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Abstract

Background: Wearable devices have been widely used in clinical studies to study daily activity patterns, but the analysis remains
a major obstacle for researchers.

Objective: This study proposes a novel method to characterize sleep-activity rhythms using actigraphy and further use it to
describe early childhood daily rhythm formation and examine its association with physical development.

Methods: We developed a machine learning–based Penalized Multiband Learning (PML) algorithm to sequentially infer
dominant periodicities based on the Fast Fourier Transform (FFT) algorithm and further characterize daily rhythms. We implemented
and applied the algorithm to Actiwatch data collected from a cohort of 262 healthy infants at ages 6, 12, 18, and 24 months, with
159, 101, 111, and 141 participants at each time point, respectively. Autocorrelation analysis and Fisher test in harmonic analysis
with Bonferroni correction were applied for comparison with the PML. The association between activity rhythm features and
early childhood motor development, assessed using the Peabody Developmental Motor Scales-Second Edition (PDMS-2), was
studied through linear regression analysis.

Results: The PML results showed that 1-day periodicity was most dominant at 6 and 12 months, whereas one-day, one-third–day,
and half-day periodicities were most dominant at 18 and 24 months. These periodicities were all significant in the Fisher test,
with one-fourth–day periodicity also significant at 12 months. Autocorrelation effectively detected 1-day periodicity but not the
other periodicities. At 6 months, PDMS-2 was associated with the assessment seasons. At 12 months, PDMS-2 was associated
with the assessment seasons and FFT signals at one-third–day periodicity (P<.001) and half-day periodicity (P=.04), respectively.
In particular, the subcategories of stationary, locomotion, and gross motor were associated with the FFT signals at one-third–day
periodicity (P<.001).

Conclusions: The proposed PML algorithm can effectively conduct circadian rhythm analysis using time-series wearable device
data. The application of the method effectively characterized sleep-wake rhythm development and identified the association
between daily rhythm formation and motor development during early childhood.
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Introduction

Background
Wearable devices have been increasingly used in research
recently because they can provide continuous objective
monitoring of activities and vital signs data such as body
temperature and pulse rates [1-3]. In sleep and activity studies,
researchers have focused on the actigraphy data generated from
wearable devices to study sleep and activity patterns as an
alternative to sleep diaries and polysomnography [1,4]. The
device usually uses an accelerometer that monitors acceleration
in one or more directions, and this wristwatch-like device is
often worn on the wrist to record activity continuously for
several days. Either the raw data or the transformed activity
count data can be used to study sleep-wake patterns and screen
sleep disorders [4,5]. Actigraphy not only avoids the subjectivity
and bias issues with sleep diaries but also overcomes the
drawbacks of polysomnography, such as high costs,
in-laboratory setting, intrusive measures, and difficulty in
long-term monitoring.

Continuous objective monitoring using wearable devices
provides researchers with the opportunity to conduct circadian
rhythm studies. Circadian rhythms are endogenous and
entrainable biological processes that follow a period of
approximately 24 hours, and many physiological phenomena
such as sleep-wake patterns, body temperature, and hormone
levels exhibit circadian rhythms. For humans, most circadian
rhythms are under the control of the pacemaker located in the
suprachiasmatic nuclei in the anterior hypothalamus of the
central nervous system, and suprachiasmatic nuclei accept
environmental information such as the light and dark cycle to
adjust the 24-hour cycle [6]. However, 24-hour human circadian
rhythms are not mature at birth, when the predominant rhythm
is ultradian, and the circadian rhythms of sleep-wake cycles and
body temperature gradually develop during the first year after
birth [6-9]. Many studies have investigated how circadian
rhythms develop through childhood into adolescence and
adulthood and how they are related to health issues such as sleep
problems, mental problems, and disease risks, to name a few
[8,10-14]. It is noteworthy that the development of circadian
rhythms during early childhood is associated with disease risk
factors and can affect both childhood and adult life [8].
Therefore, it is important to conduct circadian rhythm studies
to gain a thorough understanding of the formation and
consolidation of daily activity rhythms during early development
as well as the association between the changes in daily rhythms
and health conditions.

Actigraphy data generated from wearable devices have been
validated to provide reliable information on sleep and circadian
rhythms [15]. However, the analysis of time-series data from
actigraphy remains a major obstacle for researchers. Current
major statistical methods are either parametric, based on cosinor
analysis, or nonparametric [16-21]. These methods do not
specifically focus on periodic information and are not

specifically suitable for populations whose sleep-wake rhythms
are not sinusoidal, such as patients with Circadian Rhythm Sleep
Disorder, or not mature, such as young infants and toddlers
[6-10,12]. Therefore, traditional approaches targeting normal
daily rhythms might not work because detailed activity rhythms
cannot be captured. There is a need to develop an appropriate
methodology to extract periodic information and study detailed
circadian patterns of all populations to better characterize daily
rhythms.

