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Abstract

Background: Multimorbidity clinical risk scores allow clinicians to quickly assess their patients' health for decision making,
often for recommendation to care management programs. However, these scores are limited by several issues: existing
multimorbidity scores (1) are generally limited to one data group (eg, diagnoses, labs) and may be missing vital information, (2)
are usually limited to specific demographic groups (eg, age), and (3) do not formally provide any granularity in the form of more
nuanced multimorbidity risk scores to direct clinician attention.

Objective: Using diagnosis, lab, prescription, procedure, and demographic data from electronic health records (EHRs), we
developed a physiologically diverse and generalizable set of multimorbidity risk scores.

Methods: Using EHR data from a nationwide cohort of patients, we developed the total health profile, a set of six integrated
risk scores reflecting five distinct organ systems and overall health. We selected the occurrence of an inpatient hospital visitation
over a 2-year follow-up window, attributable to specific organ systems, as our risk endpoint. Using a physician-curated set of
features, we trained six machine learning models on 794,294 patients to predict the calibrated probability of the aforementioned
endpoint, producing risk scores for heart, lung, neuro, kidney, and digestive functions and a sixth score for combined risk. We
evaluated the scores using a held-out test cohort of 198,574 patients.

Results: Study patients closely matched national census averages, with a median age of 41 years, a median income of $66,829,
and racial averages by zip code of 73.8% White, 5.9% Asian, and 11.9% African American. All models were well calibrated and
demonstrated strong performance with areas under the receiver operating curve (AUROCs) of 0.83 for the total health score
(THS), 0.89 for heart, 0.86 for lung, 0.84 for neuro, 0.90 for kidney, and 0.83 for digestive functions. There was consistent
performance of this scoring system across sexes, diverse patient ages, and zip code income levels. Each model learned to generate
predictions by focusing on appropriate clinically relevant patient features, such as heart-related hospitalizations and chronic
hypertension diagnosis for the heart model. The THS outperformed the other commonly used multimorbidity scoring systems,
specifically the Charlson Comorbidity Index (CCI) and the Elixhauser Comorbidity Index (ECI) overall (AUROCs: THS=0.823,
CCI=0.735, ECI=0.649) as well as for every age, sex, and income bracket. Performance improvements were most pronounced
for middle-aged and lower-income subgroups. Ablation tests using only diagnosis, prescription, social determinants of health,
and lab feature groups, while retaining procedure-related features, showed that the combination of feature groups has the best
predictive performance, though only marginally better than the diagnosis-only model on at-risk groups.

Conclusions: Massive retrospective EHR data sets have made it possible to use machine learning to build practical multimorbidity
risk scores that are highly predictive, personalizable, intuitive to explain, and generalizable across diverse patient populations.
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Introduction

Multimorbidity risk scores, which factor in the presence of
several chronic conditions, can provide insights into morbidity
and mortality [1,2]. In general, the number of co-occurring
medical conditions is associated with increased adverse medical
outcomes [3-5] and increased use of medical services [6]. This
is particularly true for older individuals since the number of
co-occurring medical conditions will increase with age [7].
Various approaches to quantifying multimorbidity have been
used, including simply counting the number of conditions [8],
while more complex tools have also been developed, such as
the Charlson Comorbidity Index (CCI) [9] and the Elixhauser
Comorbidity Index (ECI) [10]. However, these scores were
developed decades ago and are limited to diagnostic information
or certain populations, which may limit their utility. A
systematic review [11] of multimorbidity scores examined 35
major multimorbidity scores, which could be subclassified by
the information they used (eg, prescription data, diagnostic data,
self-reported quality of life) and the outcomes they recorded
(all-cause mortality, emergency room admissions, and hospital
admissions). Patients with multimorbidities are cared for in
general practice and by specialists [8,12,13] who use
disease-specific risk scores and guidelines. Condition-specific
risk scores, such as the Framingham Risk Score [14] for
coronary heart disease, can help identify specific interventions
to benefit patients and provide actionable information to guide
tests and medications. One potential issue with the use of these
tools is that sometimes they do not address the overall health
care priorities of the patient due to their narrow focus [8,15,16].

