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Abstract

Background: Low back pain (LBP) remains the leading cause of disability worldwide. A better understanding of the beliefs
regarding LBP and impact of LBP on the individual is important in order to improve outcomes. Although personal experiences
of LBP have traditionally been explored through qualitative studies, social media allows access to data from a large, heterogonous,
and geographically distributed population, which is not possible using traditional qualitative or quantitative methods. As data on
social media sites are collected in an unsolicited manner, individuals are more likely to express their views and emotions freely
and in an unconstrained manner as compared to traditional data collection methods. Thus, content analysis of social media provides
a novel approach to understanding how problems such as LBP are perceived by those who experience it and its impact.

Objective: The objective of this study was to identify contextual variables of the LBP experience from a first-person perspective
to provide insights into individuals’ beliefs and perceptions.

Methods: We analyzed 896,867 cleaned tweets about LBP between January 1, 2014, and December 31, 2018. We tested and
compared latent Dirichlet allocation (LDA), Dirichlet multinomial mixture (DMM), GPU-DMM, biterm topic model, and
nonnegative matrix factorization for identifying topics associated with tweets. A coherence score was determined to identify the
best model. Two domain experts independently performed qualitative content analysis of the topics with the strongest coherence
score and grouped them into contextual categories. The experts met and reconciled any differences and developed the final labels.

Results: LDA outperformed all other algorithms, resulting in the highest coherence score. The best model was LDA with 60
topics, with a coherence score of 0.562. The 60 topics were grouped into 19 contextual categories. “Emotion and beliefs” had
the largest proportion of total tweets (157,563/896,867, 17.6%), followed by “physical activity” (124,251/896,867, 13.85%) and
“daily life” (80,730/896,867, 9%), while “food and drink,” “weather,” and “not being understood” had the smallest proportions
(11,551/896,867, 1.29%; 10,109/896,867, 1.13%; and 9180/896,867, 1.02%, respectively). Of the 11 topics within “emotion and
beliefs,” 113,562/157,563 (72%) had negative sentiment.

Conclusions: The content analysis of tweets in the area of LBP identified common themes that are consistent with findings
from conventional qualitative studies but provide a more granular view of individuals’ perspectives related to LBP. This
understanding has the potential to assist with developing more effective and personalized models of care to improve outcomes
in those with LBP.
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Introduction

Low back pain (LBP) is the leading cause of disability
worldwide [1,2]. Approximately 50%-80% of adults experience
LBP at least once in their lives [3] and it is a leading cause of
work absence and limits physical activities, posing a large
economic burden [1,4]. In the United States, the total cost
associated with LBP exceeds US $100 billion per year [5,6]. It
is also a significant contributor to the current global epidemic
of narcotic prescriptions [7].

Optimizing management of conditions such as LBP requires
consumers to be engaged in their care. To enable this, health
care providers need to have an understanding of the full context
of the condition from the consumer perspective. “Contextual
variables” here refer to any type of useful information about
the context of an individual’s pain experience, such as physical,
emotional, social, and/or occupational variables [8]. A better
understanding of the contextual variables of individuals with
LBP could provide clinicians and health providers with an
alternative insight into patients’ concerns, beliefs, and
expectations, and has the potential to improve outcomes in LBP
[9]. Although there have been many studies examining
individuals’ beliefs about LBP, patients’ perspectives remain
inadequately understood [10]. Although qualitative
studies—including systematic scoping reviews—investigating
patients' needs and expectations have been conducted, these
have largely focused on a single topic, such as health care, with
the findings extrapolated from heterogeneous studies that are
of poor quality [11-13]. A further limitation of current
approaches is that most traditional data collection methods use
predefined frameworks that have the potential to constrain
responses. For instance, validated questionnaires that provide
statements about back pain and its consequences (such as “back
pain must be rested”) and require the respondent to indicate
their level of agreement on a scale are commonly used [12,13].
Moreover, for logistical and methodological reasons, many
studies restrict the selection of populations to be studied.

