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Abstract

Background: An increasing number of studies within digital pathology show the potential of artificial intelligence (AI) to
diagnose cancer using histological whole slide images, which requires large and diverse data sets. While diversification may
result in more generalizable AI-based systems, it can also introduce hidden variables. If neural networks are able to distinguish/learn
hidden variables, these variables can introduce batch effects that compromise the accuracy of classification systems.

Objective: The objective of the study was to analyze the learnability of an exemplary selection of hidden variables (patient age,
slide preparation date, slide origin, and scanner type) that are commonly found in whole slide image data sets in digital pathology
and could create batch effects.

Methods: We trained four separate convolutional neural networks (CNNs) to learn four variables using a data set of digitized
whole slide melanoma images from five different institutes. For robustness, each CNN training and evaluation run was repeated
multiple times, and a variable was only considered learnable if the lower bound of the 95% confidence interval of its mean
balanced accuracy was above 50.0%.

Results: A mean balanced accuracy above 50.0% was achieved for all four tasks, even when considering the lower bound of
the 95% confidence interval. Performance between tasks showed wide variation, ranging from 56.1% (slide preparation date) to
100% (slide origin).
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Conclusions: Because all of the analyzed hidden variables are learnable, they have the potential to create batch effects in
dermatopathology data sets, which negatively affect AI-based classification systems. Practitioners should be aware of these and
similar pitfalls when developing and evaluating such systems and address these and potentially other batch effect variables in
their data sets through sufficient data set stratification.

(J Med Internet Res 2021;23(2):e23436) doi: 10.2196/23436
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Introduction

The advent of artificial intelligence (AI) in digital pathology
(DP) has resulted in the development of various algorithms for
the detection, classification, and further evaluation of multiple
cancer subtypes [1]. General interest and enthusiasm for this
emerging technology continues to grow, exemplified by the
development of a variety of convolutional neural network
(CNN)–based oncology systems for the analysis of histological
images of breast [2,3], lung [4], skin [5,6], and gastrointestinal
[7] cancer. However, the successful implementation of
CNN-based assistance systems in DP is complicated by a
plethora of challenges [8-10], some of which are

domain-specific, while others are omnipresent in the field of
deep learning (DL) and machine learning (ML) in general.

One important issue in the field of biomedical data analysis is
the occurrence of batch effects, which are defined as differences
among subsets of a data set introduced through technological
artifacts [11,12]. In DP, such artifacts are introduced during
tissue processing and slide preparation [13], and presumably
also during slide digitization, image compression, and storage
[14], all of which affect slide and image appearance (Figure 1).
We expand on this definition of batch effects by including
biological factors, presumably unrelated to the actual
classification task, as causative agents. Both factors (biological
and nonbiological) are referred to as hidden variables from here
on.

Figure 1. Comparison of exemplary whole slide image sections obtained at different institutes: (A) Institute of Pathology, University Hospital Heidelberg,
University of Heidelberg, Heidelberg, Germany (Zeiss scanner; Carl Zeiss AG); (B) Department of Dermatology, University Hospital Kiel, University
of Kiel, Kiel, Germany (3DHISTECH scanner; 3DHISTECH Ltd); (C) Private Institute of Dermatopathology, Mönchhofstraße 52, Heidelberg, Germany
(Zeiss scanner); (D) Department of Dermatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany (Zeiss scanner);
and (E) Private Institute of Dermatopathology, Siemensstraße 6/1, Friedrichshafen, Germany (Zeiss scanner). (F) The same slide section as shown in
(E) but scanned with a Hamamatsu scanner (Hamamatsu Photonics KK) rather than a Zeiss scanner.

Batch effects can be problematic during development of ML
models, where hidden variables are learned instead of or in
addition to the intended target variables. The hidden variable
then acts as a complete or partial proxy for the intended target
variable, negatively affecting the model’s performance. Studies
have addressed this issue by focusing on various normalization

techniques [15-19]. In addition, standardized preprocessing
procedures and balanced data set construction may aid in
reducing but not eliminating batch effects. Overall, this is
concerning, and a previous study using a breast cancer tissue
cohort has already suggested the existence of batch effects in
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parts of the publicly available Cancer Genome Atlas (TCGA)
pathology repository [20].

We expand on these findings by analyzing the learnability of
four exemplary selected hidden variables, as learnable variables
can cause batch effects that can negatively influence DL
algorithms. Our research on hidden variables aims to highlight
that batch effects are not an unlikely occurrence, thereby
reinforcing the importance of proper data set construction and
experimental design, as well as sensitizing the community
toward these and similar pitfalls for the emerging field of DL
in DP.

Methods

Study Design
Using a proprietary dermatopathological data set of anonymized
slides, a series of ML tasks were formulated, where each task
investigated the learnability of a certain hidden variable. The
analyzed variables are believed to be found throughout DP
whole slide image (WSI) data sets, but their learnability does
not necessarily need to generalize.