Multimorbidity scores tend to only use one type of clinical data,
such as diagnoses, prescriptions, or procedures, and rarely
integrate them. As a result, they may be missing vital
information and relationships in patient information. Although
newer methods, such as probabilistic phenotyping [17], may
alleviate these concerns, while remaining scalable, these
methods are still highly experimental, with a wide variety of
methods and little consensus on which ones are most trustable
for real-world settings [18]. Using multiple data sets, feature
types, and methodological explorations could provide a more
comprehensive and robust estimate of multimorbidity risk.
Currently, no multimorbidity scores exist that produce granular
and overall risk profiles irrespective of age and sex; are derived
from a large, representative population of patients; and integrate
multiple clinical data sets, including diagnoses, prescriptions,
lab results, and procedures using machine learning (ML;
building upon previous ML-based strategies and
recommendations for multimorbidity analysis by Hassaine et
al [19]). Such scores could help health care providers engage
in patient-centered care and prescribing, reduce polypharmacy,
and guide deprescribing when used together with traditional
risk scores and guidelines.

To address this need, we sought to create the total health profile
(THP), a set of ML-derived measures of an individual's

comprehensive clinical risk. The THP presents clinical risk in
five separate models (referred to as “component scores”),
producing granular, multimorbid risk scores specific to
cardiovascular (“heart score”), respiratory (“lung score”),
neuropsychiatric (“neuro score”), renal (“kidney score”), and
gastrointestinal (“digestive score”) conditions. These organ
systems reflect those involved in the top 10 sources of mortality
in the United States [20] and serve to complement existing
disease-specific risk scores. We also included, as a sixth score,
the total health score (THS), a single view of a patient's overall
health across all five of the aforementioned organ systems,
which can be compared to existing pure multimorbidity risk
scores. Each of these six scores was independently modeled
using electronic health record (EHR) data consisting of
demographic information, diagnosis codes, lab results,
prescriptions, and medical procedural data and required,
otherwise, no patient behavior or familial history data. For the
unified risk endpoint of all six of the scoring models, we used
inpatient (IP) hospital visits. As such, each score’s estimate of
clinical risk represents the likelihood of an IP hospital visit over
the next 24 months, attributable to the score's clinical category
(eg, lung, heart). After training, testing, and calibrating the THS
and the five organ system component scores, we analyzed the
metrics and generalizability of each score across populations.
We also conducted ablation tests of several feature groups to
assess their importance in the final set of models. Finally, we
discussed the clinical applicability of the THP, limitations of
the study, and future work.

Methods

Study Design and Patient Inclusion Criteria
This retrospective cohort study used lab measurements and an
administrative claims database of 52 million patients provided
by a US health care insurance company. Patients were enrolled
in a mixture of commercial, Medicare, Medicaid, and exchange
plans. Our study design involved training on retrospective data
from a certain time window and assessing performance via a
follow-up time window. The retrospective observation period,
or the time period in which model features were collected, was
defined as January 1, 2016, through December 1, 2017, and the
follow-up period, or the time period in which the model labels
were collected, as January 1, 2018, through December 31, 2019.

All patient data were de-identified. Patients selected for
inclusion had at least one medical claim in each year of the data
collection and follow-up periods and had a known sex, birthdate,
and zip code. These inclusion criteria resulted in 14 million
patients, from which 1 million patients were randomly selected
for analysis using PySpark, resulting in 992,868 patients due
to the approximation methods used by PySpark. This patient
sample was split into training (n=794,294) and testing
(n=198,574) groups corresponding to an 80:20 ratio. Diagnosis
codes (International Classification of Diseases, Tenth Revision
[ICD-10]), medical procedure codes (Current Procedural
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Terminology [CPT]), lab data, demographics (social
determinants of health [SDoH], patient gender/age), and
prescription data (defined by General Product Identifier [GPI]
codes) were used from patients who met the selection criteria.
Our study, in total, used 88 ICD-10 codes and 30 chronic
conditions (derived from ICD-10 codes specified by the ECI),
16 lab types, 764 GPI codes representing 4 GPI prefixes, 14
CPT codes, and 17 demographic markers.

Data Processing
Using the data compiled for the 992,868 patients, we extracted
a set of features corresponding to chronic diagnoses, acute
diagnoses, IP hospital visits, prescriptions, sociodemographic
information, and lab results/physical exam measurements for
feature extraction and modeling. A description of all features
gathered during the data collection period follows next.