Objective
In this paper, we propose a Penalized Multiband Learning
(PML) approach that can complement current methods to
characterize daily rhythms based on periodic information in
time-series wearable device data. PML extracts periodic
information using the Fast Fourier Transform (FFT) algorithm
and then performs penalized selection based on regularization,
a classic approach used in machine learning, to identify
dominant periodicities and further characterize daily rhythms
[22,23]. In this paper, we first present the proposed PML
approach in detail and discuss its usefulness and advantages
compared with other methods. Subsequently, we present an
application of the method to early childhood wearable device
activity data, in which we characterize the formation and
consolidation of sleep-activity rhythms and further study its
association with physical development during early childhood.

Methods

Data
The study participants were 262 healthy newborns recruited in
2012-2013 by the Shanghai Children’s Medical Center,
Shanghai, China. Actiwatch data were collected at ages 6, 12,
18, and 24 months, with 159, 101, 111, and 141 participants at
each time point, respectively; not all participants from the cohort
participated each time. The infants and toddlers were required
to wear Actiwatch 2 (Philips Respironics Mini-Mitter) on the
ankle for 7 consecutive days. Wearing such devices on the ankle
is commonly recommended for young infants or toddlers [24].
The Actiwatch 2 uses a piezoelectric sensor to detect
accelerations between 0.5 and 2.0 g with a frequency response
range between 0.35 and 7.5 Hz, and activity counts summarize
the accelerations over each epoch. The data output format for
Actiwatch 2 was configured to be the activity count per 1-minute
epoch. On the basis of sleep diaries and activity plots for each
individual, the days showing nonwear periods with straight lines
of zero activity counts were removed. Nonwear periods can be
differentiated from sedentary behaviors or sleep because the
former gives almost all zero activity counts, whereas the latter
gives nonzero activity counts every now and then. Figure 1
shows the activity plots for participant ID 17, and it can be seen
that at 6 months, low and high activities were intermittent during
the day, suggesting multiple daytime naps, whereas near-zero
activity levels at night suggest long nighttime sleep. At 12
months, 3 activity peaks, one morning nap, and one afternoon
nap can be identified. At 18 and 24 months, 2 activity peaks
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formed and stabilized, showing only one afternoon nap. The
daily activity rhythm developed and stabilized as the infant
grew. In addition to Actiwatch data, demographic information
and family information were collected at baseline, such as
child’s sex, child’s date of birth, parents’ age, child’s birth
weight and body length, parents’ height and weight, parents’
educational levels and working status, and family income. The

Peabody Developmental Motor Scales-Second Edition
(PDMS-2) was used to assess early childhood physical
development at 6, 12, 18, and 24 months [25]. The institutional
review board of the Shanghai Children’s Medical Center,
Shanghai Jiao Tong University, approved the study (approval
number: SCMCIRB-2012033). The parents of the children who
participated in the study provided written informed consent.

Figure 1. The activity plots for participant ID 17 at 6, 12, 18, and 24 months, with activity counts averaged across 7 days at each time point.

FFT Algorithm
To describe the consolidation of sleep-activity rhythms during
early childhood, we used periodic information to characterize
the daily rhythms. Specifically, we used the FFT algorithm to
convert time domain signals into a frequency domain spectrum
to extract periodic information. We analyzed the original data
to allow for non–24-hour sleep-wake rhythm detection. Figure
2 shows the FFT results for participant ID 17 at each age. The
1-day periodicity was the most dominant at all time points. The
one-fifth–day and one-fourth–day periodicities can be identified
at 12 months. The half-day and one-third–day periodicities did

not become dominant until 18 and 24 months. It is noteworthy
that each periodicity is not interpreted alone; rather, the
periodicities are combined to understand the overall pattern. As
suggested in the 2 right panels of Figure 2, the combined
one-fifth–day and one-fourth–day periodicities form a
three-peak, two-nap pattern at 12 months. Similarly, the
combined half-day and one-third–day periodicities exhibited a
two-peak, one-nap pattern at 18 and 24 months. Therefore, the
combination of dominant periodicities can be used to capture
the main sleep-activity patterns at each age and describe the
gradual consolidation of daily rhythms in early childhood
development.
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Figure 2. Four panels on the left: Fast Fourier Transform results for participant ID 17 at 6, 12, 18, and 24 months. Two panels on the right: top three
periodicities and the combined periodicities plotted on 1-day observation for participant ID 17 at 12 and 24 months. FFT: Fast Fourier Transform.

