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Abstract

Background: Effectively identifying patients with COVID-19 using nonpolymerase chain reaction biomedical data is critical
for achieving optimal clinical outcomes. Currently, there is a lack of comprehensive understanding in various biomedical features
and appropriate analytical approaches for enabling the early detection and effective diagnosis of patients with COVID-19.

Objective: We aimed to combine low-dimensional clinical and lab testing data, as well as high-dimensional computed tomography
(CT) imaging data, to accurately differentiate between healthy individuals, patients with COVID-19, and patients with non-COVID
viral pneumonia, especially at the early stage of infection.

Methods: In this study, we recruited 214 patients with nonsevere COVID-19, 148 patients with severe COVID-19, 198 noninfected
healthy participants, and 129 patients with non-COVID viral pneumonia. The participants’ clinical information (ie, 23 features),
lab testing results (ie, 10 features), and CT scans upon admission were acquired and used as 3 input feature modalities. To enable
the late fusion of multimodal features, we constructed a deep learning model to extract a 10-feature high-level representation of
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CT scans. We then developed 3 machine learning models (ie, k-nearest neighbor, random forest, and support vector machine
models) based on the combined 43 features from all 3 modalities to differentiate between the following 4 classes: nonsevere,
severe, healthy, and viral pneumonia.

Results: Multimodal features provided substantial performance gain from the use of any single feature modality. All 3 machine
learning models had high overall prediction accuracy (95.4%-97.7%) and high class-specific prediction accuracy (90.6%-99.9%).

Conclusions: Compared to the existing binary classification benchmarks that are often focused on single-feature modality, this
study’s hybrid deep learning-machine learning framework provided a novel and effective breakthrough for clinical applications.
Our findings, which come from a relatively large sample size, and analytical workflow will supplement and assist with clinical
decision support for current COVID-19 diagnostic methods and other clinical applications with high-dimensional multimodal
biomedical features.

(J Med Internet Res 2021;23(1):e25535) doi: 10.2196/25535
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Introduction

COVID-19 is an emerging major biomedical challenge for the
entire health care system [1]. Compared to severe acute
respiratory syndrome (SARS) and Middle East respiratory
syndrome (MERS), COVID-19 has much higher infectivity.
COVID-19 has also spread much faster across the globe than
other coronavirus diseases. Although COVID-19 has a relatively
lower case fatality rate than SARS and MERS, the
overwhelmingly large number of diagnosed COVID-19 cases,
as well as the many more undiagnosed COVID-19 cases, has
endangered health care systems and vulnerable populations
during the COVID-19 pandemic. Therefore, the early and
accurate detection and intervention of COVID-19 are key in
effectively treating patients, protecting vulnerable populations,
and containing the pandemic at large.

Currently, the gold standard for the confirmatory diagnosis of
COVID-19 is based on molecular quantitative real-time
polymerase chain reaction (qRT-PCR) and antigen testing for
the disease-causing SARS-CoV-2 virus [2-4]. Although these
tests are the gold standard for COVID-19 diagnosis, they suffer
from various practical issues, including reliability, resource
adequacy, reporting lag, and testing capacity across time and
space [5]. To help frontline clinicians diagnose COVID-19 more
effectively and efficiently, other diagnostic methods have also
been explored and used, including medical imaging (eg, X-ray
scans and computed tomography [CT] scans [6]), lab testing
(eg, various blood biochemistry analyses [7-10]), and identifying
common clinical symptoms [11]. However, these methods do
not directly detect the disease-causing SARS-CoV-2 virus or
the SARS-CoV-2 antigen. Therefore, these methods do not have
the same conclusive power that confirmatory molecular
diagnostic methods have. Nevertheless, these alternative
methods help clinicians with inadequate resources detect
COVID-19, differentiate patients with COVID-19 from patients
without COVID-19 and noninfected individuals, and triage
patients to optimize health care system resources [12,13]. When
applied appropriately, these supplementary methods, which are
based on alternative biomedical evidence, can help mitigate the
COVID-19 pandemic by accurately identifying patients with
COVID-19 as early as possible.