Demographic information was extracted from the United States
Census American Community Survey for 2017 at the zip code
level. This information included population, household count,
and race and ethnicity percentages for that zip code (eg, African
American, non-Hispanic White, Hispanic, Asian, Native
American), sex percentages per zip code, and economic
indicators, including the mean and median income. Demographic
data also included the age and sex of the patients. Chronic
disease diagnoses were counted as the presence of a chronic
disease, while acute diagnoses were counted as the number of
those diagnoses in the study period, summed over the
component. For instance, 3 atrial fibrillation codes and 2 acute
heart failure codes during the 2-year data collection period
would have resulted in the number of acute heart diagnoses
being 5. Medical procedure features were counted as the count
of IP CPT codes that occurred during the data collection period,
with otherwise identical score-specific inclusion criteria to the
IP hospital labels (discussed in the Model Outcome Labels
section). Four groups of prescriptions were included, assigned
using the first two digits of the GPI code and indicated by binary
presence: antihypertensives, hypoglycemics, lipid-lowering
medications, and antithrombotic agents. In all, 16 labs or vitals
were included in the study, each one being a numerical feature.
If there were multiple results of the same lab data/vitals collected
during the data collection period, only the most recent
measurement was included. In total, our feature set and labels
used the following set of clinical features: diagnoses (88 ICD-10
codes and 30 chronic conditions), labs (16 types), prescriptions
(764 GPI codes, representing 4 GPI prefixes), procedures (14
CPT codes), and demographics (15 SDoH and 2 individual
patient characteristics).

Except for demographic features, lab values, and vital signs, all
input features were filtered on a model-by-model basis to include
only score-relevant data (ie, the heart score would be modeled
using only physician-curated features related to cardiovascular
health). For IP hospital visit features collected during the data
collection period, only score-specific IP visit counts were
included (ie, the heart score would have as input the number of
heart-related IP visitations during the data collection period,
not the lung-related, and so on). The set of input features used
over all component score models were used as input for the
THS model, with an exception for chronic diagnosis features.

Model Outcome Labels
All component score labels were a binary indicator referring to
whether a patient had an IP visit within the follow-up period,
given that they also had acute or chronic diagnoses within 12
months prior to the IP visit and within 7 days after the IP visit,
establishing both a history of that condition and that the IP visit
was (likely) related to that condition. These diagnoses would
be specific to each component, given by the corresponding ECI
comorbidities and ICD-10 codes. For example, a possible
positive label for the lung scoring model could be an IP hospital
stay CPT code on June 2, 2019, a diagnosis code corresponding
to pneumonia 3 months prior to it, and a diagnosis code
corresponding to chronic pulmonary disease 2 days after it. The
THS label is simply the combination of all the component score
labels; if a patient has any positive component score label, the
THS label would be positive as well.

Modeling Procedures and Baselines
All scores were calculated using a gradient-boosted tree
classifier, with default hyperparameters, using the Scikit-Learn
Python 3.6 package (version 0.24.1). Using demographics,
diagnoses, lab values, procedures, and prescription data as input
and IP visits as binary labels, separate models were trained for
each score and subsequently calibrated using an isotonic
regression with 3-fold cross-validation over the training set.
Discriminative results from the models were obtained using the
optimal threshold point of the training set (given by the threshold
that yielded the smallest difference between the true-positive
rate and the false-positive-rate) and applied to the testing set.
All missing values were mean-imputed, and all input features
for each model were mean-normalized using the training data.

We had multiple baselines: a logistic regression model with
default hyperparameters using the statsmodel package (version
0.12.0) with otherwise identical feature sets, and a comparison
of the performance of the THS to commonly used scores of a
similar nature, specifically the CCI and the ECI, in predicting
the hospitalization endpoint. We also conducted multiple
ablation tests on the feature groups: a set of gradient-boosted
tree classifiers, all with procedural data, but having only one
set of either lab, SDoH, prescription, or diagnosis information.
For the baseline gradient-boosted comparison with the combined
feature model for patient subgroups, CI calculations were
generated using 100 bootstrap iterations of 10% of the given
demographic. The patient subgroups analyzed were patients
with two or more of any comorbidity and one or more
prescriptions of hypertensive, hyperglycemic, lipid-lowering,
or antithrombotic medications.