Next, multiple DL models of the same architecture were trained
on the variable stated by each task, followed by subsequent
performance analysis, where an assessment was made of whether
the task’s variable was learnable or unlearnable. A variable was
considered learnable when the 95% confidence interval of its
mean balanced accuracy had a lower bound above 50.0% when
calculated on the slide level. Note that a random classifier, which
is unable to learn the variable, would be expected to achieve a
balanced accuracy of approximately 50.0%.

Ethics approval was obtained from the ethics committee of the
Medical Faculty of Mannheim, University of Heidelberg,
Mannheim, Germany.

Data Set
A total of 427 hematoxylin and eosin–stained preparations were
obtained from five different institutes, with each slide belonging
to one patient and containing tissue sections of melanoma
biopsies (Table 1). For details on the slide digitization process,
see Multimedia Appendix 1.

Table 1. Overview of individual data sets.

TasksScanner typeNumber of tilesNumber of slidesOrigin of slidesData set

2 (slide preparation date); 3 (slide
origin)

Zeissb1,344,82581Heidelberga1

1 (patient age); 2 (slide preparation
date)

3DHISTECHd2,092,726196Kielc2

3 (slide origin)Zeiss832,94073Heidelberge3

3 (slide origin); 4 (scanner type)Zeiss; Hamamatsug350,518; 364,19654Friedrichshafenf4

3 (slide origin)Zeiss513,25623Mannheimh5

aInstitute of Pathology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.
bCarl Zeiss AG.
cDepartment of Dermatology, University Hospital Kiel, University of Kiel, Kiel, Germany.
d3DHISTECH Ltd.
ePrivate Institute of Dermatopathology, Mönchhofstraße 52, Heidelberg, Germany.
fPrivate Institute of Dermatopathology, Siemensstraße 6/1, Friedrichshafen, Germany.
gHamamatsu Photonics KK.
hDepartment of Dermatology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.

Classification Tasks
Four classification tasks were performed, each analyzing one
predefined hidden variable. Data sets for each task were chosen
based on data availability, while simultaneously minimizing
the risk of cross-task learning. For instance, all data sets were
used for the slide origin prediction task (task 3) except data set
2, as the Department of Dermatology, University Hospital Kiel,
used a different scanner type (3DHISTECH scanner;
3DHISTECH Ltd) to digitize the slides (Table 1). Therefore, a
classifier could potentially determine the slide origin for data
set 2 by determining the scanner type.

Task 1: Patient Age
To determine patient age, data set 2 was used, and only slides
with an assigned patient age were analyzed. Slides were divided
into one of two classes based on patient age (≤48 years versus
>78 years), excluding slides of patients with ages in between.
The cutoff points were chosen in an effort to achieve a natural
balance between both age groups, with the 30-year gap making
it plausible to observe possible distinct age-dependent
morphological features.

Task 2: Slide Preparation Date
To determine the year of slide preparation, data sets 1 and 2
were used. Data availability varied but was generally sufficient
for years 2014-2018. For each data set, separate binary
classification tasks were defined, where slides were taken from
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every other year to ensure that there was a minimum of 365
days between the preparation dates of slides from each class
(eg, data set 1, 2015 versus 2017). This resulted in five separate
classification subtasks.

Task 3: Slide Origin
To determine the origin of the respective slide, all data sets
except data set 2 were used. Origin was defined as the institution
from which the slides were obtained.

Task 4: Scanner Type
To determine the scanner type, data set 4 was used. These slides
were scanned twice, but due to the slight difference in resolution
between the Zeiss (Carl Zeiss AG) and Hamamatsu (Hamamatsu
Photonics KK) scanners, scanned Zeiss slides were reprocessed
specifically for this task by downscaling their resolution (0.22
µm/px) to match the resolution of the Hamamatsu scanner (0.23
µm/px).

Model Training
Each task had a designated combined data set based on the setup
outlined above. Each combined data set was divided into a
training set and a test set on slide level using an 80:20 split. If
the resulting test set contained fewer than 10 slides, a
cross-validation approach on slide level was employed to
increase the size of the test set to a minimum of 10 slides per
class.

A ResNet50 architecture was trained for each task. In cases
where cross-validation was used for testing, the number of
trained CNNs equaled the number of cross-validation folds.
The training run for each task was repeated a total of five times
to obtain a robust average performance uninfluenced by
stochastic training events. This number was chosen arbitrarily

but with the intention to reduce the overall computing time. For
exact technical details on the cross-validation and training
procedure, please see Multimedia Appendix 1 or refer to
Multimedia Appendix 2 for an exemplary jupyter notebook
demonstrating the basic training procedure.