Identification of Dominant Periodicities

The PML algorithm is as follows: let matrix X ∈ Rn×p denote
the FFT results, where denotes the number of individual
observations and denotes the number of periodicities from FFT.
Specifically, X = (x1,x2,...,xp), where xj is the vector of length n
for the jth periodicity.

Let Θ be the diagonal matrix selecting columns from X such

that  and 0≤θj,j≤1, j=1,...,p:

Θ identifies columns of dominant periodicities from X in such
a way that dominant periodicities corresponding to nonzero
θj,j’s are selected. We minimized the squared Frobenius norm

, which is the sum of the squared elements of the matrix.
Using the properties of the Frobenius norm, we obtained the
following:

As XTX is fixed, it is equivalent to minimize as follows:

To estimate Θ and identify dominant periodicities, we used a
penalized selection method similar to Lasso, a widely used

method in shrinkage and selection of a subset of features in
regression models and machine learning approaches [23]. In
regression analysis, the Lasso penalty is most effective in
selecting a few important features while suppressing the
regression coefficients of other nonselected features to 0 [23].
In our case, the Lasso penalty served to select a few dominant
periodicities through diagonal elements of Θ instead of
regression coefficients. Furthermore, we added an elastic
net–like penalty term to the Frobenius norm, namely a
combination of L1 and L2 norms [22]:

where λ is the turning parameter and α controls the balance
between the L1 and L2 norms. Note that θj,j’s is nonnegative;
thus, we do not need to take the absolute value for the L1 norm.
By setting λ large enough, all diagonal elements of Θ, namely
all θj,j’s are suppressed to zero, and no periodicities are selected.
As λ decreases, some θj,j’s become nonzero, and they correspond
to the most dominant periodicities that are selected sequentially
according to their dominance.

To minimize g(θ), we took the partial derivative of g(θ) with

respect to each = –2||xk||
2 + 2θk,k||xk||

2 + (1-a)λθk,k +
aλ,which is convex and subject to the constraint 0≤θk,k≤1. Thus,
we have the following:

If we only have the L1 penalty, then α=1 and . In
our case, we used the Lasso L1 penalty alone and trained λ
because we wanted to select the most important periodicities
while suppressing other periodicities to 0. However, we still
kept the L2 norm in the original model as an option because it
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might be helpful in future tasks such as prediction, classification,
and reconstruction of curves.

We used the mean squared error (MSE), which is equivalent to

the squared Frobenius norm , as the criterion for
choosing λ and the number of nonzero θj,j’s (the number of
dominant periodicities selected), as well as to evaluate the
variability that was not explained by the selected periodicities.
We did not choose cross-validation because the results showed
that the test data set error curve was monotonous. We trained

λ from  to 0 because λ = suppresses all θj,j’s
to and λ=0 gives no penalty. By decreasing λ, we identified
dominant periodicities sequentially and characterized the daily
sleep-activity rhythm at each age. An R package named PML
was developed [26] for the implementation of the PML
algorithm [27].

Comparison With Other Methods
To rigorously conduct statistical tests and select significant
periodicities, we applied the Fisher test in harmonic analysis
[28]. It is a sequential test for ordered statistics, and periodicities
are first ordered and then tested for significance. If one
periodicity is statistically significant, the next one will be tested
further. Otherwise, the sequential test will be stopped. At each
step, the critical value at which to declare statistical significance
was different. In some studies, the method may not be
implemented correctly; therefore, we included the sequential
test in the R package for easy implementation. As we performed
multiple testing, Bonferroni correction was used to adjust the
P values. If we conduct the tests at significance level α, we
reject the null hypothesis if P value≤α/p, where p is the number
of periodicities, and conclude that the periodicity is significant.

To evaluate the effectiveness of the PML algorithm, we
compared it with the autocorrelation of the standard approach.
The autocorrelation rk is calculated between activity
measurements with a time lag k, and the coefficient r24 denoting
a 24-hour time lag is of primary interest in circadian studies
[29]. rk ranges between –1 and 1, and a k-hour periodic pattern
can show a higher value of the correlation coefficient rk. In the
plot of rk against the time lag k, a peak around k=24 can be
observed when there is a dominant circadian pattern of 24-hour
periodicity. We plotted autocorrelation against the time lag to
compare the autocorrelation method with our algorithm.

Association Between Daily Rhythms and Motor
Development
Next, we conducted linear regression analysis to study the
association between the consolidation of daily activity rhythms
and early childhood physical development. PDMS-2 is
considered an early childhood developmental assessment tool,

and the score is used as the outcome. If the PDMS-2 total motor
standard scores are found to be associated with daily rhythm
features, the standard scores for the subtests, including
stationary, locomotor, object manipulation, grasping, and
visual-motor integration as well as gross motor and fine motor,
are used as the outcome to examine which specific subcategory
is associated. Gross motor represents the overall performance
on stationary, locomotion, and reflexes (6 months) or object
manipulation (12, 18, and 24 months) for infants, and fine motor
represents the overall performance on grasping and visual-motor
integration.