Radial Plots
Radial plots were generated using three patients who were
closest to each of the centroids of a fitted, randomly initialized
K-means model, with a K value of 3. The K-means algorithm
used the Scikit-Learn Python 3.6 package (version 0.24.1), and
the plots themselves were generated using Plotly.

Model Discrimination and Generalization/Sensitivity
Analyses
Models were assessed on three levels: discriminative
performance, calibration, and generalizability in performance
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across different demographics. To assess the discriminative
performance of each model in the THP, we calculated the area
under the receiver operating curve (AUROC), sensitivity, and
specificity using Scikit-Learn for the testing set of 198,574
patients. We also plotted the AUROC for all scores on the
testing set (Figure 1). All CIs for the discriminative metrics
were generated using 500 bootstrap samples of 20,000 from the
testing data set. We selected the AUROC as our primary metric
because it represents a comprehensive measure of the
true-positive-rate and false-positive-rate trade-off without
needing an optimal threshold point. Since our outcomes
exhibited strong class imbalance, which may have led to overly
optimistic AUROC values, we used sensitivity and specificity
as secondary model measures. To assess calibration
performance, we created calibration plots using Scikit-Learn,
graphing predicted probability versus positive label percentage
across 10 uniform probability bins. We assessed calibration, as
measured by calibration plots, as the primary measurement of
clinical utility as it gives a clear idea of how these scores can
be used to identify sick patients, avoid alarm fatigue, and be

interpreted as a probabilistic likelihood. To assess the
generalization performance of each model, we studied how the
performance and scores of the models vary across age, zip code
income, and sex categories. We plotted how the AUROC varies
among age groups (decade age groupings), median income
groups (low, medium and high), and binary gender (male or
female). Additionally, we computed statistical significance
Z-tests for AUROC pairwise differences between all groups
within each category. Due to the lower sample sizes of the
groups, CI calculations were generated using 100 bootstrap
samples of 10% of the given demographic of the testing group.
The THS and component scores were then analyzed by plotting
the distribution of scores as a function of age and disease burden
(measured by the presence of pre-existing comorbidities during
the observation period). Specifically, we looked at the
distributions of the THS and the component scores among
various age groups for patients with zero comorbidities found
during the data collection period and patients with at least one
ECI comorbidity related to the given component found during
the data collection period.

Figure 1. ROCs for all scores in the THP. AUC: area under the curve; ROC: receiver operating curve; THP: total health profile; THS: total health
score.
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Physician-Guided Feature Selection and Curation
To select features to incorporate into the THS, a
physician-guided curation method was incorporated, which
involved selecting conditions, reviewing clinical practice
guidelines for important conditions, and identifying clinical
measures, tests, and pharmacological interventions in those
guidelines. No statistical feature selection techniques were used,
as those offer improved accuracy mainly in cases with relatively
small training data sets or models that are sensitive to
unsuspected feature correlations [21].

An overview of the manually guided feature selection process
is described below:

1. Selection of disease categories/subscores: The top causes
of death across the United States were reviewed from the
2018 mortality statistics from the National Center for Health
Statistics, and five main categories that the causes of death
could be classified into were identified: cardiac (heart),
respiratory (lung), neuropsychiatric (neuro), gastrointestinal
(digestive), and renal (kidney).

2. We then obtained the leading causes of IP conditions for
2011-2013 using the Agency for Health care Research and
Quality (AHRQ) Healthcare Cost and Utilization Project
(HCUP) database. We cross-referenced the top 30 codes
for each year with the 5 categories we developed in step 1.
We did not include codes corresponding to obstetrical
conditions, complications related to birth and delivery,
multisystem malignancy, and musculoskeletal conditions.

3. Using the AHRQ HCUP codes, we extracted the ICD-10
codes and selected additional medically related conditions
(eg, selecting the ICD-10 codes for ischemic stroke codes,
in addition to ICD-10 codes for hemorrhagic stroke).

4. To obtain corresponding prescription, lab, and procedure
codes, we then reviewed clinical practice guidelines for the
identified conditions (eg, stroke, chronic obstructive
pulmonary disease) from the United States Preventive
Services Task Force [18,22]. These guidelines were then
reviewed and lab data and procedures corresponding to
diagnosis and management were extracted by a physician.
These were then manually mapped to the corresponding

drug (GPI codes), procedure (CPT codes), and lab (Logical
Observation Identifiers Names and Codes) codes.