Currently, CT scans can be analyzed to differentiate patients
with COVID-19, especially those in a severe clinical state, from
healthy people or patients with non-COVID infections. Patients
with COVID-19 usually present the typical ground-glass opacity
(GGO) characteristic on CT images of the thoracic region. A
recent study has reported a 98% COVID-19 detection rate based
on a 51-patient sample without a comparison group [14].
Detection rates that ranged between 60% and 93% were also
reported in another study on 1014 participants with a comparison
group [15]. Furthermore, the recent advances in data-driven
deep learning (DL) methods, such as convolutional neural
networks (CNNs), have demonstrated the ability to detect
COVID-19 in patients. On February 2020, Hubei, China adopted
CT scans as the official clinical COVID-19 diagnostic method
in addition to molecular confirmatory diagnostic methods for
COVID-19, in accordance with the nation’s diagnosis and
treatment guidance [2]. However, the effectiveness of using DL
methods to further differentiate SARS-CoV-2 infection from
clinically similar non-COVID viral infections still needs to be
explored and evaluated.

With regard to places where molecular confirmatory diagnoses
are not immediately available, symptoms are often used for
quickly evaluating presumed patients’conditions and supporting
triage [13,16,17]. Checklists have been developed for
self-evaluating the risk of developing COVID-19. These
checklists are based on clinical information, including
symptoms, preexisting comorbidities, and various demographic,
behavioral, and epidemiological factors. However, these clinical
data are generally used for qualitative purposes (eg, initial
assessment) by both the public and clinicians [18]. Their
effectiveness in providing accurate diagnostic decision support
is largely underexplored and unknown.

In addition to biomedical imaging and clinical information,
recent studies on COVID-19 have shown that laboratory testing,
such as various blood biochemistry analyses, is also a feasible
method for detecting COVID-19 in patients, with reasonably
high accuracy [19,20]. The rationale is that the human body is
a unity. When people are infected with SARS-CoV-2, the
clinical consequences can be observed not only from apparent
symptoms, but also from hematological biochemistry changes.
Due to the challenge of asymptomatic SARS-CoV-2 infection,
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other types of biomedical information, such as lab testing results,
can be used to provide alternative and complementary diagnostic
decision support evidence. It is possible that our current
definition and understanding of asymptomatic infection can be
extended with more intrinsic, quantitative, and subtle medical
features, such as blood biochemistry characteristics [21,22].

Despite the tremendous advances in obtaining alternative and
complementary diagnostic evidence for COVID-19 (eg, CT
scans, chest X-rays, clinical information, and various blood
biochemistry characteristics), there are still substantial clinical
knowledge gaps and technical challenges that hinder our efforts
in harnessing the power of various biomedical data. First, most
recent studies have usually focused on one of the multiple
modalities of diagnostic data, and these studies have not
considered the potential interactions between and added
interpretability of these modalities. For example, can we use
both CT scan and clinical information to develop a more
accurate COVID-19 decision support system [23]? As stated
earlier, the human body acts as a unity against SARS-CoV-2
infection. Biomedical imaging and clinical approaches can be
used to evaluate different aspects of the clinical consequences
of COVID-19. By combining the different modalities of
biomedical information, a more comprehensive characterization
of COVID-19 can be achieved. This is referred to as multimodal
biomedical information research.

Second, while there are ample accurate DL algorithms/models/
tools, especially in biomedical imaging, most of them focus on
differentiating patients with COVID-19 from noninfected
healthy individuals. A moderately trained radiologist can
differentiate CT scans of patients with COVID-19 from those
of healthy individuals with high accuracy, making current efforts
in developing supplicated DL algorithms not clinically useful
for solving the binary classification problem [14]. The more
critical and urgent clinical issue is not only being able to
differentiate patients with COVID-19 from noninfected healthy
individuals, but also being able to differentiate SARS-CoV-2
infection from non-COVID viral infections [24,25]. Patients
with non-COVID viral infection present with GGO in their CT
scans of the thoracic region as well. Therefore, the specificity
of GGO as a diagnostic criterion of COVID-19 is low [15]. In
addition, patients with nonsevere COVID-19 and patients with
non-COVID viral infection share several common symptoms,
which are easy to confuse [26]. Therefore, for frontline
clinicians, effectively differentiating nonsevere COVID-19 from
non-COVID viral infection is a challenging task without readily
available and reliable confirmatory molecular tests at admission.
Incorrectly diagnosing severe COVID-19 as nonsevere
COVID-19 may result in missing the critical window of
intervention. Similarly, differentiating asymptomatic and
presymptomatic patients, including those with nonsevere
COVID-19, from noninfected healthy individuals is another
major clinical challenge [27]. Incorrectly diagnosing patients
without COVID-19 or healthy individuals and treating them
alongside patients with COVID-19 will substantially increase
their risk of exposure to the virus and result in health
care–associated infections. There is an urgent need for a
multinomial classification system that can detect patients with
COVID-19, including patients with asymptomatic COVID-19,

patients with non-COVID viral infection, and healthy
individuals, all at once, rather than a system that analyzes several
independent binary classifiers in parallel [28].