The FFT signals at dominant periodicities identified by the PML
were used as daily rhythm features and considered covariates
in the model. In addition to periodic features, demographic
information and family information as potential confounders
were also considered in the model. Backward selection was
used in the model-fitting process. Although some variable
(denoted as variable A here) may seem to be statistically
significant in the complete model, after removal of insignificant
variables in the variable selection process, variable A may
become insignificant. In such cases, variable A is removed in
the final model to achieve parsimony.

Linear regression analysis was conducted at 6, 12, 18, and 24
months to study the association between daily rhythms and

motor development. For the final model comparison, r2, which
measures the proportion of variance in the outcome explained

by the model, and the adjusted r2, which modifies r2 based on
the number of predictor variables, were also calculated. All
statistical analyses were conducted using R version 3.3.2 (R
Foundation for Statistical Computing).

Results

Identification of Dominant Periodicities
As shown in Figure 3, at each age, we plotted the MSE against
the number of nonzero θ’s. Specifically, we plotted only the
points where the number of nonzero θ’s (periodicities selected)
increased as the penalty term λ decreased. For 6 months and 12
months, the first harmonic at 1-day periodicity is the most
dominant because we can observe a large dip in the MSE when
the first periodicity is selected, whereas the periodicities that
are further selected do not cause the same level of decrease. For
18 and 24 months, the first three periodicities of 1 day, one-third
day, and half day are the most dominant, and selecting the first
three can lead to a relatively large decrease in the MSE. The
results indicate that during the first year, only one-day
periodicity was formed and stabilized in the infant population.
The sleep-activity rhythm did not stabilize until 18 months,
showing the pattern of 1 nighttime sleep, 1 daytime nap, and 2
daytime activity peaks.
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Figure 3. Mean squared error plotted against the number of nonzero θ’s as the penalty term λ decreased at 6, 12, 18, and 24 months. MSE: mean
squared error.

The Fisher tests yielded similar results. As shown in Table 1,

only 1-day periodicity was significant at 6 months (P<10–5)
because for infants at this stage, sleep-activity patterns have
already adjusted to a 24-hour cycle. However, daytime activities
have not yet been stabilized and variations exist across days.

At 12 months, the 4 periodicities were significant (P<10–5).
This is because infants’ sleep-activity patterns start to stabilize,
but there are variations across individuals: some take one nap
in the afternoon, whereas others take two naps, one in the
morning and one in the afternoon. The one-nap pattern can be

captured by the one-third–day periodicity, whereas the two-nap
pattern can be captured by the one-fourth–day periodicity, as
shown in Figure 2. Furthermore, at 18 and 24 months, three

periodicities were significant (P<10–5): 1 day, half day, and
one-third day, indicating the final consolidation of daily
sleep-activity rhythms with only one daytime nap in the
afternoon. In addition, the proportions of variance explained by
the half day and one-third day periodicities at 18 months and
24 months were approximately the same, both higher than those
at 12 months.
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Table 1. Significant periodicities at 6, 12, 18, and 24 months, with the corresponding proportions of variances among all Fast Fourier Transform signals
and P values.

P valuePeriodProportions of varianceAge (months)

DaysMinutes

6.59×10–8One14400.01106

1.75×10–8One14400.012012

3.75×10–7Half7200.006812

2.82×10–7One-fourth3600.005612

6.49×10–6One-third4800.004512

1.46×10–9One14400.013018

1.87×10–10One-third4800.008518

5.02×10–15Half7200.008318

1.97×10–9One14400.013024

1.17×10–10One-third4800.008624

3.78×10–14Half7200.008024

Comparison With Autocorrelation
To compare the PML algorithm with autocorrelation, the plot
of correlation estimates against time lags is shown in Figure 4.
The circadian rhythm at 24 hours can be observed at all time
points because the peaks of estimated correlation are at time
lags between 23.8 hours and 24.3 hours. We can also observe
some local maximal correlation estimates at other time lags:
3.3 hours at 6 months, 4.7 and 10.7 hours at 12 months, 7.5
hours at 18 months, and 7.5 and 16.3 hours at 24 months.

Although 3.3 hours at 6 months may seem reasonable because
of the infant feeding schedule, other cycles are difficult to
explain [30,31]. Autocorrelation estimates can be biased because
of the presence of multiple periodicities, and researchers
generally use these estimates to verify the most dominant
periodicity such as 24 hours. Thus, from the autocorrelation
plots, the most dominant 24-hour rhythm that yields the global
maximal correlation estimate can be identified at each age, and
this dominant periodicity was also identified by PML.
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Figure 4. Estimated autocorrelation against time lags at 6, 12, 18, and 24 months.