MI-CLAIM Checklist
This work meets the Minimum Information about Clinical
Artificial Intelligence Modeling (MI-CLAIM) requirements for
sharing design, data/optimization, model performance, model
examination, and level of reproducibility [23].

Role of the Funding Source
The funding source collected the raw data.

Ethics Approval
The analysis presented here is not to be characterized as human
subject research. We are presenting the results of an analysis
conducted for a health plan’s health care operations in
accordance with the Health Insurance Portability and
Accountability Act of 1996 (HIPAA). Only aggregated results
of the business analysis are provided, and no individually
identifiable information (protected health information or
otherwise) was used in the development of this presentation.

Results

Patient Cohort
In all, 992,868 patients matched the inclusion criteria (Table
1). The majority were female (n=560,165, 56.4%), with 432,703
(43.6%) males, concordant with the 2019 census results [20];
the median age (41 years) was slightly higher than the national
average; and the number of comorbidities tended to increase
with age, consistent with previous findings [7]. The mean patient
age was 39.07 years (95% CI 39.02-39.12), the mean number
of comorbidities was 1.71 (95% CI 1.71-1.72), and the
percentage of patients with IP visits was 1.65% (females 1.7%,
males 1.7%). IP visits were also positively correlated with age
for each organ system (Spearman correlation=0.314), which is
concordant with previous studies [21]. The sample-weighted
summary of zip-code-level demographics had a median income
of $66,829, and the racial averages by zip code were 73.8%
White, 5.9% Asian, and 11.9% African American, closely
matching census averages (Table 1).
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Table 1. Demographic profile of patients included in the analysis cohort (N=992,868).

MalesFemalesOverallCharacteristics

Age range, n (%)

77,461 (51.4)73,224 (48.6)150,685 (15.2)0-10 years

67,027 (47.6)73,657 (52.4)140,684 (14.2)10-20 years

25,123 (31.4)55,013 (68.6)80,136 (8.1)20-30 years

36,600 (35.7)65,797 (64.3)102,397 (10.3)30-40 years

51,772 (40.8)75,151 (59.2)126,923 (12.8)40-50 years

72,370 (44.2)91,305 (55.8)163,675 (16.5)50-60 years

55,973 (45.8)66,270 (54.2)122,243 (12.3)60-70 years

32,927 (45.4)39,633 (54.6)72,560 (7.3)70-80 years

13,450 (40.1)20,115 (59.9)33,565 (3.4)80-90 years

Number of comorbidities, n (%)

160,446 (44.3)202,023 (55.7)362,469 (36.5)0

106,921 (44.3)134,245 (55.7)241,166 (24.2)1

59,384 (42.2)81,174 (57.8)140,558 (14.1)2

37,431 (41.9)51,827 (58.1)89,258 (8.9)3

68,521 (43.0)90,896 (57.0)159,417 (16.0)4+

Zip code demographics (Census 2019)

74.3% (N/A)73.4% (N/Aa)73.8 (76)% White (mean %)

11.4% (N/A)12.3% (N/A)11.9 (13)% Black (mean %)

6.0% (N/A)5.8% (N/A)5.9 (5)% Asian (mean %)

$67,343 (N/A)$66,431 (N/A)$66,829 ($62,843)Median income (mean)

aN/A: not available.

Overall Model Performance
All models outperformed the logistic regression baseline and
were well specified with AUROCs of 0.83 for the THS, 0.89
for heart, 0.86 for lung, 0.84 for neuro, 0.90 for kidney, and
0.83 for digestive functions (Figure 1). All six models were
well calibrated. Additional metrics (sensitivity and specificity)
can be found in Table 2.

One benefit of the THP is that it is personalized to the patient
to allow for nuanced interpretation based on the affected organ

system, in addition to robust predictive performance. Figure 2
demonstrates an illustrative radial plot example of three patients
who were around the same age (50-60 years old) and had the
same rough THS (>0.8). Unlike grouped scoring systems, the
THP enables the clinician to understand the personalized drivers
for that score, thereby enabling clinical decisions that are
specific to the individual patient. The score of patient 1 was
driven primarily by neuro and heart issues, while the score of
patient 2 was affected by kidney, neuro, and heart diseases, and
the score of patient 3 was mostly affected by heart, lung,
digestive, and kidney maladies.