Model Inference and Statistical Evaluation
Inference was carried out on each task’s respective test set using
the complete set of tiles for each slide. The class for a WSI was
computed by first predicting on its complete set of tiles,
averaging all output probabilities, and assigning the class label
with the highest average probability to the slide. Because each
training and evaluation run for a task was repeated five times,
a mean balanced accuracy with a corresponding 95% confidence
interval could be computed.

Results

Learnability was investigated on the slide level, as that is the
standard and decisive criterion in DP. For all tasks, balanced
accuracy was generally higher on slide level than on tile level.

For each task, a balanced accuracy over 50.0% was achieved,
even when taking into account the range of the corresponding
confidence intervals. Classifier performance varied widely
inter-task and intra-task for task 2, which had multiple subtasks.
Task 1 (patient age) had a mean balanced accuracy of 87.5%
(Table 2). For task 2 (slide preparation date), performance varied
widely between subtasks, ranging from 56.1% (95% CI 52.7%
to 59.5%) to 83.5% (95% CI 80.9% to 86.1%). Classifiers for
task 3 (slide origin) and 4 (scanner type) showed balanced
accuracies of 97.9% (95% CI 97.3% to 98.5%) and 100%,
respectively.

Table 2. Overall mean performance of each task’s classifiers measured using mean balanced accuracy and evaluated on tile level and slide level.

ResNet50 performance (mean balanced accuracy)

Taska Slide level (95% CI)bTile level

87.5%76.2%1: Patient age

2: Slide preparation date

56.1% (52.7% to 59.5%)54.1%Data set 1: 2015 versus 2017

63.2% (53.4% to 73.0%)56.5%Data set 1: 2016 versus 2018

82.0% (76.4% to 87.6%)69.0%Data set 2: 2014 versus 2016

83.5% (80.9% to 86.1%)66.6%Data set 2: 2015 versus 2017

56.7% (52.6% to 60.7%)52.7%Data set 2: 2016 versus 2018

97.9% (97.3% to 98.5%)94.2%3: Slide origin

100%100%4: Scanner type

aTest sets for each task had a minimum of 10 slides per class.
bConfidence intervals are shown for the decisive criteria (slide level) and are omitted for tasks where no variation on slide level was observed.

Looking at the distributions of each task-specific model for the
first run, slide origin and scanner type could be predicted with
very high accuracy, with minor misclassification errors for task
3 (slide origin) and no misclassifications for task 4 (scanner
type). For task 1, patient age below 48 years could be predicted

with high accuracy, but one-quarter of the slides originating
from older patients (>78 years) were erroneously classified as
belonging to the younger age group. For task 2 (slide preparation
date), the results varied widely between comparisons. The 2-year
comparison with the highest balanced accuracy (data set 2, 2015
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versus 2017) showed some misclassifications, with slides from
2015 occasionally being classified as 2017, whereas the task
with the lowest balanced accuracy (data set 1, 2015 versus 2017)

showed frequent misclassifications in both directions (Figure
2).

Figure 2. Distributions of the models’ predictions for tasks 1 to 4 on slide level for ResNet50 (run 1). (A) Task 1 (patient age) prediction. (B) Task 4
(scanner type) prediction. (C, D) Comparison of the two most distinct classification subtasks for task 2 (slide preparation date), where balanced accuracy
was either at a maximum (C: data set 2, 2015 versus 2017) or at a minimum (D: data set 1, 2015 versus 2017). (E) Task 3 (slide origin) prediction, with
the data set number displayed rather than the data set origin for better readability.

Discussion

Principle Findings
Using four exemplary hidden variables found in DP WSI data
sets, we showed that these variables were learned by a DL
algorithm for a dermatopathological data set. A learnable hidden
variable may cause a batch effect, which can greatly affect the
training of such algorithms if said variable is unintendedly
picked up instead of or in addition to the intended target
variable. We hypothesized that there would be hidden variables
that would figure very prominently on the slides. These are
more likely to be picked up and used by the algorithm to classify
the slides and therefore pose the greatest threat to classification
accuracy. To identify such “high risk” variables, we limited the
amount of training the CNN received, using a standard
architecture and a training procedure with little optimization
and no training until convergence. This should result in only
prominent variables being learned, which likely pose the greatest
threat to a classifier’s accuracy, although an influence of factors
that may be learned by a more extensive training procedure
cannot be excluded.

All of the four variables tested (patient age, slide preparation
date, slide origin, and scanner type) were learned by the
classifier, albeit to different extents. The highest balanced
accuracy was observed for task 4 (scanner type). For this task,
slides from data set 4 were scanned twice with different devices
but processed with the same image-processing pipeline, leaving
differences in scanner type (eg, specific scanner hardware or

software) as the only causative source of variations, which must
be quite pronounced based on the high balanced accuracy.

