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Abstract

Background: The initial symptoms of patients with COVID-19 are very much like those of patients with community-acquired
pneumonia (CAP); it is difficult to distinguish COVID-19 from CAP with clinical symptoms and imaging examination.

Objective: The objective of our study was to construct an effective model for the early identification of COVID-19 that would
also distinguish it from CAP.

Methods: The clinical laboratory indicators (CLIs) of 61 COVID-19 patients and 60 CAP patients were analyzed retrospectively.
Random combinations of various CLIs (ie, CLI combinations) were utilized to establish COVID-19 versus CAP classifiers with
machine learning algorithms, including random forest classifier (RFC), logistic regression classifier, and gradient boosting
classifier (GBC). The performance of the classifiers was assessed by calculating the area under the receiver operating characteristic
curve (AUROC) and recall rate in COVID-19 prediction using the test data set.

Results: The classifiers that were constructed with three algorithms from 43 CLI combinations showed high performance (recall
rate >0.9 and AUROC >0.85) in COVID-19 prediction for the test data set. Among the high-performance classifiers, several CLIs
showed a high usage rate; these included procalcitonin (PCT), mean corpuscular hemoglobin concentration (MCHC), uric acid,
albumin, albumin to globulin ratio (AGR), neutrophil count, red blood cell (RBC) count, monocyte count, basophil count, and
white blood cell (WBC) count. They also had high feature importance except for basophil count. The feature combination (FC)
of PCT, AGR, uric acid, WBC count, neutrophil count, basophil count, RBC count, and MCHC was the representative one among
the nine FCs used to construct the classifiers with an AUROC equal to 1.0 when using the RFC or GBC algorithms. Replacing
any CLI in these FCs would lead to a significant reduction in the performance of the classifiers that were built with them.

Conclusions: The classifiers constructed with only a few specific CLIs could efficiently distinguish COVID-19 from CAP,
which could help clinicians perform early isolation and centralized management of COVID-19 patients.

(J Med Internet Res 2021;23(2):e23390) doi: 10.2196/23390
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Introduction

COVID-19 caused by SARS-CoV-2 infection, which was
discovered in early December 2019, has become a global
pandemic. As of August 3, 2020, COVID-19 has become
widespread in 215 countries, areas, or territories worldwide; it
has caused infection in more than 17.9 million people and has
resulted in the deaths of more than 686,000 people [1]. The
World Health Organization has stated that the spread of
COVID-19 may be impeded by early detection, isolation, and
the implementation of a robust health care system [2,3].
Nevertheless, the published data indicate that the initial
symptoms of COVID-19 in patients are very similar to those in
patients with the common cold or influenza. COVID-19 patients
exhibit different clinical symptoms, and some of them do not
have any symptoms [4-7]. sars-cov-2 infection has a long
incubation period, with a median incubation period of 5 to 7
days, which is the chief risk factor for community infection
[6,8]. Community-acquired pneumonia (CAP) and COVID-19
have similar clinical and imaging features, but their treatment
and infectivity are very dissimilar. Distinguishing COVID-19
from CAP is very important to prevent the spread of COVID-19
and to provide specific treatment.

Some characteristic spectra demonstrated by clinical laboratory
indicators (CLIs) of COVID-19 patients have been utilized as
auxiliary clues for diagnosis [9]. Previous studies have
demonstrated that increased procalcitonin (PCT),
lymphocytopenia, and thrombin activation can all be utilized
as auxiliary diagnostic indicators of COVID-19 and poor
prognostic factors [9-11]. However, they are also correlated
with CAP [12-15]. Thus, in accordance with the changes in
these indicators, it is impossible to differentiate COVID-19
from CAP. The changes in the neutrophil to lymphocyte ratio,
the peak platelet to lymphocyte ratio, lactate dehydrogenase
(LDH), C-reactive protein (CRP), and interleukin-6 (IL-6) are
considered to be associated with the progression and prognosis
of COVID-19 [9], but using the information from the CLIs to
give clinicians correct guidance is still a great challenge.

Classifiers established by machine learning (ML) algorithms
based on various clinical features, biomarkers, and CLIs are
increasingly widely utilized in disease diagnosis and risk
prediction [16]. During the COVID-19 pandemic, ML was also
widely used to predict, classify, assess, track, and control the
spread of SARS-CoV-2 [17,18]. ML can improve diagnostic
performance compared with hand-selected biomarkers by
selecting relevant biomarkers and more consistently capturing
both their relative importance to prediction and their interactions
among one another [19]. In this study, we used CLIs to build
classifiers with different ML algorithms to distinguish
COVID-19 patients from CAP patients; we found that only the
feature combinations (FCs) with many specific CLIs rather than
the FCs with the most significantly differential CLIs between
the two groups could build high-performance classifiers (HPCs).