Table 2. Gradient-boosted tree AUROCa, sensitivity, and specificity for each score in the testing set (n=198,574).

Specificity (95% CI)Sensitivity (95% CI)AUROC (95% CI)Score type

0.788 (0.783-0.793)0.82 (0.796-0.845)0.883 (0.876-0.893)Heart

0.802 (0.796-0.808)0.75 (0.713-0.784)0.853 (0.837-0.867)Lung

0.774 (0.768-0.78)0.756 (0.722-0.793)0.837 (0.821-0.855)Neuro

0.83 (0.824-0.835)0.784 (0.738-0.825)0.892 (0.873-0.908)Kidney

0.756 (0.75-0.762)0.733 (0.698-0.767)0.827 (0.81-0.847)Digestive

0.777 (0.771-0.783)0.721 (0.701-0.744)0.823 (0.811-0.834)THSb

aAUROC: area under the receiver operating curve.
bTHS: total health score.
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Figure 2. Three patients, all 50-60 years of age and all with approximately equal THSs. THS: total health score.

Important Model Features
We obtained the most important features of the THS and of
each component model. For the THS, the biggest drivers of the
model were the use of prior IP hospital visits (0.41) and age
(0.15), followed by an acute heart-related diagnosis (0.11),
uncomplicated hypertension (0.06), and acute neurological
conditions (0.02); see Figure 3. The key features for each

component model were directly relevant elements. For example,
the most important features of the kidney model included a
diagnosis of renal failure, as well as age, last recorded
measurement of estimated glomerular filtration rate (eGFR)
and hemoglobin A1c (HbA1c), and any acute kidney-related
diagnosis. Generally, age and a prior history of hospitalization
for issues relating to the organ system in question were the most
important features across most component models.
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Figure 3. Feature importance plots across all scoring models, generated using Gini impurity reduction. BMI: body mass index; BP, blood pressure;
dx: diagnosis; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; IP: inpatient; THS: total health score.

Generalizability Across Subgroups
We examined differences in performance for the THS as well
as each component score for population subgroups based on
sex, median neighborhood income, and age (Figures 4A, 4B,
and 4C, respectively). Statistical AUROC comparisons [24]

with Bonferroni corrections revealed that there were no
significant differences in model performance on the basis of
sex or income. There were occasional statistical differences in
performance on the basis of age, primarily related to the
80-90-year-old population, which had significantly fewer data
points than any of the other age groups (see Table 1).
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Figure 4. Generalizability. AUROC performance across population subgroups. AUROC: area under the receiver operating curve; THS: total health
score.

Ablation Tests
We conducted ablation tests of several feature groups to assess
the need for them in the final set of models. All ablation test
models used procedural data as input, as we assumed access to
this information is a given due to the outcome prediction being
procedural as well. The combined feature set outperformed the
lab, SDoH, and prescription-only models. The combined feature
set also outperformed the diagnosis-only model, though not
significantly. This statistically nonsignificant outperformance
was similarly observed in multiple patient subgroups focused
on at-risk patients.

Performance Comparisons to Charlson and Elixhauser
Risk Scores
In addition to a model baseline (logistic regression), we also
compared the performance of the THS to commonly used scores
of a similar nature, specifically the CCI and the ECI. Both the
CCI and the ECI generate a risk score based on different weights
associated with certain diseases based on ICD-10 codes. The
THS (AUROC=0.82) outperformed both the CCI
(AUROC=0.74) and the ECI (AUROC=0.65); see Table 3. We
further compared performance across subgroups. Of the
baselines, the CCI is a consistently better predictor than the
ECI. Across subgroups, the THS also consistently outperformed
the score baselines for every age, sex, and income bracket. The
improvement was perhaps most pronounced for ages between
20 and 50, as well as for individuals living in lower-income
neighborhoods.
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Table 3. AUROCa performance by sociodemographic strata and score in predicting IPb visitations.