Association Between Daily Rhythms and Motor
Development
The summary of the PDMS-2 standard scores for each category
is presented in Table 2.

As shown in Table 3, at 6 months, the PDMS-2 total motor
scores were found to be associated with the assessment seasons
(P<.001). Infants receiving the PDMS-2 assessment in winter
and spring tended to have lower PDMS-2 total motor scores

than those assessed in summer and autumn. At 12 months, the
PDMS-2 total motor scores were associated with both seasons
and FFT signals: infants assessed in summer tended to have
higher PDMS-2 total motor scores, and infants with higher FFT
signals detected at one-third–day and half-day periodicities also
tended to have higher PDMS-2 total motor scores (P<.001 and

P=.04, respectively). r2 was 0.25, and the adjusted r2 was 0.21.
At 18 and 24 months, no association was identified between
the PDMS-2 total motor scores and any other variables.
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Table 2. The PDMS-2a standard scores for the subtests, gross motor, fine motor, and total motor.

Standard scores, mean (SD)PDMS-2 category

24 months (n=170)18 months (n=192)12 months (n=225)6 months (n=246)

———b10.56 (1.02)Reflexes

9.03 (1.38)9.94 (0.36)9.48 (1.00)9.67 (1.44)Stationary

8.61 (1.70)9.26 (1.24)8.82 (1.76)10.09 (1.08)Locomotor

8.74 (1.33)9.49 (1.16)9.92 (0.78)—Object manipulation

9.99 (0.98)9.55 (0.78)11.08 (1.44)10.69 (1.02)Grasping

9.79 (1.74)11.04 (1.74)10.69 (1.13)11.19 (1.20)Visual-motor integration

26.16 (3.17)28.63 (2.21)28.25 (2.65)30.34 (2.72)Gross motor

19.80 (2.22)20.67 (1.93)21.83 (2.17)21.86 (2.02)Fine motor

45.98 (4.69)49.43 (3.19)50.23 (5.05)52.24 (4.18)Total

aPDMS-2: Peabody Developmental Motor Scales-Second Edition.
bReflexes is only for 6-month infants, and object manipulation is only for 12-, 18-, and 24-month infants.

Table 3. Linear regression analysis of Peabody Developmental Motor Scales-Second Edition total motor standard scores by season and Fast Fourier
Transform signals at 6 months and 12 months, respectively.

P valuet test (df)Estimate (SE)Time and variable

6 months

<.00189.52 (155)50.10 (0.56)(intercept)

.580.56 (155)0.48 (0.85)spring

<.0015.43 (155)4.48 (0.82)summer

<.0014.54 (155)4.06 (0.89)autumn

12 months

<.00135.25 (96)45.52 (1.29)(intercept)

.301.05 (96)1.66 (1.58)summer

.042.10 (96)0.19 (0.09)half daya

<.0013.55 (96)0.31 (0.09)one-third daya

.004−3.00 (96)-0.48 (0.16)summer: one-third daya

aThe Fast Fourier Transform signals were multiplied by 10,000 in regression models, so that the estimated effect sizes were for every 10,000-unit
increase in the Fast Fourier Transform signals.

As PDMS-2 total motor scores are associated with FFT signals
at 12 months, further linear regression between each subtest
score and FFT signal was also examined. As shown in Table 4,
subtests for stationary and locomotion as well as gross motor
and fine motor were found to be associated with the
one-third–day periodicity. The gross motor represents the overall
performance on the three subtests of stationary, locomotion,
and object manipulation for infants at 12 months, and because

the association of FFT signals at one-third–day periodicity with
stationary and locomotion subtests is strong, it is expected that
the association of FFT signals at one-third–day periodicity with

gross motor is also strong. r2 and the adjusted r2 were 0.05 and
0.04 for the stationary model, 0.23 and 0.20 for the locomotion
model, 0.21 and 0.17 for the gross motor model, and 0.15 and
0.11 for the fine motor model, respectively.

J Med Internet Res 2021 | vol. 23 | iss. 10 | e18403 | p. 9https://www.jmir.org/2021/10/e18403
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Linear regression analysis of Peabody Developmental Motor Scales-Second Edition standard scores by season and Fast Fourier Transform
signals at 12 months: stationary and locomotion subtests and gross motor and fine motor as the outcome, respectively.