The third major challenge addresses the computational aspect
of harnessing the power of various biomedical data. Due to the
novelty of the COVID-19 pandemic, human clinicians have
varying degrees of understanding and experience with regard
to COVID-19, which can lead to inconsistencies in clinical
decision making. Harnessing the power of multimodal
biomedical information from combined imaging, clinical, and
lab testing data can be the basis of a more objective, data-driven,
analytical framework. In theory, such a framework can provide
a more comprehensive understanding of COVID-19 and a more
accurate decision support system that can differentiate between
patients with severe or nonsevere COVID-19, patients with
non-COVID viral infection, and healthy individuals all at once.
However, biomedical imaging data, such as CT data, with a
high-dimensional feature space do not integrate well with
low-dimensional clinical and lab testing data. Current studies
have usually only described the association between biomedical
imaging and clinical features [15,29-33], and the potential power
of an accurate decision support tool has not been reported.
Technically, CT scans are usually processed with DL methods,
including the CNN method, independently from other types of
biomedical data processing methods. Low-dimensional clinical
and lab testing data are usually analyzed with traditional
hypothesis-driven methods (eg, binary logistic regression or
multinomial classification) or other non-DL machine learning
(ML) methods, such as the random forest (RF), support vector
machine (SVM), and k-nearest neighbor (kNN) methods. The
huge discrepancy of feature space dimensionality between CT
scan and clinical/lab testing data makes multimodal fusion (ie,
the direct combination of the different aspects of biomedical
information) especially challenging [34].

To fill these knowledge gaps and overcome the technical
challenge of effectively analyzing multimodal biomedical
information, we propose the following study objective: we
aimed to clinically and accurately differentiate between patients
with nonsevere COVID-19, patients with severe COVID-19,
patients with non-COVID viral pneumonia, and healthy
individuals all at once. To successfully fulfill this
much-demanded clinical objective, we developed a novel hybrid
DL-ML framework that harnesses the power of a wide array of
complex multimodal data via feature late fusion. The clinical
objective and technical approach of this study synergistically
complements each other to form the basis of an accurate
COVID-19 diagnostic decision support system.

Methods

Participant Recruitment
We recruited a total of 362 patients with confirmed COVID-19
from Wuhan Union Hospital between January 2020 and March
2020 in Wuhan, Hubei Province, China. COVID-19 was
confirmed based on 2 independent qRT-PCR tests. For this
study, we did not aggregate patients with COVID-19 under the
same class because the clinical characteristics of nonsevere and
severe COVID-19 were distinct. Patients’ COVID-19 status
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was confirmed upon admission. The recruited patients were
further categorized as being in severe (n=148) or nonsevere
(n=214) clinical states based on their prognosis at 7-14 days
after initial admission. This step ensured the development of
an early detection system for when the initial conditions of
patients with COVID-19 were not severe upon admission.
Patients in the severe state group were identified by having 1
of the following 3 clinical features: (1) respiratory rate>30
breaths per minute, (2) oxygen saturation<93% at rest, and (3)
arterial oxygen partial pressure/fraction of inspired oxygen<300
mmHg (ie, 40 kPa). These clinical features are based on the
official COVID-19 Diagnosis and Treatment Plan from the
National Health Commission of China [2], as well as guidelines
from the American Thoracic Society [35]. The noninfected
group included 198 healthy individuals without any infections.
These participants were from the 2019 Hubei Provincial Centers
for Disease Control and Prevention regular annual physical
examination cohort. This group represented a baseline healthy
group, and they were mainly used as a comparison group for
patients with nonsevere COVID-19, especially those who
presented with inconspicuous clinical symptoms.

In order to differentiate patients with COVID-19, especially
those with nonsevere COVID-19, from patients with clinically
similar non-COVID viral infection, we also included another
group of 129 patients diagnosed with non-COVID viral
pneumonia in this study. It should be noted that the term “viral
pneumonia” was an umbrella term that included diseases caused
by more than 1 type of virus, such as the influenza virus and
adenovirus. However, in clinical practice, it would be adequate
to detect and differentiate between SARS-CoV-2 infection and
non-COVID viral infections for initial triaging. Therefore, we
recruited 129 participants with confirmed non-COVID viral
infection from Kunshan Hospital, Suzhou, China. The reality
was that most health care resources were optimized for
COVID-19, and some patients who presented with
COVID-19–like symptoms or GGOs were clinically diagnosed
with COVID-19 without the use of confirmatory qRT-PCR tests
in Hubei, especially during February 2020. Therefore, it was
not possible to recruit participants with non-COVID viral
infection in Hubei during the same period that we recruited
patients with COVID-19.

