89, MEWS: AU-
(27.0%) hospital - AUPRC=0.16 ROC=0.810,
izations AUPRC=0.116;
Larburu et 242 patients 202 predictable  Naive Bayes, Not speci- Decompensation  Decision tree, Notspeci- No compari-
a, 2018 [22] decompensations  decisiontree, fied event prediction:  neural network,  fied son
random forest, naive Bayes, random forest,
SVM AUC=67% support vector
machine, stochas-
tic gradient de-
scent
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Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons

Lietal, 12 patients  Not specified L-PCA (com- Not speci- Fault detectionrate Not specified Not speci- No compari-

2016 [39] bination of fied with L-PCA: 20% fied son

just-in-time higher than with

learning and PCA; 47% higher

PCA) than with fast
moving-window
PCA; best detec-
tion rate achieved
was 99.8%

Liveta, 702 patients 29 (4.13%) pa- Novel variable Not speci- Event prediction ~ Not specified Within72 1 m V-

2014 [36] withundiffer- tientsmet prima-  selection fied with ensemble hours of AUC=0.637:
entiated, ry outcome framework learning model: arivda  pMews:
non-traumat- based on en- AUC=0.812, cut- ED AUC=0.622
ic chest pain semble learn- off score=43, sensi-

ing; random tivity=82.8%,
forest wasthe specificity=63.4%
independent

variable selec-

tor for creat-

ing the deci-

sion ensemble

Maoetd,  ycspW: UCSF: 1179 Gradienttree  Carry for-  Detectionwithgra  Not specified Atonset MEWS: AU-

2018 [34] 90,353 pa- (1.3%) sepsis, boosting + wardimputa-  dient tree boosting: of sepsis  ROC=0.76;
tients: MIM- 349 (0.39%) se-  transfer learn- tion AUROC=0.92 for andse-  SOFA: AU-
1l vere sepsis, §l4 ing using sepsis; AU- vere sep- ROC=0.65;
o1 604.pa- (0.68%) septic MIMIC-I1I as ROC:0.8_7 for se- Sis; with- SIRS: AU-

i en s shock; MIMIC-  source and vere sepsis at on- in4hours ROC=0.72

I11: sepsis UCSF astar- set; AUROC=0.96 preceding

(1.91%), severe  get for septic shock 4 septic

sepsis (2.82%), hours before; AU- shock and

septic shock ROC=0.85 for se- severe

(4.36%) vere sepsis predic- sepsis

tion 4 hoursbefore
Olsenetal, 178patients 160 (89.9%) had Randomforest Not speci- Detection of early  Not specified Not speci- Compared
2018 [46] >1 microevent classifier fied signs of deteriora- fied with hospital's

occurring during tion with random current larm

admission; 116 forest: accura- system: num-

patients (65.2%) cy=92.2%, sensitiv- ber of false

had =1 mi- ity=90.6%, speci- darms de-

croevent with a ficity=93.0%, AU- creased by

duration >15 ROC=96.9% 85%, number

minutes of missed ear-
ly signs of de-
terioration de-
creased by
73%
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Study Cohort Event rate ML model(s) Missingdata Best ML model ML model com-  Predic- Aggregate
handling performance parisons tionwin-  weighted
dow EWS?compar-
isons
Shashikumar Patientswith 242 sepsiscases Elasticnetlo- Medianval- Event prediction:  Not specified 4hours  No compari-
etd, 2017  unselected gistic classifi- ues(if multi- elastic net logistic priorto  son
[40Q] mixed surgi- er plemeasure- classifier using en- onset
cal proce- ment were  tropy features
dures available); aone, AU-
otherwise, ROC=0.67, accura-
theoldval- cy=47%; elastic
ueswere net logistic classifi-
kept (sam-  er using socia de-
ple-and-hold mographics +
interpola- EMRY features,
tion); mean - AUROC=0.7, accu-
imputatio_n racy=50%; elastic
forreplacing et |ogistic classifi-
alremaining g ysing all fear
missing val-  {res, AU-
ues ROC=0.78, accura-
cy=61%
Tarassenko 150 general-  Not specified Biosign; data  Historic, me- 95% of Biosign Not specified Within No compari-
etal, 2006  ward pa- fusion dianfiltering alerts were classi- 120 min-  son
[32] tients method: proba fied as“True” by utes of
bilistic model clinical experts event
of normality
in five dimen-
sions
VanWyk et 2995 pa- 343 patients CNNZ(con-  Notspeci-  Eventclassifica=  Event classifica=  Notspeci-  No compari-
a,2017[33] tients (11.5%) diag- structedim-  fied tionwithal- tionwithal- fied son
nosed with sepsis  ggesusing raw minute observation - minute observe-
patient data) frequency: CNN, tion frequency:
with random accuracy=86.1%;  multilayer percep-
dropout to re- event classification  tron, accura-
duce overfit- withal0-minute  cy=76.5%;
ting; multilay- observation fre-  gyent classifica-
er perceptron quency: CNN, &~ jon with a 10-
with random curacy=78.2%  minute observa-
dropout be- tion frequency:
tween layers multilayer percep-
to avoid over- tron, accura
fitting cy=71%
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Study Cohort Event rate ML model(s)