Methods

Collection of Patients’Electronic Medical Record Data
The electronic medical records of patients who were admitted
to Gong An County People’s Hospital, China, and diagnosed
with COVID-19 or CAP from December 2019 to March 2020
were retrieved. The information regarding each patient’s age,
sex, clinical symptoms upon admission, medical history,
epidemiological history, computed tomography (CT) imaging
features, and CLIs were sorted out for retrospective analysis.
Only the laboratory test results during admission were included.
It was specified that all patients’ data were to be kept
confidential, and this data were only to be utilized for
comprehensive analysis. No personal information about any
patient was mentioned in the paper. This study was approved
by the ethics committees from the Guangdong Provincial
Hospital of Chinese Medicine (approval No. ZE2020-049-01)
with a waiver of informed consent due to the retrospective nature
of the study.

Data Description
Diagnosis and clinical classification of COVID-19 were
performed according to the Chinese Clinical Guidance for
COVID-19 Pneumonia Diagnosis and Treatment (7th edition)
[20]. A total of 61 patients with COVID-19 and 60 patients with
CAP were enrolled according to the discharge diagnosis on their
electronic medical records. There were 3 mild, 47 common, 6
severe, and 5 critical types, which were categorized into two
groups for further analysis as follows: COVID19-COM (3 mild
and 47 common types) and COVID19-SV (6 severe and 5
critical types). They were matched by age and sex and did not
significantly differ in terms of medical history. The main clinical
symptoms between CAP and COVID-19 groups were not
significantly different.

Primary Analysis
The descriptive analysis of all CLIs was performed between
groups or subgroups. Between-group or between-subgroup
differences were tested using the statsmodels module from
Python (Python Software Foundation) [21]. The Student t test
was performed when the distribution of the variables conformed
to the normal distribution; otherwise, the Mann-Whitney U test
was used. The chi-square test was used to detect differences in
baseline data between two groups or subgroups. A value of
P<.05 was considered to be significant.

Feature Selection and Data Preprocessing
The CLIs with a missing value ratio greater than 20% were
excluded. Only the CLIs with a significant difference between
the two groups were selected and used to generate 1,807,780
nonrepetitive random FCs, consisting of one to eight CLIs, by
using the combinations iterator in the itertools module from
Python [22]. Next, an FC was selected from the FC list one by
one to form a new data sheet with the dependent variable (ie,
disease type), and 1,807,780 new data sheets were eventually
formed. For each new data sheet, the rows with missing values
were removed. The remaining rows were then divided into
training_dataset and test_dataset using scikit-learn, version
0.23.1 (train_test_split function with test_size = 0.25,
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random_state = 0). The training data set was used to build the
classifier, and the test data set was used to assess the
performance. The feature values were standardized using the
StandardScaler function in the scikit-learn module before
constructing the logistic regression (LR) classifier.

Construction of Classifiers With ML Algorithms in
the Scikit-Learn Module
Scikit-learn is a Python module integrating a wide range of
state-of-the-art ML algorithms for medium-scale supervised
and unsupervised problems [23]. The LR classifier, the random
forest classifier (RFC), and the gradient boosting classifier
(GBC) have been typically used to construct classifiers in
prediction of disease risk, progression, prognosis, and so on
[24]. The LR classifier in the sklearn.linear_model is also known
as logit regression, maximum-entropy classification, or the
log-linear classifier. In this model, the probabilities describing
the possible outcomes of a single trial are modeled using a
logistic function [24]. The RFC in the sklearn.ensemble module
is one of the averaging algorithms in ensemble methods and is
a perturb-and-combine technique specifically designed for trees.
In the random forest algorithm, each tree in the ensemble is
built from a sample drawn with replacement from the training
data set. Furthermore, when splitting each node during the
construction of a tree, the best split is found either from all input
features or from a random subset of size setting with the
parameter max_features. In practice, the variance reduction due
to the introduction of randomness in the classifier construction
is often significant, hence, yielding an overall better model
[25,26]. The GBC algorithm, using the sklearn.ensemble
function, is a boosting method, in which base estimators are
built sequentially. To reduce the bias of the combined estimator,
one has to combine several weak models to produce a powerful
ensemble. The GBC algorithm builds an additive model in a
forward stage-wise fashion, and it allows for the optimization
of arbitrary differentiable loss functions [27,28].

In this study, the classifiers were respectively constructed using
the LR classifier, RFC, and GBC in the scikit-learn module with
the training data set. The model parameter settings were kept
as default, except that random_state was modified to “0” for
all models and class_weight was modified to “balanced” for
the LR classifier and RFC models. The performance of the
classifiers was evaluated with the test data set by calculating
the recall rate (ie, sensitivity), specificity, accuracy, and area
under the receiver operating characteristic curve (AUROC),

using the sklearn_metrics.recall_score ,
s k l e a r n _ m e t r i c s . p r e c i s i o n _ s c o r e ,
sklearn_metrics.accuracy_score, and sklearn_metrics.auc
functions, respectively. Gini importance was computed using
the feature_importance function to measure the importance of
each feature in the RFC and the GBC. The higher the Gini
importance value, the more important the feature [29]. All the
above analyses were performed in Python, version 3.7 (Python
Software Foundation).