In summary, the entire study sample was comprised of the
following 4 mutually exclusive multinomial participant classes:
severe COVID-19 (n=148), nonsevere COVID-19 (n=214),
non-COVID viral infection (n=129), and noninfected healthy
(n=198). This study was conducted in full compliance with the
Declaration of Helsinki. This study was rigorously evaluated
and approved by the institutional review board committees of
Jiangsu Provincial Center for Disease Control and Prevention
(approval number JSJK2020-8003-01). All participants were
comprehensively told about the details of the study. All
participants signed a written informed consent form before being
admitted.

Medical Feature Selection and Description
Patient participants, including those in the severe COVID-19,
nonsevere COVID-19, and non-COVID viral infection classes,
were screened upon initial admission into hospitals. Their

clinical information, including preexisting comorbidities,
symptoms, demographic characteristics, epidemiological
characteristics, and other clinical data, were recorded. For the
noninfected healthy class, participants’ clinical data were
extracted from the Hubei Provincial Centers for Disease Control
and Prevention physical examination record system.
Patient-level sensitive information, including name and exact
residency, were completely deidentified. After comparing the
different classes, the following 23 clinical features were selected
for this study: smoking history, hypertension, type-2 diabetes,
cardiovascular disease (ie, any type), chronic obstructive
pulmonary disease, fever, low fever, medium fever, high fever,
sore throat, coughing, phlegm production, headache, feeling
chill, muscle ache, feelings of fatigue, chest congestion, diarrhea,
loss of appetite, vomiting, old age (ie, >50 years; dichotomized
and encoded as old), and gender. These clinical data were
dichotomized as either having the condition (score=1) or not
having the condition (score=0) (Figure 1). It should be noted
that several clinical features, especially symptoms, were
self-reported by the patients. A more comprehensive definition
and description of clinical features are provided in Multimedia
Appendix 1. The prevalence (ie, the number of participants that
have a given feature over the total number of participants in the
class) of each clinical feature was computed across the 4 classes.
For the 0-1 binary clinical features, a pairwise z-test was applied
to detect any substantial differences in the prevalence (ie,
proportion) of these features between classes.

The lab testing features were extracted from participants’
electronic health records (Figure 1). Only the features from lab
tests that were performed at the time of admission were included.
Noninfected healthy participants’ blood samples were taken
during their annual physical examination. We selected lab testing
features that were present in at least 90% of participants in any
of the 4 classes (ie, severe COVID-19, nonsevere COVID-19,
non-COVID viral infection, and noninfected healthy). After
screening, the following 10 features were included: white blood
cell count, hemoglobin level, platelet count, neutrophil count,
neutrophil percent, lymphocyte count, lymphocyte percent,
C-reactive protein level, total bilirubin level, and creatine level.
Features in the lab testing modality all had continuous numeric
values, which were different from the 0-1 binary values in the
clinical feature modality. The distributions of these lab testing
features were compared across the 4 classes by using a 2-sided
Kolmogorov-Smirnov test. In addition, we also applied the
Kruskal-Wallis test for multiple comparisons across the 4 classes
for the top 3 most differentiating features, which were identified
later by an ML workflow. The Kolmogorov-Smirnov test was
applied during initial screening to investigate whether the values
of the same biomedical feature were distributed differently
between 2 classes. The nonparametric Kruskal-Wallis test was
chosen because it could rigorously compare classes and provide
robust results for nonnormal data. The test was able to
accommodate more than 2 classes (ie, multinomial classes) in
this study.

Each participant underwent CT scans of the thoracic region in
the radiology department. Toshiba Activion 16 multislice CT
scanners were used to perform CT scanning at around 120 kVp
with a tube current of 50 mA. We obtained 50 CT images per
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scan, and each image had the following characteristics: slice
thickness=2 mm, voxel size=1.5 mm, and image
resolution=512×512 pixels. Each participant underwent an
average of 50 CT scans. The total number of CT images

obtained in this study was over 30,000. CT images were
archived and presented as DICOM (Digital Imaging and
Communications in Medicine) images for DL.