THSe feature scoreCCId scoreECIc scoreStrata

0.8230.7350.649All

Genderf

0.8220.7330.6370

0.8240.7360.6641

Age bracket

0.6960.6220.6210-10 years

0.7250.5730.48420-30 years

0.7860.6210.46020-30 years

0.7680.6350.50930-40 years

0.7690.6750.54940-50 years

0.7540.6930.60250-60 years

0.7420.6940.63760-70 years

0.7210.6780.64570-80 years

0.7110.6570.65280+ years

Income, median

0.8200.7150.640$0-$30,000

0.8230.7340.647$30,000-$90,000

0.8330.7380.665$90,000+

aAUROC: area under the receiver operating curve.
bIP: inpatient.
cCI: Elixhauser Comorbidity Index.
dCCI: Charlson Comorbidity Index.
eTHS: total health score.
f0: male; 1: female.

Discussion

Principal Findings
There is a continued need for an updated clinical score that
profiles patients based on multimorbidities that are equitable
across populations and nuanced enough to facilitate precision
medicine. To facilitate clinical decision making across patient
populations, we created an automated, generalizable, integrated,
multimorbidity risk profile across several clinical domains. The
THP is composed of cardiovascular, respiratory,
neuropsychiatric, renal, and gastrointestinal clinical risk
subprofiles, as well as a sixth score, the THS, representing the
overall combinatorial risk of the five organ-specific scores. We
followed ML best practices to train six integrated models on
large-scale EHR data with the forecasted probability of a risk
endpoint, organ-specific IP hospital visits, over a 2-year window
as the target. We chose IP hospital stays as our risk endpoint
because reductions in overall health, whether due to multiple
health conditions [6,25] or aging [26], are associated with
increased hospital visits [27,28]. The primary contribution of
this work goes beyond the models themselves by matching
clinical knowledge to data that are available at scale, across a
diverse cohort of patients. In our experiments, we found that

the profile demonstrates high performance in terms of the
AUROC on the aggregate held-out testing set. Importantly,
there was consistent performance of this scoring system across
sexes, diverse patient ages, and income levels. The THS model
and each of the component models learned to generate
predictions by focusing on appropriate, clinically relevant patient
features. The THP is personalized based on individual organ
system risk drivers, and visualizations, such as radar plots, can
be used to facilitate explainability and encourage confidence of
clinical decision making, providing meaningful feature
importance. The THS outperformed relevant baselines,
specifically the other commonly used multimorbidity scoring
systems CCI and ECI, for every age, sex, and income bracket.
Finally, we conducted multiple ablation tests, while retaining
procedure features, to determine the relative contribution of
feature groups to the THP. In this experiment, we found that
while the combined feature set predictive performance
outperformed the prescription, lab, and SDoH ablations, it was
largely similar to the diagnosis ablation. However, we
hypothesized that we would find larger differences in
performance among at-risk populations and found, in patients
with multiple comorbidities and on certain prescriptions, minor
but consistent increases in predictive power using the combined
feature set versus the diagnosis feature set, implying that risk
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prediction is improved on more complex patients, given more
complex data. As more features, including more labs, diagnosis,
and prescriptions, are added to the THP, future work will more
closely examine which demographics benefit from it.

The THP’s multimorbidity scores can be distinguished from
traditional multimorbidity scores in three ways: First, they are
derived from a comprehensive set of diagnostic, prescription,
lab, and medical procedure data. This is in contrast to other
multimorbidity scores that use only one set of information, such
as diagnoses (as is the case with the ECI [10] and the CCI [9])
or prescriptions (such as Rx-Risk [29]). Second, these scores
were derived from a large and diverse cohort of 794,294 patients
with medical data spanning decades. Third, the THP was
calculated from patients of both sexes and from across the age
spectrum (3-90 years), rather than focusing on mostly geriatric
populations as with traditional multimorbidity. To the best of
our knowledge, this is the first time that ML was used to
integrate multiple types of physician-curated clinical information
from a large, diverse population and produce a multimorbidity
score that can help guide patient care irrespective of sex and
age.