Results

Basic Characteristics of CAP Group and COVID-19
Group
No significant differences in age and sex were found between
CAP and COVID-19 groups (see Table 1); however, the
proportions of males in the CAP and COVID-19 groups were
55% (33/60) and 66% (40/61), respectively, and were higher
than those of females in both groups. No significant difference
in the medical history between the two groups (see Table 1)
was observed. Also, no significant difference was found in the
proportions of the main clinical symptoms between the two
groups, such as fever, cough, fatigue, muscle soreness, and loss
of appetite (see Table 1). The average hospitalization days for
CAP patients were remarkably lower than those for COVID-19
patients (P<.001). In the CAP group, some patients with
pulmonary CT also had imaging features that included patchy
hyperdense shadow (11/60, 18%), ground-glass shadow (4/60,
7%), and fibrotic lesion (6/60, 10%). Nonetheless, the chief
imaging features of pulmonary CT in the COVID-19 group
were patchy hyperdense shadow (25/61, 41%) and ground-glass
shadow (9/61, 15%), and many patients (7/61, 11%) had both
patchy hyperdense shadow and ground-glass shadow (see Table
1). Among the 61 patients suffering from COVID-19, 3 (5%)
had mild symptoms, 47 (77%) had common symptoms, 6 (10%)
had severe symptoms, and 5 (8%) had critical symptoms. Fever
and cough were the principal symptoms in the early stage of
COVID-19, and these accounted for 70% (43/61) and 64%
(39/61) of the cases, respectively (see Table 1). Among the CAP
patients included in the analysis, no cases of death were found
during hospitalization; however, 3 of the 5 (60%) severely ill
patients in the COVID-19 group, who were aged 36, 49, and
74 years, died during hospitalization. The 36-year-old patient
who died underwent interventricular septal repair in childhood.
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Table 1. Comparison of baseline information between COVID-19 patients and community-acquired pneumonia (CAP) patients.

P valueCOVID-19 patients (n=61)CAP patients (n=60)Baseline characteristic

.2740 (66)33 (55)Sex (male), n (%)

.0950.23 (16.95)55.72 (18.10)Age (years), mean (SD)

<.00121 (13-26)9 (7-12)Hospitalization days, median (IQR)

Medical history, n (%)

.8316 (26)14 (23)Hypertension

.276 (10)2 (3)Diabetes

.993 (5)2 (3)Liver disease

.725 (8)3 (5)Heart disease

N/Aa54 (89)UnclearExposure history

N/A22 (36)UnclearFamilial aggregation infectionb

Initial symptoms, n (%)

.2643 (70 )36 (60)Fever

.3339 (64)44 (73)Cough

.537 (11)4 (7)Myalgia

.1811 (18)5 (8)Poor appetite

.1024 (39)33 (55)Fatigue

N/A3 (1-7)UnrecordedDays from onset of symptoms to admission, median (IQR)

Imaging features, n (%)

.00925 (41)11 (18)Patchy high-density opacity

.249 (15)4 (7)Ground-glass opacity

.323 (5)6 (10)Fibrotic lesion

.017 (11)0 (0)Patchy high-density opacity and ground-glass opacity

N/A3 (5)0 (0)Death cases, n (%)

aN/A: not applicable; groups could not be compared because there were no values for the CAP group.
bThere were more than 2 cases of infection after aggregation with family members or relatives.

Characteristic Profile of the CLIs in COVID-19 and
CAP
Even though most CLIs had a similar variation trend in both
CAP and COVID-19, the extent of change was different. Among
more than 60 evaluated CLIs, there were significant differences
in 25 CLIs between the two groups (see Table 2). A decrease
of lymphocyte, red blood cell (RBC) count, hematocrit or
packed-cell volume (PCV), hemoglobin concentration, and
mean corpuscular hemoglobin concentration (MCHC) and an
increase of neutrophil ratio, prothrombin time (PT), micro-CRP
(mCRP), and PCT were observed in both COVID-19 and CAP

patients. Furthermore, the neutrophil ratio and levels of PT,
mCRP, and PCT in CAP were remarkably higher than those in
COVID-19. Levels of lymphocyte, RBC count, PCV,
hemoglobin concentration, and MCHC in CAP were
significantly lower than those in COVID-19 (see Figure 1).
Various erythrocyte-related CLIs—RBC count, PCV,
hemoglobin concentration, and MCHC—significantly decreased
in both CAP and COVID-19, but there was a greater reduction
in CAP patients (see Figure 1). The RBC distribution
width–standard deviation (RDW-SD) and RBC mean
corpuscular volume (MCV) also indicated prominent differences
between CAP and COVID-19 (see Figure 1).
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Table 2. Differences in clinical laboratory indicators (CLIs) between patients with community-acquired pneumonia (CAP) and COVID-19.