Missing data
handling

Best ML model
performance

Predic-
tion win-
dow

ML model com-
parisons

Aggregate
weighted

EWS?compar-
isons

2809 sub-
jects

Yoon et a,
2019 [41]

787 tachycardia
episodes

Regularized
logistic regres-
sion and ran-
dom forest
classifiers

Discrete
Fourier
transform,
cubic-spline
interpolation

Event prediction:
random forest,
AUC=0.869, accu-
racy=0.806

Logistic regres-
sionwith L1 regu-
larization,
AUC=0.8284, ac-
curacy=0.7668

Within3  No compari-
hourspre- son

ceding

onset

of heart rate
andrespirato-
ry rate data
for missing
dataaslong
as =20% of

the data

were avail-

able

3EWS: early warning system.

b CU: intensive care unit.

CAUROC: area under the receiver operator characteristic.
dNEWS: National Early Warning Score.

€CRI: cardiorespiratory instability.

fAUC: areaunder the curve.

9PPV: positive predictive value.

hsvm: support vector machine.

ISEDS: Si ngapore Emergency Department Sepsis.
JgSOFA: quick Sequential Organ Failure Assessment.
KMEWS: Modified Early Warning Score.

|APR: area under the precision-recall curve.

MSIRS: systemic inflammatory response syndrome.
"SAPS I1: simplified acute physiology score.

OPCA: principal component analysis.

PTITA: temporal interval tree association.

9ANN: artificial neural network.

'LSTM: long short-term memory.

SRNN: recurrent neural network.

'AUPRC: area under the precision-recall curve.
UDTAS: Deep learning-based Triage and Acuity Score.
VTIMI: Thrombolysisin Myocardial Infarction.
WUCSF: University of California, San Francisco.
*MIMIC: Medical Information Mart for Intensive Care.
YEMR: electronic medical record.

ZCNN: convolutional neural network.

Comparison With Aggregate-Weighted EWS

Nine studies compared the performance of ML -based EWSwith
aggregate-weighted EWS. Studies exploring cardiorespiratory
outcomes, general physiological deterioration, or mortality
carried out comparisons with NEWS [42,45], MEWS
[11,26,35,36], and the Thrombolysis in Myocardia Infarction
score [36]. The 3 studies exploring sepsis-related outcomes
additionally included the SOFA, qSOFA, and SIRS criteriaand
the simplified acute physiology (1) score [23,34,37]. A few
studies also drew comparisons with other customized scoring
systems individual to their care setting or region such as the
Korean Triage and Acuity Score [11], Singapore Emergency

https://www.jmir.org/2021/2/e25187

Department Sepsis model [23], and postanesthesia care unit
alarm system [46].

In al 9 studies, the ML models performed better than the
aggregate-weighted EWS systems for al clinical outcomes
except for cardiac arrest in the study by Badriyah et al [45]. For
example, in the study by Jang et a [35], a long short-term
memory neural network achieved an AUROC of 0.933, an
improvement over MEWS, which achieved an AUROC of 0.886
using the same data. Similarly, in the study by Kwon et al [26],
recurrent neural networks achieved an AUROC of 0.85
compared to 0.603 for MEWS and 0.785 for the Korean Triage
and Acuity Score. Some studies reported much more modest
improvements, such asthe study by Chiu et al [42] that achieved
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an AUROC of 0.779 using logistic regression, compared to
0.754 using MEWS for the same 24-hour prediction window.
A full side-by-side comparison of ML vs aggregate-weighted
EWSis presented in Multimedia Appendix 3.

Discussion

Based on this scoping review, ML-based EWS models show
considerable promise, but there exist several important avenues
for future research if these models are to be effectively
implemented in clinical practice.