P valuet test (df)Estimate (SE)Category and variablea

Stationary

<.00147.9 (99)9.23 (0.19)(intercept)

.03b2.17 (99)0.04 (0.02)one-third day

Locomotion

<.00116.48 (97)7.16 (0.43)(intercept)

.350.94 (97)0.71 (0.75)summer

<.001b4.61 (97)0.19 (0.04)one-third day

.06c–1.93 (97)–0.13 (0.07)summer: one-third day

Gross motor

<.00142.03 (97)26.41 (0.63)(intercept)

.600.52 (97)0.57 (1.09)summer

<.001b3.97 (97)0.24 (0.06)one-third day

.09c–1.73 (97)–0.17 (0.10)summer: one-third day

Fine motor

<.00142.15 (97)21.08 (0.5)(intercept)

.700.39 (97)0.34 (0.86)summer

.02b2.36 (97)0.11 (0.05)one-third day

.06c–1.89 (97)–0.15 (0.08)summer: one-third day

aThe Fast Fourier Transform signals were multiplied by 10,000 in regression models so that the estimated effect sizes were for every 10,000-unit increase
in the Fast Fourier Transform signals.
bStatistical significance level at α=.05.
cStatistical significance level at α=.10.

Discussion

Method Evaluation
The PML approach is very effective in studying daily activity
rhythms among infants and toddlers. At 6 and 12 months, the
dominant 1-day periodicity suggests the formation of the
24-hour cycle. At 18 and 24 months, the combination of the
dominant 1-day, one-third–day, and half-day periodicities forms
a consolidated daily activity pattern with 2 activity peaks during
the day and 1 afternoon nap. PML not only effectively identified
population-level dominant periodicities, but also characterized
sleep-activity patterns without complex functional analysis.
PML can complement current methods for circadian rhythm
analysis and is especially useful for populations whose daily
rhythm patterns are nonsinusoidal and irregular. On the other
hand, because PML is applicable to time-series data with a
nature similar to that of actigraphy, the application of PML can
be extended to other types of circadian rhythm studies using
information such as body temperature and hormone data to
study and characterize daily rhythms effectively.

Comparison With Other Methods
In comparison, the Fisher test in harmonic analysis tends to
identify many significant periodicities unless a stringent

threshold is used for statistical significance. In this study, we
used the Bonferroni correction to adjust for multiple testing and

used a significance level of 10–5 to select the periodicities, even
though we did not conduct as many statistical tests
simultaneously. In sequential testing procedures, as was the
case in our study, people often use less-conservative multiple
testing correction methods such as the Benjamini-Hochberg
procedure [32]. We chose the most stringent threshold to avoid
selecting too many periodicities that are not helpful in
characterizing daily activity patterns at each age.

We also compared our PML algorithm with the standard
approach autocorrelation. Plots of correlation estimates against
time lags are useful for identifying the correlation peak at 24
hours but not for shorter periods of rhythmicity. This is because
the estimation of correlation can be biased because of the
presence of multiple periodic rhythms, and the identification of
multiple periodicities by simple calculation of autocorrelation
may not be accurate. Therefore, the standard approach using
autocorrelation is effective in confirming the most dominant
24-hour periodicity but is not as effective in identifying other
periodicities, which the PML algorithm can achieve.

Other standard approaches such as periodograms and cosinor
analysis were not used in this study because there are, in fact,
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connections between PML and the two methods. It is important
to point out their connections as well as differences. Among
periodograms, the Fourier, Enright, and Lomb-Scargle
periodograms are commonly used [18]. Both our PML algorithm
and the Fourier periodogram use Fourier analysis to identify
dominant periodicities, but the PML algorithm uses a shrinkage
method in machine learning to identify dominant patterns in
the population, whereas Fourier periodograms are focused on
individuals to manually identify dominant periodicities based
on individual plots. The Enright periodogram, although suitable
for equidistant activity measurements in our scenario, may not
be applicable here because it requires ≥10 days of data [18]. In
addition, the estimation method only holds when there is one
periodic component, but in our case, the presence of multiple
periodic components may have attenuated the results [18]. The
Lomb-Scargle periodogram is a modification of Fourier analysis
to accommodate unevenly spaced data or missing data. As our
data do not have this issue, the Lomb-Scargle periodogram is
equivalent to the Fourier periodogram in our case. Compared
with the PML algorithm, the Fourier periodogram involves more
manual work to generate periodograms for each individual and
visually identify dominant periodicities, whereas PML is more
automated and more effective in studying the population as a
whole and further identifying the periodicities that are
characteristic of the population. In addition, researchers often
use periodograms to validate the most dominant periodicity
such as 24 hours but do not specifically examine information
on secondary dominant periodicities or use periodic curves to
reconstruct or approximate activity patterns, even though the
connection between dominant frequencies or periodicities and
functional curves can be made and the periodic information can
be fully used. Therefore, the PML algorithm makes full use of
the information from more than one dominant periodicity and
links the FFT results in the frequency domain with their
corresponding cosine curves to effectively characterize activity
patterns.