Performances for tasks 3 (slide origin) and 4 (scanner type)
were comparable. As all slides for task 3 were scanned and
processed using the same scanner type and pipeline, digitization
as the source of the observed batch effects can be ruled out.
Therefore, the source of variation most likely stemmed from
the slide preparation step, a complex process with lots of
potential variables related to the sectioning, fixation, staining,
and mounting procedures. Determining the origin of images
was previously shown outside the field of DP, where a CNN
correctly identified hospital systems based solely on chest
radiographs [21].

The aforementioned slide preparation step was also a likely
contributor to the “classifiability” of the slide preparation dates
(task 2), together with slide aging itself (ie, small amounts of
tissue and dye degradation). While slide aging is presumably a
gradual process, the slide preparation step is expected to change
more abruptly when institutions change the exact mode of slide
preparation over time (eg, when a new staining protocol is
introduced). This could explain the large variability in classifier
performance for task 2, where in some cases the difference
between two particular years could be identified much more
accurately than between two other years at the same institution.
Based on these results, the learnability of this task depends
highly on the chosen year and data set, making the underlying
variable less of a risk factor but still worthwhile considering.

The patient age prediction task was the only task that reflected
a true “biological” difference between the analyzed groups. It
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is known that the texture of the skin changes as result of the
aging process via a multitude of processes [22]. For instance,
the amount of elastin and collagen decreases with time, which
results in a restructuring of the fibrous tissue in deeper skin
layers. On UV-exposed skin, additional similar effects may also
be induced by photoaging. Moreover, some extent of biological
variability regarding the aging process likely exists. This rather
complex pattern of skin aging may explain why the ability of
the CNN to separate the chosen age groups was not perfect.
Performance would likely drop if the age gap of 30 years were
to be reduced or if instead of WSIs showing both tumor and
healthy skin, only tumor regions were regarded. Nonetheless,
the classifier’s ability to pick up variables representing large
age differences is important to consider, as an unequal patient
age distribution is not unlikely to occur for certain medical DL
objectives, especially since cancer incidence increases with age.

Based on these findings, it is not unlikely that the discussed
variables may interfere with the generation of an accurate
CNN-based classifier. Due to the technical nature of slide
preparation date, slide origin, and scanner type, their learnability
could generalize to other fields in DP, which may have to be
investigated in further studies. The learnability of patient age,
however, may be more specific to the field of dermatology.
While patient age is known to have an impact on the skin,
age-related differences may be much less prominent in other
tissues.

Prevention and Verification
In order to minimize the learning of batch effect variables, we
suggest to balance any known batch effect variables during
creation of the training data set, in addition to any normalization
and preprocessing standardization. If easy-to-learn variables
are equally balanced between classes, separation based on these
variables should no longer result in a reduction of the training
loss, thus losing its optimization value. In addition, large and
diversified validation sets decrease the likelihood that unwanted
correlations between batch effect variables and the intended
biological variable exist and thereby can aid in uncovering
whether the intended biological variable or some confounding
hidden variable was learned.

Unfortunately, balancing training data sets for all potential batch
effects is unfeasible. Even randomized clinical trials can only
ever be balanced for a few features that are deemed crucial to
the comparison in question. With time, additional knowledge

accumulating both within and outside the field of AI-supported
medicine may help researchers to clarify which potential
influencing variables have to be taken into account for which
tasks. In this regard, the future realization of more transparent
AI-systems that facilitate both explainability and causability
[23] would go a long way in helping practitioners to better assess
the reliability of AI-systems through a better understanding of
their decision-making process.

Limitations
A major limitation is that the list of considered artifacts is not
exhaustive. As numerous other potential confounders exist,
some of which we are not yet aware of, complete coverage of
all possible artifacts in one study is impossible and therefore
has to be limited to a selection considered to be crucial.
However, because of the black-box nature of DL algorithms,
there is no proof to show what the model actually learned,
meaning that any of the unaccounted for artifacts could by
chance correlate with a task’s class distribution and be learned
instead. This cannot be ruled out; however, by increasing
validation set size and diversity, chances of these accidental
training set correlations persisting through to the validation set
decrease and should therefore be detected during the validation
stage.

In this study, only results obtained with one DL architecture
are shown. We therefore investigated two additional
architectures (DenseNet121 and VGG16) and observed a similar
trend (see Multimedia Appendix 1).

While learnability was only investigated on a
dermatopathological data set in this study, some of the insights
gained here may be transferable to other fields in DP. Moreover,
this study did not intend to show exactly what variables can be
learned but rather to show that unexpected variables can be
learned.

Conclusions
Our DL model was able to learn several potential batch effect
variables with relative ease, a finding that is likely to be
applicable to other DL models, too. Thus, our results highlight
the importance of identifying and minimizing these effects, not
only by normalization and preprocessing standardization but
also by carefully constructing training and validation sets for
DL classification tasks.
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