Prediction Window

A model’s prediction window refers to how far in advance a
model is predicting an adverse event. Most studiesincluded in
our review used a prediction window between 30 minutes [26]
and 72 hours [36] before the clinical deterioration took place.
Thelength of amodel’s prediction window isimportant because
a prediction window that is too short will not yield any real
clinical benefit (it would not give aclinical team sufficient time
to intervene), but a number of studies [29,34,37,42] showed a
decrease in model performance when the prediction window
was longer (eg, AUROC drops from 0.88 at the time of onset
to 0.74 at 4 hours before the event). Future research seeking to
maximize the clinical benefit of ML EWS should strive to
achieve an optimum balance between a clinically relevant
prediction window and clinically acceptable model performance,
rather than simply maximizing a model performance metric,
such as AUROC.

Clinically Actionable Explanations

The studies included in this review focused on ML model
devel opment and did not explore how the output of these models
would be communicated to clinicians. Since many ML models
are “black boxes’ [46,47], it may not be immediately clear to
clinicians what the likely reason for an alert might be until the
patient is assessed, which can cause further delays in
time-sensitive scenarios. However, in the broader ML field,
there has been significant recent progress in explainable ML
techniques, and it has been pointed out that these approaches
may be preferred by the medical community and regulators
[48,49]. Several explanation methods take specific, previously
black-box methods, such as convol utional neural networks[50],
and allow for post-hoc explanation of their decision-making
process. Other explainability algorithms are model-agnostic,
meaning they can be applied to any type of model, regardless
of its mathematical basis [51]. In the study by Lauritsen et al
[52], an explainable EWS was developed based on a temporal
convolutional network, using aseparate modulefor explanations.
These methodologies are promising, but their application to
health care, including to EWS, has been limited. Objective
evaluation of the utility of explanation methods is a difficult,
ongoing problem, but is an important direction for future
research in the area of ML-based EWS if they are to be
effectively deployed in clinical practice [53].

Expanded Study Settings

Nearly all the studies included in this review were conducted
in inpatient settings. While EWS are highly valuable in an
inpatient context, there is aso considerable need in the
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ambulatory setting, particularly postdischarge. For example,
the VISION study [54] found that 1.8% of all patientsdiewithin
30 days postsurgery and 29.4% of al deaths occurred after
patients were discharged from hospital. Patients often receive
postoperative monitoring only 3-4 weeks [54] after discharge
during afollow-up visit with their surgeon. During this period,
it has been shown that many patients suffer from prolonged
unidentified hypoxemia [55] and hypotension [56], which are
precursors to serious postoperative complications. While EWS
research has historically focused on inpatient settings due to
the availability of continuous vital signs data, the increasing
availability of remote patient monitoring and wearable
technol ogies offer the opportunity to direct future EWSresearch
to the ambulatory setting to address a significant clinical need.

Retrospective Ver sus Prospective Evaluation

All but one study [21] included in thisreview were retrospective
in nature, leaving open the possibility that algorithm
performance in a clinical environment may be lower than the
performance achieved in acontrolled retrospective setting [ 34].
It is aso unclear how often these EWS were able to identify
clinical deterioration that had not already been detected by a
careteam. Further, aertsfor clinical deterioration may be easily
disregarded by clinicians due to aert fatigue, even when the
risk of deterioration has been correctly identified [43]. In the
single case where an ML -based EWSwas studied prospectively,
Olsen et d [21] found that the random forest classifier decreased
false alarm rates by 85% and the rate of missed aerts by 73%
when compared to the existing aggregate-weighted alarm
system. While the predictions were independently scored for
severity by 2 clinician experts, the interpretation of the clinical
impact of these alerts was not explored any further, leaving the
question of clinical benefit unanswered. Future research into
ML -based EWS should begin to include prospective evaluation,
both of model accuracy (to understand how model performance
is affected when faced with real-world data) and of clinical
outcomes (to understand whether alertsin fact produce clinical
benefits).

Standar dizations of Performance Metrics

A key observation from thisreview isthelack of an agreed-upon
standard among the research community for reporting
performance measures across studies. This makes meaningful
comparison between the outcomes of these studies difficult,
and wherethereisoverlap, itisnot clear that the most clinically
relevant metrics have been chosen. The mgjority of the studies
in this review report the AUROC as the main performance
metric, reflecting a common practice in the ML literature.
However, AUROC may not be adequate for evaluating the
performance of the EWSin aclinical setting [57].