P valueCOVID-19 patients (n=61)CAP patients (n=60)CLI

Mean (SD)n (%)Mean (SD)n (%)

<.0010.134 (0.184)55 (90)0.629 (0.838)43 (72)Procalcitonin (ng/mL)

.0013.538 (1.592)53 (87)4.569 (1.748)35 (58)Monoamine oxidase B (U/L)

.0465.794 (87.039)23 (38)39.179 (29.421)14 (23)Myoglobin (ng/mL)

.00422.568 (29.577)13 (21)63.943 (64.530)41 (68)Micro–C-reactive protein (mg/L)

.0412.460 (1.107)53 (87)12.780 (0.873)30 (50)Prothrombin time (seconds)

.04914.655 (1.422)53 (87)15.123 (1.565)30 (50)Thrombin time (seconds)

.0437.831 (6.169)54 (89)35.508 (5.929)53 (88)Albumin (g/L)

.0471.378 (0.482)54 (89)1.211 (0.295)53 (88)Albumin to globulin ratio

<.00122.106 (5.698)50 (82)17.709 (5.167)35 (58)α-L-fucosidase (U/L)

.007325.261 (92.914)54 (89)284.193 (118.608)44 (73)Uric acid (μmol/L)

.034.021 (0.392)55 (90)3.900 (0.462)54 (90)Potassium (mmol/L)

<.0015.293 (2.047)56 (92)8.858 (5.576)58 (97)White blood count cell (×109/L)

.00766.661 (14.013)56 (92)72.958 (15.544)57 (95)Neutrophils (%)

.00224.014 (11.175)56 (92)18.646 (13.416)56 (93)Lymphocytes (%)

<.0013.649 (1.949)56 (92)6.797 (5.525)56 (93)Neutrophil count (×109/L)

.0090.404 (0.194)56 (92)0.565 (0.337)55 (92)Monocyte count (×109/L)

.030.053 (0.072)56 (92)0.111 (0.213)55 (92)Eosinophil count (×109/L)

.0020.015 (0.013)56 (92)0.021 (0.013)55 (92)Basophil count (×109/L)

.0084.284 (0.570)56 (92)4.028 (0.647)56 (93)Red blood cell count (×1012/L)

.005130.143 (16.888)56 (92)120.800 (17.326)55 (92)Hemoglobin concentration (g/L)

.040.389 (0.049)56 (92)0.371 (0.052)55 (92)Packed-cell volume (hematocrit) (L/L)

.0191.241 (6.501)56 (92)93.255 (6.662)55 (92)Mean red blood cell volume (fL)

<.001334.482 (13.559)56 (92)325.473 (8.360)55 (92)Mean corpuscular hemoglobin concentration (g/L)

.0141.141 (4.082)56 (92)41.476 (2.573)55 (92)Red blood cell distribution width–standard deviation (fL)
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Figure 1. The statistical distribution of the plasma level of the clinical laboratory indicators (CLIs) with a remarkable difference between COVID-19
and community-acquired pneumonia (CAP). The statistical distribution was presented with a box and whisker plot. The horizontal lines within the boxes
indicate the median value. The vertical lines extending below and above the boxes represent 5%-95% percentile values. The scale on the y-axis represents
the values of the 5th, 25th, 50th, 75th, and 95th percentiles of the CLI in the CAP group. The triangles represent the upper and lower limits of the normal
reference range of the laboratory index. AFU: α-L-fucosidase; AGR: albumin to globulin ratio; ALB: albumin; BASOC: basophil count; EOC: eosinophil
count; HGB: hemoglobin concentration; K: potassium; LYM: lymphocyte; MAO-B: monoaminoxidase B; MCHC: mean corpuscular hemoglobin
concentration; mCRP: micro–C-reactive protein; MCV: mean (red blood cell) corpuscular volume; MOC: monocyte count; NEUT: neutrophil ratio;
NEUTC: neutrophil count; PCT: procalcitonin; PCV: packed-cell volume (hematocrit); PT: prothrombin time; RBC: red blood cell count; RDW-SD:
red blood cell distribution width–standard deviation; TT: thrombin time; UA: uric acid; WBC: white blood cell count.

Comparing the COVID19-COM and COVID19-SV subgroups,
26 CLIs demonstrated a remarkable difference (see Table 3).
In comparison with the COVID19-COM subgroup, LDH,
aspartate aminotransferase, fibrinogen content, mCRP, and
erythrocyte sedimentation rate increased acutely in the
COVID19-SV subgroup, whereas prealbumin, carbon dioxide
binding capacity, lymphocytes, and lymphocyte count decreased
in the COVID19-SV subgroup (see Multimedia Appendix 1).