As part of the overall multimorbidity score in the THP, we
calculated robust, organ-system-specific scores that provide a
more granular picture of health. We believe that these
organ-specific multimorbidity scores can complement existing
condition-specific scores in clinical practice by providing
additional validation for treatment decisions for cardiovascular,
respiratory, neuropsychiatric, gastrointestinal, and renal
domains. Along these lines, we note that these disease-specific
scores often use patient-reported outcomes as part of their input
[14], with some even using them exclusively [3]. Although EHR
software systems may have health-based modules to
automatically compute such scores at the population level, these
self-reported data are frequently unavailable or unreliable [30],
making it difficult to scale these scores to the population level
with a high degree of efficacy. Although the THP cannot be
directly compared against these alternative risk scores, as they
typically focus on diagnoses versus emergency events, the fact
that the THP consistently achieved relatively high AUROCs is
nevertheless promising with regard to its ability to complement
these more specific risk scores. Specifically, it says something
well established in multimorbidity scores but understudied in
more specific risk scores: foregoing patient input (which
typically contains useful information) entirely, in exchange for
more scalable data, can still lead to strong results. Moreover,
these alternate risk scores are also typically hyperspecific,
limiting their clinical utility to a subset of patients—likely due
to them being built on similarly restricted cohorts (eg the
American Heart Association pooled cohort equations for
atherosclerotic cardiovascular disease derived from cohorts
exclusively in the age range of 40-79 years). As our approach
has no constraints upon individual patients’ age or sex, and are
built using a similarly diverse cohort, risk profiles that are
applicable to a far larger population can be easily derived. Of

course, we assessed generalizability only among three
well-known dimensions (age, sex, and income), and there are
far more subtle biases that have been observed even among
established risk scores, such as the CHADS2VASC stroke score
underestimating risk in patients with chronic renal disease [31].
Further study will be needed to fully examine these sorts of
biases in our proposed risk models, but even in this case, the
scalability of our approach will only make this research simpler
to perform.

Limitations
Data-related limitations of this study include unmeasured
variables and incomplete observations. Regarding the former,
in this study, we did not include lifestyle behavioral data, such
as nutrition, smoking, and physical activity. Although reporting
of these factors is known to be inconsistent and unreliable [32],
especially in healthy populations (which typically lack recent
EHR/claims medical history), they play an important role in
clinical outcomes. We believe this would be most addressable
through the collection of passive data from wearable sensors,
which future work will include. On a similar note, although we
were able to use aggregate statistics for race and economic status
based on zip-code-derived census data, we were unable to track
them at an individual level. Though this form of zip code
aggregation has been shown to be useful in clinical risk
assessment [33], individual SDoH data could increase the
precision and accuracy of THP multimorbidity scores. Future
studies of the THP will examine the impact of longer
observation and follow-up windows on strategies for clinical
intervention. Finally, we note the unreliability of claims data at
large, as they are typically produced with financial incentives
that are not necessarily aligned with patient care, though they
are still often used for risk assessment problems [34,35].

Conclusion
In summary, we combined practical clinical knowledge with
modern ML on large-scale data to produce THP multimorbidity
scores to aid in decision making across generalizable patient
populations. We believe that the THP will allow for more
targeted prioritization of care-gap closure, the assessment of
comprehensive risk profiles for a greater number of patients,
and facilitation of better physician-patient interactions and joint
decision making via feature explainability. Although prospective
studies will be required to measure the utility of this approach,
our intention is that the THS may be used as a preliminary risk
stratifier to rapidly prioritize patients for care from a population
health management perspective [36]. Once a patient is engaged
with a care provider, the organ-specific scores can be used to
guide, and explain, individualized clinical interventions based
on existing best practices. This would provide the foundation
for an integrated continuum between population health and
personalized medicine. Finally, we also note the promise that
the THP has for clinical research at large, reflecting the rare
opportunity to study holistic clinical risk at an extreme scale,
potentially unveiling clinically valuable insights.
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AUC: area under the curve
AUROC: area under the receiver operating curve
CCI: Charlson Comorbidity Index
CPT: Current Procedural Terminology
dx: diagnosis
ECI: Elixhauser Comorbidity Index
eGFR: estimated glomerular filtration rate
EHR: electronic health record
GPI: General Product Identifier
HbA1c: hemoglobin A1c

HCUP: Healthcare Cost and Utilization Project
HIPAA: Health Insurance Portability and Accountability Act of 1996
ICD-10: International Classification of Diseases, Tenth Revision
IP: inpatient
MI-CLAIM: Minimum Information about Clinical Artificial Intelligence Modeling
ML: machine learning
SDoH: social determinants of health
THP: total health profile
THS: total health score
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