AsRomero-Brufau et a [58] discussed in their article, AUROC
does not incorporate information about the prevalence of
physiological deterioration, which can be lower than 0.02 daily
in a genera inpatient setting. This can make AUROC a
misleading metric, leading to overestimation of clinical benefit
and underestimation of clinical workload and resources. [58]
When the prevalence is low (<0.1), even a model with high
sensitivity and specificity may not yield a high posttest
probability for a positive prediction [15]. Therefore, reporting
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metrics that incorporate the prevalence would be more
appropriate.

The performance of an EWS depends on the tradeoff between
2 goals: early detection of outcomes versus issuance of fewer
false-positive alerts to prevent alarm fatigue [43]. Sensitivity
can be a good metric to evaluate the first goa as it would
provide the percentage of true-positive predictions within a
certain time period. To evaluate the clinical burden of
fase-positive alerts, the positive predictive value, which
incorporates prevalence, can be used asit gives a percentage of
useful alertsthat lead to aclinical outcome. The number needed
to evaluate can be a useful measure of clinical utility and
cost-efficiency of each aert asit providesthe number of patients
that need to be evaluated further to detect one outcome. Using
these metrics to eval uate tradeoffs between outcome detection
and workload would be essential for determining the clinical
utility of the EWS [58]. Additionally, the F1 score can aso be
auseful metric as it provides a measure of the model’s overall
accuracy through the calculation of the harmonic mean of the
precision and recall (sensitivity). Balancing the use of these 2
metrics could yield a more realistic measure of the model’s
performance [58].

Comparison to “Gold Standard” EWS

On arelated note, only 9 of the studies included in our review
made comparisons between their M L-based modelsand a“gold
standard” aggregate-weighted EWS, suchasMEWS or NEWS.
Future research in the area should report a commonly used
aggregate-weighted EWS as abaseline model, whichwould aid
in making effective comparisons between them. NEWS may
be particularly well suited to this area of research as its input
variables can al be measured automatically and continuously
viadevices.

Strengths of the Review

The search strategy was comprehensive while not being too
focused on specific clinical outcomes, sampling frequencies,
or filtering for time. This allowed for the identification of as
many studies as possible that examined the use of ML models
and vital signs to predict the risk of patient deterioration. No
additional studieswereidentified through citation tracking after
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the origina search, indicating our search strategy was
comprehensive. Unlike previous reviews, inclusion criteria for
the review supported the examination of findings from studies
conducted acrossavariety of clinical settingsincluding specialty
units or wards and ambulatory care. This helped in
characterizing the use of ML-based prediction models in
different patient-care environments with varying clinical
endpoints. Wherever the original studies provided the data,
comparisons were drawn between the performance of the ML
models and that of aggregate-weighted EWS. This gives an
indication of the differences in accuracy of the models in
predicting clinical deterioration.

Limitations

Thefindingswithin thisreview are subject to some limitations.
First, the literature search, assessment of eligibility of full-text
articles, inclusion in the review, and extraction of study data
were carried out by only 1 author. Second, only the findings
from published studies were included in this scoping review,
which may affect the results due to publication bias. While
studies from a variety of settings were included, the
generalizability of our findings may be limited due to the
heterogeneity of patient populations, clinical practices, and
study methodologies. Sampling procedures and frequencies
varied across studies from single to multiple observations of
patient vital signs, and clinical outcome definitions were based
on different criteria or aggregate-weighted EWS. Finaly, due
to this variation in ML methods, prediction windows, and
outcome reporting, a meta-analysis was not feasible.

Conclusion

Our findings suggest that M L-based EWS model sincorporating
easily accessible vital sign measurements are effective in
predicting physiological deterioration in patients. Improved
prediction performance was aso observed with these models
when compared to traditional aggregate-based risk stratification
tools. The clinical impact of these ML-based EWS could be
significant for clinical staff and patients due to decreased false
alertsand increased early detection of warning signsfor timely
intervention, though further development of these models is
needed and the necessary prospective research to establish actual
clinical utility does not yet exist.
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HR: heart rate

ICU: intensive care unit

MEWS: Modified Early Warning Score

MIMIC: Medical Information Mart for Intensive Care

ML: machinelearning

NEWS: National Early Warning Score

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

gSOFA: quick Sequential Organ Failure Assessment

RR: respiratory rate

TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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