For cosinor analysis, one may recall that the FFT results consist
of real parts and imaginary parts that correspond to cosine curves
and sine curves, respectively; thus, FFT is equivalent to fitting
the cosine model. We fitted cosine models to the activity data
with 1 to 3 cosine curves at dominant periodicities identified
by the PML algorithm. Even though the estimated amplitudes
for the cosine curves are different from the amplitudes in the
FFT results, the Pearson correlation between the cosine
coefficients and the FFT signals of the same periodicity is 1,
indicating equivalence. Although the final results are equivalent,
the procedures are different. For cosinor analysis, if prior
knowledge is available, simple least squares methods can be
used to fit the model [33]. However, if there is no prior
knowledge of periodic information, the least squares method
cannot be used because the dominant periodicity needs to be
estimated first, and the cosinor model can no longer be linearized
in its parameters. One has to either start from an initial guess
and use iterative procedures to minimize the residual sum of
squares or use simulated annealing alternatively to fit the model,
the process of which can be exhaustive [34-36]. In comparison,
without prior knowledge of the dominant periods, the PML
algorithm based on shrinkage in machine learning is still easy
to implement without computational burden in extracting

periodic information, and the results are as effective as the
cosinor model to characterize daily activity patterns using cosine
curves.

In summary, the proposed PML algorithm is effective in
extracting periodic information, identifying dominant
periodicities, and characterizing activity patterns. In the presence
of multiple periodicities, PML does not have the estimation
problem that autocorrelation encounters. To identify dominant
periodicities, PML uses shrinkage in machine learning methods
that can help researchers avoid manual work in periodograms,
which require individual plots and visual identification. PML
can also characterize activity patterns by making full use of the
cosine curves represented by FFT signals and avoiding the
computationally intensive process of choosing and fitting cosinor
models when prior knowledge of the dominant periodicities is
not available.

Sleep-Activity Rhythm Characterization
Our study confirms previous findings that infants already form
24-hour sleep-wake cycles at 6 months due to entrainment by
cyclical changes in the environment, whether it is due to
light-dark cycles or maternal rest-activity cycles [6,9,10,37,38].
It is noteworthy that although 24-hour cycles are formed,
sleep-activity patterns over the 24-hour period are not stabilized:
infants often take multiple naps at different times of the day,
and their daily activity patterns vary across days and across
individuals.

Our study indicates that from 6 months to 12 months, the infant
sleep-activity pattern gradually develops: some infants take
only 1 afternoon nap, whereas others take two naps: one in the
morning and one in the afternoon. Strong FFT signals at
one-third–day periodicity capture two-peak, one-nap activity
patterns, whereas strong FFT signals at one-fourth–day
periodicity capture three-peak, two-nap patterns. The results
are in line with those of previous sleep studies which indicated
that the duration of nighttime sleep gradually lengthens and
sleep patterns become increasingly consolidated during the first
year after birth [12,39].

Although the timing for the stabilization of infant sleep-activity
patterns varies across individuals, by the time infants reach the
age of 18 months, their daily activity patterns have consolidated
into a predominant nighttime pattern with 1 afternoon nap only,
which can be obtained by combining the 3 dominant
periodicities at 1 day, half day, and one-third day. The
consolidation of sleep-activity patterns is confirmed by increased
FFT signals at half-day and one-third–day periodicities and
decreased FFT signals at other periodicities compared with
previous ages. The results for 24 months remained the same as
those at 18 months, showing no changes and confirming further
that sleep-activity patterns are consolidated by 18 months and
are stable from that age onward.

In our study, the 3-hour periodicity, normally for feeding
behaviors, was not detected, and there might be 2 reasons for
this. First, in the feeding guidelines for infants, the feeding of
infants aged 6-8 months is advised to be 5-6 times in 24 hours,
less frequent than the 3-hour (8 times) schedule, and it is advised
that infants aged 12-24 months should have 3 meals with family
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and have additional snacks 2-3 times [30,31]. Infants aged below
6 months may have a more frequent feeding schedule, but our
activity data were collected at 6 months or later. Second, there
might be desynchronization between the feeding schedules and
activity patterns. Although infants aged 6 months might be fed
5-6 times per day, they do not nap or sleep 5-6 times within the
same time frame. We referred to the sleep diaries recorded by
the parents as a reference for napping information. Most infants
aged 6 months have 1 to 2 naps in the morning and 1 nap in the
afternoon. Infants aged 12 months generally have 1 or no naps
in the morning and 1 nap in the afternoon. Most infants aged
18 months and 24 months have 1 nap in the afternoon.
Therefore, sleep-activity patterns are desynchronized with
feeding schedules because feeding behaviors might not dominate
infant sleep-activity patterns at this age. For the aforementioned
reasons, feeding cycles such as 3-hour periodicity were not
detected in our data.