With the current advances in online and web technologies, social
media has emerged as a new and rich source of first-person
health care data [14-16]. Social media platforms provide an
opportunity to rapidly collect data from a larger and more
diverse population in a cost-efficient manner. Health-related
topics are commonly discussed on Twitter [17-19], a
microblogging social media site [20]. A systematic review
conducted by Sinnenberg et al [21] found six main uses of
Twitter in health research: content analysis, surveillance,
engagement, recruitment, intervention, and network analysis.
Aggregation and analysis of large volumes of health-related
data from social media sites could provide valuable information

from a first-person point of view [14,22]. In the area of LBP,
this approach could be used to investigate individuals’
perspectives and the context around the LBP experience [15,23].
We hypothesize that the detected topics identify specific
contexts around the LBP experience in individuals. Thus, the
aim of this study was to identify contextual variables of the LBP
experience from a first-person perspective using a topic
modeling approach of Twitter data to provide useful insights
into individuals’ beliefs and perceptions. This has the potential
to inform more effective patient-centered approaches to the
management of LBP.

Methods

Study Approach
Our study approach was to undertake content analysis of Twitter
data by applying topic modeling. Content analysis is a widely
used technique for qualitative research [24] that enables studying
patient experience in depth by deriving topics of interest from
text documents [14,25].

Twitter Data
Twitter was used as the data source rather than other social
media platforms, blog posts, or news articles because individuals
use this platform for expressing and sharing their feelings and
opinions on health-related topics by posting short messages that
can be easily collected through application programming
interfaces (APIs) or other open sources [14-17,26]. We used an
open-source Twitter scraping tool called Twint [27] for
collecting tweets related to LBP that were written in English.
Twint enables the collecting of Twitter data without using
Twitter's API through its publicly available library in the Python
programming language [27,28]. We collected tweets posted
between January 1, 2014, and December 31, 2018 (inclusive).
The time frame of 5 years was selected to provide us with
sufficient data to examine the patterns in emerging topics and
the number of tweets over time. Since the number of active
users on the social media platform increased in recent years and
we needed a large volume of data for topic modeling, we did
not consider tweets posted before 2014. We selected the search
keywords based on 3 studies on back pain [15,29,30]. These
are detailed in Table 1. Search keywords were verified by our
domain experts (FC, a rheumatologist; DU, a physiotherapist)
who have extensive research and clinical expertise in the area
of LBP. Selecting search keywords and an appropriate time
frame are important considerations in the data collection process.
The Monash University Human Research Ethics Committee
approved this study (project ID 19738).

Our data processing and analysis consisted of 4 steps (see Figure
1).
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Table 1. Keywords used to search tweets related to low back pain.

Total, nKeywordsStudy purposeSource

12“painful back,” “sore back,” “back started hurting,” “buggered
my back,” “hurt my back,” “I’ve got backache,” “injured my
back,” “my back hurts,” “I’ve got back pain,” “pain in my back,”
“put my back out,” “my back is killing me”

To quantify the risks associated with a new tweet
about back pain

Lee et al, 2016
[15]

10“backache,” “back ache,” “back aches,” “back hurt,” “back
hurting,” “back hurts,” “back killin’,” “back killing,” “back pain,”
“back sore”

To compare self-reported toothache experiences in
tweets with those of backache, earache, and
headache

Ahlwardt et al,
2014 [30]

7“lumbago,” “backache,” “back ache,” “back pain,” “low back
ache,” “low back pain,” “lower back pains”

A systematic review to study the influence of em-
ployment social support in nonspecific back pain

Campbell et al,
2013 [29]

Figure 1. The overall data analysis workflow. The analysis consists of four steps: (1) data preprocessing, (2) thematic analysis using topic modelling,
(3) topic labeling and categorization, and (4) domain expert validation. BTM: biterm topic model; DMM: Dirichlet multinomial mixture; GPU-DMM:
General Pólya Urn Dirichlet Multinomial Mixture; LDA: latent Dirichlet allocation; NMF: nonnegative matrix factorization.
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Step 1: Data Preprocessing
We removed duplicates, retweets, URLs, and tweets related to
marketing and advertisements, which reduced the data set from
7,892,210 to 2,825,645. We filtered the data further by removing
tweets that did not contain first person pronouns [15]. As a
result, the remaining data set size was 2,010,295.