An orderly increase of α-L-fucosidase (AFU), myoglobin, uric
acid, and MCHC and an orderly decrease of thrombin time,
monocyte count, eosinophil count, RBC MCV, and RDW-SD
were observed in CAP, COVID19-COM, and COVID19-SV
patients, indicating that these CLIs may be used to distinguish
CAP from COVID-19 and may suggest the probability of severe
COVID-19 progression (see Multimedia Appendix 2).
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Table 3. Difference in clinical laboratory indicators (CLIs) between patients with common and severe types of COVID-19.

P valuePatients with a severe type of COVID-
19 (n=11)

Patients with a common type of COVID-
19 (n=50)

CLIs

Mean (SD)n (%)Mean (SD)n (%)

.010.224 (0.217)11 (100)0.112 (0.170)44 (88)Procalcitonin (ng/mL)

.03534.782 (398.067)11 (100)366.053 (549.429)29 (58)N-terminal pro-B-type natriuretic peptide (pg/mL)

.00272.458 (60.805)11 (100)23.332 (34.483)41 (82)Hypersensitive C-reactive protein (mg/L)

.02314.750 (118.755)8 (73)214.896 (73.319)26 (52)Lactate dehydrogenase (U/L)

.0055.133 (10.399)11 (100)0.834 (1.115)42 (84)D-dimer (mg/L)

.02103.674 (127.354)7 (64)49.221 (60.505)16 (32)Myoglobin (ng/mL)

.020.033 (0.041)7 (64)0.011 (0.003)16 (32)Cardiac troponin (ng/mL)

.02202.125 (195.052)8 (73)81.296 (47.153)27 (54)Creatine kinase (U/L)

.03467.455 (76.500)11 (100)411.905 (104.363)42 (84)Fibrinogen content (mg/dL)

.00445.600 (18.969)10 (91)29.413 (15.756)46 (92)Aspartate aminotransferase (U/L)

.00780.000 (44.229)10 (91)46.046 (41.609)44 (88)γ-glutamyl transpeptidase (U/L)

.0234.440 (4.558)10 (91)38.602 (6.267)44 (88)Albumin (g/L)

.021.120 (0.230)10 (91)1.436 (0.507)44 (88)Albumin to globulin ratio

.0487.960 (4.336)10 (91)9.482 (3.841)44 (88)Indirect bilirubin (μmol/L)

.03125.556 (68.182)9 (82)180.171 (83.374)41 (82)Prealbumin (mg/L)

.012.528 (1.015)9 (82)1.978 (0.430)41 (82)β2-microglobulin (mg/L)

.00222.733 (2.018)9 (82)25.420 (2.537)41 (82)Carbon dioxide binding capacity (mmol/L)

.043.876 (0.251)11 (100)4.057 (0.414)44 (88)Potassium (mmol/L)

.0287.000 (35.081)7 (64)55.433 (41.639)30 (60)Erythrocyte sedimentation rate (mm/h)

.0275.519 (14.001)11 (100)64.496 (13.286)45 (90)Neutrophils (%)

.0117.073 (9.750)11 (100)25.711 (10.932)45 (90)Lymphocytes (%)

.0090.391 (1.038)11 (100)1.236 (1.388)45 (90)Eosinophils (%)

.0030.014 (0.039)11 (100)0.062 (0.076)45 (90)Eosinophil count (×109/L)

.0080.835 (0.383)11 (100)1.255 (0.558)45 (90)Lymphocyte count (×109/L)

.030.368 (0.036)11 (100)0.395 (0.050)45 (90)Packed-cell volume (hematocrit) (L/L)

.0312.873 (0.781)11 (100)12.658 (1.171)45 (90)Red blood cell distribution width–coefficient of varia-
tion (%)

Classifiers Constructed From the FCs With Seven to
Eight CLIs Could Accurately Distinguish COVID-19
From CAP
The performance of the classifiers gradually improved as the
number of CLIs in the FCs increased from one to eight.
However, when the number of CLIs in the FCs reached eight,
the performance of the classifiers constructed by these FCs no
longer significantly improved. The performance of the LR
classifier algorithm constructed with the FCs with eight CLIs
(ie, 8-CLI combination) was even slightly lower than those
constructed by the FCs with seven CLIs (ie, 7-CLI combination).
A total of 43 FCs, including five 7-CLI combinations and 38
8-CLI combinations, were determined according to the recall
rate. The AUROCs of the classifiers constructed with the LR
classifier, RFC, and GBC algorithms were greater than 0.85
(see Multimedia Appendix 3, Table S1). The AUROC and