Association Between Daily Rhythms and Early
Childhood Development
Using FFT signals at dominant periodicities identified by PML,
we were able to find an association between the consolidation
of sleep-activity rhythms and early childhood motor
development. At 6 months, the association between PDMS-2
total motor scores and assessment seasons may be explained
by the different number of layers of clothing worn by infants
in different seasons. In winter, infants are likely to wear many
layers of clothing, which may restrict their behaviors and result
in suboptimal performance compared with infants wearing light
clothes and taking the PDMS-2 assessment in summer. As a
result, infants aged 6 months who were assessed in summer and
autumn obtained relatively higher PDMS-2 scores than infants
assessed in winter and spring.

At 12 months, after controlling for the assessment seasons,
stronger FFT signals at half-day and one-third–day periodicities
were generally associated with higher PDMS-2 scores. The
period of 12 months is critical for sleep-activity rhythm
consolidation, which was captured by the growing FFT signals
at half-day and one-third–day periodicities. It is noteworthy that
all the infants at this age had strong FFT signals at 1-day
periodicity, indicating that they exhibited 1-day periodicity in
their sleep-activity patterns and that their 24-hour periodic
activity patterns tended to be stabilized. As a result, there was
not much variation in the strength of 1-day periodicity, which
might not explain much of the variability in the PDMS-2 scores
among individuals. In comparison, the activity pattern over the
24-hour period was not consolidated, and the activity pattern
could be characterized by the one-third–day and half-day
periodicities. The larger variability in the strength of
one-third–day and half-day periodicities can describe the degree
to which the daily sleep-activity pattern is consolidated, which
is further associated with child development as evaluated by
the PDMS-2 scores. The infants with a more consolidated
activity pattern tended to have better motor development
evaluations. In addition, activity rhythm consolidation is strongly
associated with the subcategories of locomotion and stationary,
which belong to the gross motor and measure how the large
muscle system is used to move from place to place or assume
a stable posture when not moving. Therefore, we obtained new

insights into early childhood development that the degree to
which the sleep-activity pattern is consolidated at 12 months is
associated with infant motor development and with large muscle
system development in particular.

At 18 and 24 months, the PDMS-2 scores were not associated
with the season, FFT signals, or any other variables in our data
set. Most of the toddlers had stabilized daily activity patterns
with strong periodic rhythmicity at this age. FFT signals as
characteristics of sleep-activity rhythms were no longer
associated with the PDMS-2 scores, and this is likely because
the critical age at which the daily activity rhythm stabilizes had
passed.

Limitations and Future Work
One limitation of our study is that we collected Actiwatch data
every 6 months, and thus we were not able to capture more
detailed monthly changes over the period. Future work may
collect Actiwatch data in a more frequent manner, such as every
3 months or every month, to capture gradual changes in the
sleep-activity rhythm during early childhood. For infants aged
≤6 months, more frequent observations can also allow us to
observe how the predominant rhythm of infants changes from
ultradian to circadian by adjusting to the 24-hour cycle in the
environment. Another limitation of this study is that although
we identified the association of sleep-activity daily rhythm
consolidation with early childhood motor development and with
large muscle system development in particular, the mechanism
behind this association is not clear. Future work should
investigate how daily rhythm consolidation and motor
development interrelate and contribute to early childhood
development.

Conclusions
In summary, the proposed PML algorithm provides a new
method for circadian rhythm analysis and is particularly useful
for studying populations whose daily patterns are not regular.
In addition, the PML algorithm is applicable to other types of
wearable device data in the format of a time series with a nature
similar to that of actigraphy; therefore, it can be extended to
other types of circadian studies using information such as body
temperature, heart rate, and hormone data. Therefore, the PML
algorithm can be widely applied to other wearable device studies
to help characterize periodic information. Using the proposed
method, our study provides novel insights into sleep-activity
rhythm development in early childhood. First, in our study, the
critical period for the consolidation of sleep-activity rhythms
was between 6 and 18 months. This is because at 6 months,
24-hour sleep-wake cycles are formed, but their daily activity
patterns are not stabilized, and by the time toddlers reach the
age of 18 months, their sleep-activity patterns have consolidated
into a fixed pattern with 2 activity peaks and 1 afternoon nap.
The period between 6 and 18 months is critical for early
childhood sleep-activity rhythm development and consolidation.
Second, we identified the association between the consolidation
of daily rhythms and early childhood motor development and
large muscle system development in particular. This association
has not been identified in previous studies. Infants with more
consolidated circadian rhythms tend to have better motor
development assessments. Although the mechanism is not clear,
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maintaining a regular and stable sleep-activity pattern and
maintaining a healthy circadian system are important for healthy

physical development in early childhood.
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