We replaced contractions with their expanded forms (eg,
“didn’t” to “did not”). We converted the HTML characters to
ASCII characters and removed hashtags, Unicode strings (eg,
“\u2026”), numbers, and punctuation. We replaced
abbreviations, elongated words (eg, “gooood” to “good”), and
emoticons and emojis with their equivalent English expressions.
We then performed spelling correction, lowercasing,
tokenization, and lemmatization, created n-grams, removed stop
words (eg, common terms such as “the” and “is”). We again
removed the duplicates and the remaining data set was 1,249,576
tweets.

After completing the abovementioned steps, we excluded tweets
with less than three words because in topic modeling, the
document size is important to achieve high accuracy [31]. This
reduced the data set to 896,867 tweets.

Step 2: Topic Modeling
Topic modeling is a technique used to provide a summary of a
large collection of documents by extracting “topics” that
represent the dominant themes [32]. It allows the uncovering
of common, hidden themes from a corpus of text documents
such as tweets. We tested 5 well-established topic modeling
algorithms for detecting topics in a text-based corpus, namely
latent Dirichlet allocation (LDA) [33], Dirichlet multinomial
mixture (DMM) [34], GPU-DMM [35], biterm topic model
(BTM) [36], and nonnegative matrix factorization (NMF) [37].

LDA is a generative probabilistic model that assumes each
document can be represented by distribution over topics and
each topic by distribution over words [33,38]. DMM is also a
generative model but it assumes that each document is associated
with one single topic [34,39]. GPU-DMM is an extended method
of DMM that considers semantic similarity between words to
provide semantic understanding of text documents and improve
topic inference [35,40]. BTM uncovers topics by modeling the
word co-occurrence patterns (ie, biterms) rather than using the
document-level word co-occurrences [36,41]. NMF is able to
learn the latent features in data using a nonnegative
representation and improve latent semantic topic identification
[37,42,43].

To use these models (except for NMF), we used a Java-based
open-source library for short text topic modeling algorithms
called STTM (version 1.8) [44], whereas for NMF we used the
sklearn [45] library. For each approach, we performed a series
of experiments ranging from 5 topics to 200 topics. We applied
the 5 algorithms to the 896,867 tweets to determine the best
model and the optimal number of topics.

Choosing the right number of topics is a crucial step in topic
modeling because it can affect the accuracy of results. The
quantitative approach computes the coherence score and
perplexity, which helps in determining the optimal number of

topics [46]. The coherence score measures the sum of the
pairwise word-similarity scores of the words in the topic, using
the pointwise mutual information (PMI) score [47]. Best
collocation pairs usually have a high PMI. On the other hand,
the qualitative approach requires humans and domain experts
to examine the topics. Human judgment is extremely important
because topic modeling uses a form of unsupervised learning.

As a quantitative approach, we calculated the coherence score
of each model on different numbers of topics ranging from 5
to 200, based on the PMI score [47,48]. The coherence score
was used to evaluate the quality of the topic-word distribution.
LDA outperformed other approaches (ie, DMM, GPU-DMM,
BTM, and NMF).

Additionally, we used a qualitative approach to select the most
representative topics. We manually examined the topics, their
top 20 terms, and a random sample of tweets in each topic. We
also created a word cloud for each topic and evaluated word
clouds and their sample tweets. We identified the number of
topics that provided us with distinct and meaningful topics; if
we exceeded this number of topics, we started to notice an
increase in duplicates and overlapping topics. We used both
quantitative and qualitative approaches to select the optimal
number of topics.

Step 3: Topic Labeling and Categorization
Topic labeling is a process of representing the meaning of a
topic by assigning each topic a descriptive word or phrase [49].
Although automatic labeling approaches can reduce costs and
time required, they are not able to achieve high semantic validity
and accuracy [50,51]. In our study, we used the “eyeballing”
method, which refers to reading and inspecting the top words
in a topic and manually assigning a label [50]. We made sure
that the results met the requirements of a “good” label: (1)
semantically relevant, (2) meaningful, (3) representative, (4)
adequate, and (5) understandable [34,49].