precision-recall curves of the classifiers constructed with the
RFC, LR classifier, and GBC algorithms from the representative
7-CLI combination (ie, PCT, albumin to globulin ratio [AGR],
uric acid, neutrophil count, basophil count, RBC MCV, and
MCHC) showed very high performance and precision in
COVID-19 prediction; their AUROCs were 1.0, 0.97, and 0.96,
respectively (see Figure 2, A), and their average precision values
were 1.0, 0.97, and 0.98, respectively (Figure 2, B). The
AUROCs of the classifiers constructed with the RFC, LR
classifier, and GBC algorithms from the representative 8-CLI
combination (ie, PCT, albumin, uric acid, WBC [white blood
cell] count, monocyte count, basophil count, RBC count, and
MCHC) were 1.0, 0.90, and 1.0, respectively (see Figure 2, C).
The AUROCs of the classifiers constructed with the three
algorithms from the 7-CLI combination (ie, agr, afu,
lymphocytes, neutrophil counts, eosinophil count, RBC mcv,
and mchc) were 0.98, 0.91, and 0.97, respectively (see Figure
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2, D). Feature importance results showed that basophil count
was the least important in the above two representative CLI
combinations, and AFU was the most important in the CLI
combinations (see Figure 3). However, when basophil count
was substituted with AFU in the two above-mentioned CLI
combinations, the performance of the classifiers constructed
with the new CLI combinations decreased (see Figure 2, E and

F). PCT and AFU were not observed to be in the same CLI
combination from which an HPC could be constructed. The
evidence above and the fact that only 43 FCs with seven or eight
CLIs could be used to build HPCs suggested that only the FCs
with specific CLIs can establish HPCs to distinguish COVID-19
from CAP.

Figure 2. Area under the receiver operating characteristic curve (AUROC) and precision-recall curve plotted for the COVID-19 vs community-acquired
pneumonia (CAP) classifiers built with various feature combinations (FCs) of different clinical laboratory indicators (CLIs). At the top of each image
is the CLI combination for constructing classifiers using three different classification algorithms. AFU: α-L-fucosidase; AGR: albumin to globulin
ratio; ALB: albumin; BASOC: basophil count; EOC: eosinophil count; LYM: lymphocyte; MCHC: mean corpuscular hemoglobin concentration; MCV:
mean (red blood cell) corpuscular volume; MOC: monocyte count; NEUTC: neutrophil count; PCT: procalcitonin; RBC: red blood cell count; UA: uric
acid; WBC: white blood cell count.

The importance of different CLIs in classifiers varied greatly,
and the importance of the same CLI varied greatly among
classifiers constructed by different FCs (see Figure 3). In the
HPCs constructed with the 7-CLI combinations, the average

feature importance of AFU (26.60%) was the highest, followed
by uric acid (25.31%) and PCT (21.06%) (see Figure 3, A).
However, in the HPCs constructed with the 8-CLI combinations,
the average feature importance of uric acid (22.51%) was the
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highest, followed by PCT (20.88%) and MCHC (12.36%) (see
Figure 3, B). PCT and MCHC were very important to each
classifier because they were included, respectively, in 100%
(38/38) and 92% (35/38) of the 8-CLI combinations (see Figure

3, B) and in 40% (2/5) and 100% (5/5) of the 7-CLI
combinations (see Figure 3, A). Uric acid was also included in
all 8-CLI combinations, but its feature importance varied from
11.3% to 41.2% in different classifiers (see Figure 3, B).
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Figure 3. Usage rate and the feature importance of each clinical laboratory indicator (CLI) in the high-performance COVID-19 vs community-acquired
pneumonia (CAP) classifiers. (A) The mean feature importance of each CLI in the high-performance classifiers (HPCs) constructed with the 7-CLI
combinations. (B) The mean feature importance of each CLI in the HPCs constructed with the 8-CLI combinations. The histogram is represented by
mean (SD). The numbers with the shadow backgrounds represent the minimum and maximum values of the feature importance of the CLI. The number
indicated with the triangle symbol represents the mean feature importance of CLI in all classifiers. The number indicated with the circle represents the
usage rate of the CLI in the HPC. The number in the parentheses indicates how many CLI combinations are capable of constructing the HPCs containing
the CLI. AFU: α-L-fucosidase; AGR: albumin to globulin ratio; ALB: albumin; BASOC: basophil count; EOC: eosinophil count; FC: feature combination;
HGB: hemoglobin concentration; K: potassium; LYM: lymphocyte; MCHC: mean corpuscular hemoglobin concentration; MCV: mean (red blood cell)
corpuscular volume; MOC: monocyte count; NEUT: neutrophil ratio; NEUTC: neutrophil count; PCT: procalcitonin; PCV: packed-cell volume
(hematocrit); RBC: red blood cell count; RDW-SD: red blood cell distribution width–standard deviation; UA: uric acid; WBC: white blood cell count.
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Discussion

Principal Findings
The main highlight of this study is that only a few of the
common CLIs were required to establish the classifier models
to accurately distinguish COVID-19 from CAP. The HPCs
could only be constructed by combining several specific CLIs.
Among the nearly 2 million FCs with one to eight CLIs, only
43 FCs could be used to construct HPCs with a recall rate greater
than 0.9 and an AUROC greater than 0.85 to distinguish
COVID-19 from CAP.