LDA assumes that each document (tweet) is a mix of topics
with different proportions [33]. We were interested to examine
tweets based on their dominant topic to gain a better
understanding of the frequency of topics across all tweets.
Therefore, we performed further analysis, and used the label of
the dominant topic to represent each tweet, and then calculated
the total number of tweets per topic.

To improve the results of thematic analysis, low-order topics
can be grouped under broad, higher-order categories [52].
Higher-level categories can provide a better overview of the
key topics discussed by individuals. To this end, after manual
topic labeling, we performed topic categorization and assigned
a category label to the topics that represented common themes.
To identify the important and widely discussed categories, we
then calculated the percentage of all tweets that corresponded
to each individual category.

Step 4: Domain Expert Validation
Two domain experts (FC, a rheumatologist; DU, a
physiotherapist), actively working clinically and researchers in
the area of LBP, independently examined the selected topics
from the previous step where each topic included the top 20
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words to determine face validity. As previously described, in
topic modeling, the top words of each topic provide the
description of that topic, thereby assisting the domain experts
with inferring its meaning [49]. The experts then met to
reconcile any differences and develop the final labels.

Results

Overview
The total number of collected tweets about LBP was 7,892,210
from 2,420,258 unique users from 2014 to 2018. The average
number of words in each tweet increased from 2017 onward
(Multimedia Appendix 1), in line with Twitter doubling the
character limit of tweets from 140 to 280 characters as of
November 2017 [53].

Step 1: Data Preprocessing
After performing comprehensive data preprocessing, the final
number of retained tweets was 896,867, which represents 11%
(896,867/7,892,210) of the original raw data we collected, with
a vocabulary size of 29,539. The minimum length of tweets was
4 words and the maximum length was 20 words.

Step 2: Topic Modeling
After testing 5 topic modeling algorithms and the number of
topics based on the coherence score and our manual
examination, we selected the best model that included 60 topics,
detected from 896,867 self-reported tweets about LBP.
Multimedia Appendix 2 shows the coherence score of different
models with a different number of topics ranging from 5 to 200.
The best model was the LDA model with 60 topics, which had

a coherence score of 0.562. Multimedia Appendix 3 shows the
best model selected with 60 topics and their top 20 terms.

Step 3: Topic Labeling and Categorization
The 60 topics were examined and manually given a topic label.
The common and duplicate labels were then grouped into
higher-order categories. Word clouds for the two categories of
“pain regions” and “sleep” after combining the related topics
are provided in Multimedia Appendix 4. The prevalence of the
60 manually labeled topics is presented in Multimedia Appendix
5.

Step 4: Domain Expert Validation
Independent examination of selected topics by two domain
experts and reconciliation of any differences resulted in 19
contextual categories, with details presented in Multimedia
Appendix 6. The total number of tweets within each of 19
contextual categories is presented in Figure 2, with more details
in Multimedia Appendix 7. The “emotion and beliefs” category
had the largest proportion of the total tweets, followed by
“physical activity” and “daily life.” The lowest proportion of
tweets belonged to the categories of “food and drink,”
“weather,” and “not being understood.”

The proportion of tweets for each higher-level category over
the years showed that all 19 categories had been discussed by
individuals with relatively similar frequency every year (see
Figure 3). However, the proportion of “emotion and beliefs”
decreased from 2014 to 2018. The number of tweets about other
categories, such as “aggravating factors” and “symptoms,”
increased over that time period. An example of a tweet for each
category is presented in Table 2 to illustrate the type of personal
point of view related to each category.
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Figure 2. The 19 categories and their proportions based on all tweets posted from 2014 to 2018.
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Figure 3. The proportions of 19 categories based on the dominant topic per year.
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Table 2. An example of tweets for each contextual category.

Examples of tweetsCategories

Emotion and beliefs • My back hurts, feeling sad because I wanna get up and do something ! I hate staying in bed :(

Physical activity • I did 6 miles on my exercise bike yesterday, felt really pleased with myself, and ate healthy. My back hurts today

Daily life symptoms • So my back hurts like hell and I can hardly sit here and do my hair.
• I hate it when my lower back hurts and sends shooting pains down my legs, making them ache and throb. Ugh.