Comparison With Prior Work
We have established many COVID-19 versus CAP HPCs with
FCs consisting of only CLIs, and almost no similar research
results on distinguishing COVID-19 from CAP have been
reported. However, many studies have used CLIs to build ML
models to help with COVID-19 diagnosis. The prediction
performance of these models varied: the accuracy of these
models in predicting COVID-19 was between 0.8 and 0.96
[30-32]. In addition, most of the reported ML models for the
diagnosis or prediction of COVID-19 have involved more types
of variables, such as CT results, clinical symptoms, and CLIs
[17,32,33]. Although most of these COVID-19-related ML
models were built with more than two ML algorithms, not all
models constructed with each algorithm showed high
performance. The methods of feature selection that were used
in these studies included the recursive feature elimination
algorithm [31], causal explanation models [17], and the least
absolute shrinkage and selection operator regression [32]. These
methods can extract the features that are closely related to the
target phenotype, but whether the classifier constructed by the
combination of these features has the best performance needs
to be determined. The optimized FCs in this study were selected
by evaluating the recall rate and AUROC for each FC with one
to eight randomly selected CLIs from the differential CLIs
between COVID-19 and CAP groups and by constructing
classifiers using each FC with the LR classifier algorithm. The
FCs that were preliminarily screened were used to build
classifiers with RFC and GBC algorithms; finally, only the FCs
capable of building the HPC simultaneously with the LR
classifier, RFC, and GBC algorithms were selected for the final
model construction.

Limitations
As reported earlier, many inflammatory factors, including IL-6
and interleukin-10 (IL-10), are closely related to COVID-19
and have diagnostic value, but neither IL-6 nor IL-10 were
detected in the patients of this study. Menni et al [18] reported
that loss of smell and taste is a strong predictor for COVID-19.
Deviations and omissions may exist in the patients’self-reported
clinical symptoms. Thus, we did not take into account the
clinical symptoms when building the classifiers. The possibility
that other indicators are more important in constructing
COVID-19 versus CAP classifiers was not ruled out. In addition,
the sample size included in this study was relatively small, and
the classifiers need to be optimized with larger samples before
it can be used to distinguish COVID-19 from CAP in practice.

The Rationality of the Research Results
Out of the 43 FCs, 40 contained PCT and MCHC. The feature
importance of PCT in each classifier is very high, suggesting
that PCT may be a good blood marker to efficiently distinguish
COVID-19 from CAP. PCT is one of the markers of lower
respiratory tract bacteria and other infections. The US Food and
Drug Administration approved the monitoring of the beginning
and the entire duration of antibiotic treatment for suspected
lower respiratory tract infections based on serum PCT levels
[12]. However, the elevation of serum PCT in COVID-19
patients was also reported in many studies [34]. The increase
of PCT is a remarkable characteristic of patients with COVID-19
[34]. Increased serum PCT levels in both COVID-19 and CAP
patients indicated that the distinction of COVID-19 from CAP
could not be made simply on the basis of the increase in PCT.
Compared with the normal reference values of the CLIs, the
serum levels of most of the CLIs increased or decreased
simultaneously in both COVID-19 and CAP patients. Thus,
providing references for the diagnosis of COVID-19 or CAP
directly in regard to the rise or decrease of the CLIs is difficult.
However, we found that the ML classifiers constructed with the
FCs with many certain CLIs could distinguish COVID-19 from
CAP effectively, suggesting an advantage of ML algorithms in
disease classification or diagnosis.

The COVID-19 versus CAP classifiers with the highest
performance also involved PCT, MCHC, uric acid, albumin,
neutrophil count, monocyte count, basophil count, RBC count,
and WBC count, proposing the importance of these CLIs in
differentiating COVID-19 from CAP. Few studies have reported
the changing trend of MCHC in patients with COVID-19 or
CAP, but the results of this study showed that MCHC decreased
in both groups and was significantly lower in the CAP group
than in the COVID-19 group. The reason for the decrease of
MCHC may be closely related to the reduction of iron due to
inflammation [35]. The IQRs of uric acid in both COVID-19
and CAP groups were within the normal reference range, but
the IQR was significantly higher in the COVID-19 group than
in the CAP group. Elevated uric acid is an independent risk
factor of renal injury or renal dysfunction; the underlying
mechanisms of uric acid elevation are very complicated [36].
The significant difference in uric acid between COVID-19 and
CAP may be interpreted as follows: individuals with higher uric
acid may be more susceptible to COVID-19 than those with
lower uric acid levels. Uric acid exists in all 8-CLI combinations
that are capable of constructing high-performance CLIs and has
a high feature importance in the classifiers, suggesting that uric
acid is another important marker that can distinguish COVID-19
from CAP. Zhou et al reported that albumin significantly
decreased in severe and critical COVID-19 patients [37].
Serum albumin level is a good prognostic marker in CAP. A
decreased albumin level is closely associated with a higher risk
of mortality in patients with CAP [38]. Although albumin
decreased remarkably in both COVID-19 and CAP groups, there
was still a significant difference between the two groups; the
decrease in the CAP group was more obvious than that in the
COVID-19 group, which could contribute to the differentiation
of COVID-19 from CAP. AFU contributed high feature
importance in the HPCs constructed from 7-CLI combinations
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due to the significant difference in AFU between COVID-19
and CAP. An increase of serum AFU has a certain diagnostic
value for primary liver cancer [39]. Thus, the higher AFU in
the COVID-19 group than in the CAP group may be explained
by the fact that liver injury is more common in COVID-19 than
in CAP or that the diversity in AFU levels determines the
difference in susceptibility to COVID-19.