Sleep • Every time I sleep in my sis guest bedroom my back hurts, that bed is not comfortable. I”d prolly be better off
sleeping on the floor

Pain regions • today is not a good day. my back hurts, my shoulder hurts, my elbow is tingly, a little numb down to my hand and
to top it off now my left knee hurts a little.

Health care • So I have found one good physio and one good chiropracter, both same price, who would you see if you had lower
back pain?

Women • Being pregnant is literally taking everything out of me. I’m exhausted, my back is killing me and I stay moody…

Aggravating factors • Yesterday I tried doing a back flip on my trampoline. Now, every time I walk my back hurts. When I did the back
flip I landed on my head.

Employment • Hurt my back at work yesterday and I’m working a full 12 hours tomorrow without getting paid. Lovin life right
now.

Entertainment • Watching Cirque Du Soleil: Michael Jackson my back hurts just from watching it

Religion • Testimony Time! i want to give God the glory for healing me from a severe back pain

Co-occurring conditions • I don’t know if my back pain is causing depression or my depression is causing back pain…

Pharmacological therapies • I just took my very first Oxycodone for lower back pain. I think I’m in love. It didn’t just kill the pain. It assassi-
nated it.

Self-treatments • Coconut oil epsom salt & vapor bath oil just soothed my back pain away

Social support • Told mom my back hurts she offered to rub my feet an back I have the best mom ever

Food and drink • my back is killing me cant get out ov bed but need coffee

Weather • I love cold weather but it’s really not helping with my back pain. Where is that warm summer weather attttttt.

Not being understood • OMG no one understands the pain I'm in right now. My back is killing me.

Discussion

Principal Results
In this study, we identified 60 specific topics from 896,867
tweets about LBP and grouped them into 19 categories that
relate to contextual variables of LBP. The top category was
“emotion and beliefs,” with 157,563/896,867 tweets (17.6%),
followed by “physical activity” (124,251/896,867, 13.85%) and
“daily life” (80,730/896,867, 9%), while “food and drink,”
“weather,” and “not being understood” had the lowest
proportions of tweets (11,551/896,867, 1.29%; 10,109/896,867,
1.13%; and 9180/896,867, 1.02%, respectively). There were 11
topics within the category of “emotion and beliefs”; of 157,563
tweets in this category, 113,562 (72%) expressed negative
sentiment. Our results were consistent with the general findings
from traditional study methods in the area of LBP but provided

more in-depth detail on the context of LBP from the individual
perspective.

Comparison With Prior Work
Our study examined contextual variables to provide a novel
insight into first-person perspectives of the LBP experience and
confirmed the broad areas that have previously been identified
using more traditional data collection methods from qualitative
and quantitative studies. For example, psychosocial factors have
an important role in LBP [54] and, from our analysis of tweets,
“emotion and beliefs” was the most common topic we identified,
with 157,563 of 896,867 tweets. This is consistent with LBP
being widely recognized as a biopsychosocial condition, and
growing evidence to show that psychological factors, such as
beliefs and emotions, play an important role [55]. For instance,
systematic reviews have highlighted that beliefs about back
pain and negative consequences resulting from these beliefs are

J Med Internet Res 2021 | vol. 23 | iss. 12 | e26093 | p. 8https://www.jmir.org/2021/12/e26093
(page number not for citation purposes)

Robert et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


common across different countries and populations [56], and
affect both treatment efficacy and prognosis [57]. Moreover,
mass media campaigns that target negative beliefs have been
implemented in an effort to influence how people manage their
back pain on a population level [58]. Our study has also
provided novel findings with respect to emotions. Although we
found a range of emotions, from positive emotions (such as
happy, love, or fun) to negative emotions (including hell, bad,
or disgusting), the majority were found to be of negative affect.
Although several studies have examined the role of specific
emotions, such as anger [59,60], in LBP research, our
understanding of the array of emotions experienced by
individuals with back pain, specifically negative emotions, is
limited.

Our study also highlighted areas related to the pain experience
in individuals that have not been adequately explored in the
literature but that play an important role in the effectiveness of
LBP interventions and self-management behaviors, such as the
“not being understood,” “religion,” and “food and drink”
categories. We found that although the category of “not being
understood” had the smallest proportion of tweets with a total
of 9180 tweets, it had the top five words: “make,” “people,”
”stop,” “thing,” and “complain.” This is consistent with a
previous systematic scoping review that examined what patients
want from their medical care, which reported that patients felt
misunderstood and wanted legitimation of their LBP [11].
Patients with LBP report negative social stereotyping from
health care professionals, family and friends, and the community
[61] and that they are dissatisfied with the inadequate advice
they receive from medical practitioners and have identified an
unmet need for care providers that show more understanding
and empathy [11].

The category of “food and drink” is novel and interesting. The
tweets included words relating to the type of food (eg, pizza,
chocolate, cookies and cream), mealtimes (such as breakfast
and lunch), and the process of bringing or making food.
Although they reflect important daily habits of eating and
drinking, they may also highlight issues around pain affecting
an individual’s capacity to eat and drink and/or problems
associated with weight and in particular obesity [62], which is
a major public health issue [63].

There are well-described sex differences in the prevalence of
back pain [64]. Analysis of tweets identified 3 topics under the
“women” category including “motherhood,” “large breasts
problem,” and “female health complaints.” LBP has been
reported in more than two-thirds of pregnant women [65].
Improving psychological well-being, physical fitness, and
general well-being may reduce LBP in women [65-67]. The
topics identified in tweets may provide more direction in relation
to the personal topics that warrant further examination (eg, the
potential effect of “large breasts problem” and whether this is
a cause of LBP or a potential confounding variable). Identifying
possible mechanisms for the association with topics such as
“motherhood” or “female health complaints” could also help
with understanding whether these associations are due to
psychosocial factors or biomechanical factors such as the lifting

and carrying of children. Understanding the context of LBP
could offer valuable insights into how people with LBP view
and experience their condition; this could lead to the
identification of new areas of research in exploring the causes
of LBP, as well as the opportunity to identify areas of potential
misinformation that need to be addressed.

Limitations
There are some limitations to our study. Although the keywords
were taken from existing studies about LBP and approved by
domain experts, some keywords, such as “back hurt” and “back
pain,” were very broad. Therefore, the data collected might not
have been specific to LBP. Selection of the right keywords in
Twitter data analysis is very important to avoid unrelated data
that could reduce the accuracy of results. Filtering and cleaning
of Twitter data is also crucial for achieving high accuracy of
results. In our study, we performed vigorous data cleaning, but
our manual examination showed that there was a group of tweets
that contained a few lines from the lyrics of a famous hip-hop
song (Bad and Boujee) by Migos. These lines included “…So
my money makin' my back ache.” One of our search keywords
was “back ache.” Although there are many tools and methods
available to automatically perform data cleaning, it is always
necessary to manually inspect the results.

Twitter users tend to be younger and might not represent the
general population; therefore, the results must be carefully
interpreted [68]. Similar to other social media studies in health
care, we cannot verify that individuals who tweeted about LBP
were actually real patients [15]. However, the filtering based
on first-person pronouns (eg, I, my, or mine) that we performed
is likely to have reduced this.

To determine the optimal number of topics, we used the
coherence score, a widely used method, and then manually
examined and compared the models. This process can be further
improved by using other measures such as heuristic approaches
[69] or perplexity measures [70].

We also recognize that manual labeling of topics can be
subjective. Two domain experts with extensive knowledge were
involved in the labeling and examination of selected topics but
future work in this area could involve a greater number of and
more diverse domain experts to further reduce this subjectivity.

Conclusions
Our findings provided useful insights into individuals’ beliefs
and perspectives regarding their needs and concerns related to
LBP that complement the information available in the literature.
Considering the contextual factors identified in this study rather
than simply focusing on a biomedical model of LBP could
address the needs of patients more holistically, help with
improving LBP outcomes, and increase patient satisfaction.
These findings have the potential to assist health care providers
and clinicians with developing more effective, personalized
therapies for LBP. There is also the potential to use social media
to identify any major changes in community beliefs and needs
regarding LBP that can be addressed in a timelier manner.
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LDA: latent Dirichlet allocation
NMF: nonnegative matrix factorization
PMI: pointwise mutual information
STTM: short text topic modeling algorithm
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