Recommendations
Both PCT and AFU contributed high feature importance in the
HPCs constructed from the FCs containing PCT or AFU, but
the performance of the classifiers constructed from the FCs
containing both PCT and AFU decreased remarkably. This
result indicated that intrinsic dependence exists among some
CLIs that undergo synergistic changes in individuals and can
be used to construct HPCs. The internal relationship between
CLIs is very complex and difficult to deconstruct. Therefore,

the following method may be effective: random selection of
different CLIs to construct classifiers with different classification
algorithms, followed by the evaluation of the performance of
each classifier, and, finally, the discovery of the FCs with certain
CLIs that can be used to accurately distinguish COVID-19 from
CAP.

Conclusions
The patients suffering from COVID-19 and CAP have their
own characteristic profiles of CLIs, and some FCs consisting
of seven or eight specific CLIs could build COVID-19 versus
CAP HPCs. The usage rate and the feature importance of the
CLIs in the HPCs indicated that PCT, MCHC, uric acid,
albumin, AGR, neutrophil count, RBC count, monocyte count,
and WBC count are the most important indicators that can
distinguish COVID-19 from CAP.
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Multimedia Appendix 1
The statistical distribution of the plasma level of the clinical laboratory indicators (CLIs) with a significant difference between
COVID19-COM (COVID-19 patient subgroup with mild and common types) and COVID19-SV (COVID-19 patient subgroup
with severe and critical types). The statistical distribution was presented with a box and whisker plot. The horizontal lines within
the boxes indicate the median value. The vertical lines extending below and above the boxes represent 5%-95% percentile values.
The scale on the y-axis represents the 5th, 25th, 50th, 75th, and 95th percentile values of the CLI in the COVID19-COM subgroup.
The triangles represent the upper and lower limits of the normal reference range of the laboratory index. The median of the CLI
in the COVID19-SV subgroup is also represented in the y-axis. AST: aspartate aminotransferase; CO2CP: carbon dioxide binding
capacity; ESR: erythrocyte sedimentation rate; γ-GGT: transglutaminase transpeptidase gamma; FIB: fibrinogen content; LDH:
lactate dehydrogenase; LYM: lymphocyte; LYMPH: lymphocyte count; mCRP: micro–C-reactive protein; MYO: myoglobin;
NEUT: neutrophil ratio; PA: prealbumin.
[PNG File , 403 KB-Multimedia Appendix 1]

Multimedia Appendix 2
The statistical distribution of the plasma level of the clinical laboratory indicators (CLIs) among community-acquired pneumonia
(CAP), COVID19-COM (COVID-19 patient subgroup with mild and common types), and COVID19-SV (COVID-19 patient
subgroup with severe and critical types). The statistical distribution was presented with a box and whisker plot. The horizontal
lines within the boxes indicate the median value. The vertical lines extending below and above the boxes represent 5%-95%
percentile values. The scale on the y-axis represents the 5th, 25th, 50th, 75th, and 95th percentile values of the CLI in the CAP
group. The triangles represent the upper and lower limits of the normal reference range of the laboratory index. AFU:
α-L-fucosidase; EOC: eosinophil count; MCHC: mean corpuscular hemoglobin concentration; MCV: mean (red blood cell)
corpuscular volume; MOC: monocyte count; MYO: myoglobin; RDW-SD: red blood cell distribution width–standard deviation;
TT: thrombin time; UA: uric acid.
[PNG File , 204 KB-Multimedia Appendix 2]
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Multimedia Appendix 3
Clinical laboratory indicator (CLI) combinations and the hyper-parameters of the classifiers constructed by different machine
learning algorithms from these CLI combinations.
[XLSX File (Microsoft Excel File), 14 KB-Multimedia Appendix 3]
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COVID19-SV: COVID-19 patient subgroup with severe and critical types
CRP: C-reactive protein
CT: computed tomography
FC: feature combination
GBC: gradient boosting classifier
HPC: high-performance classifier
IL-6: interleukin-6
IL-10: interleukin-10
LDH: lactate dehydrogenase
LR: logistic regression
MCHC: mean corpuscular hemoglobin concentration
mCRP: micro–C-reactive protein
MCV: mean corpuscular volume
ML: machine learning
PCT: procalcitonin
PCV: packed-cell volume
PT: prothrombin time
RBC: red blood cell
RDW-SD: red blood cell distribution width–standard deviation
RFC: random forest classifier
WBC: white blood cell
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