Figure 1. Multimodal feature late fusion and multinomial classification workflow. A deep learning convolutional neural network was applied to
computed tomography images for representation learning and extracting 10 features from a customized fully connected layer. These 10 features were
merged with other modality data through feature late fusion. In the machine learning stage of the workflow, each of the 3 machine learning models (ie,
the support vector machine, k-nearest neighbor, and random forest models) worked independently to provide their respective outputs. kNN: k-nearest
neighbor; ML: machine learning; RF: random forest; SVM; support vector machine.

The Multinomial Classification Objective
The main research goal of this study was to accurately
differentiate between patients with severe COVID-19, patients
with nonsevere COVID-19, patients with non-COVID viral
infection, and noninfected healthy individuals from a total of
N participants all at once. Therefore, a formula was developed
to address the multinomial output classification problem. The
following equation uses 1 of the 4 mutually exclusive output
classes (ie, H=noninfected healthy, V=non-COVID viral
pneumonia, NS=nonsevere COVID-19, and S=severe
COVID-19) of an individual (ie, i), as follows:

f(Xc,Xl,Xm)i = {H,V,NS,S}, i = 1...N (1)

In this equation, the inputs were individuals’ (ie, i) multimodal
features of binary clinical information (ie, Xc), continuous lab
test results (ie, Xl), and CT imaging (ie, Xm). The major
advantage of our study was that we were able to classify 4
classes all at once, instead of developing several binary
classifiers in parallel.

The Hybrid DL-ML Approach: Feature Late Fusion
As stated earlier, the voxel level of CT imaging data does not
integrate well with low-dimensional clinical and lab testing
features. In this study, we proposed a feature late fusion
approach via the use of hybrid DL and ML models. Technically,
DL is a type of ML that uses deep neural networks (eg, CNNs

are a type of deep neural network). In this study, we colloquially
used the term “machine learning” to refer to more traditional,
non-DL types of ML (eg, RF ML), in contrast with DL that
focuses on deep neural networks. An important consideration
in the successful late fusion of multimodality features is the
representation learning of the high-dimensional CT features.

For each CT scan of each participant, we constructed a
customized residual neural network (ResNet) [36-39], which is
a specific architecture for DL CNNs. A ResNet is considered a
mature CNN architecture with relatively high performance
across different tasks. Although other CNN architectures exist
(eg, EfficientNet, VGG-16, etc), the focus of this study was not
to compare different architectures. Instead, we wanted to deliver
the best performance possible with a commonly used CNN
architecture (ie, ResNet) for image analysis.

By constructing a ResNet, we were able to transform the
voxel-level imaging data into a high-level representation with
significantly fewer features. After several convolution and max
pooling layers, the ResNet reached a fully connected (FC; ie,
FC1 layer) layer before the final output layer, thereby enabling
the delivery of actual classifications. In the commonly used
ResNet architecture, the FC layer is a 1×512 vector, which is
relatively closer in dimensionality to clinical information (ie,
1×23 vector) and lab testing (ie, 1×10 vector) feature modalities.
However, the original FC layer from the ResNet was still much
larger than the other 2 modalities. Therefore, we added another
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FC layer (ie, FC2 layer) after the FC1 layer, but before the final
output layer. In this study, the FC2 layer was set to have a 1×10
vector dimension (ie, 10 elements in the vector) to match the
dimensionality of the other 2 feature modalities.
Computationally, the FC2 layer served as the low-dimensional,
high-level representation of the original CT scan data. The
distributions of the 10 features extracted from the ResNet in the
FC2 layer were compared across the 4 classes with the
Kolmogorov-Smirnov test. The technical details of this
customized ResNet architecture are provided in Multimedia
Appendix 2.

Once low-dimensional high-level features were extracted from
CT data via the ResNet CNN, we performed multimodal feature
fusion. The clinical information, lab testing, and FC2 layer
features of each participant (ie, i) were combined into a single
1× 43 (ie, 1×[23+10+10]) row vector. The true values of the
output were the true observed classes of the participants.
Technically, the model would try to predict the outcome as
accurately as it could, based on the observed classes.

The Hybrid DL-ML Approach: Modeling
After deriving the feature matrix, we applied ML models for
the multinomial classification task. In this study, 3 different
types of commonly used ML models were considered, as
follows: the RF, SVM, and kNN models. An RF model is a
decision-tree–based ML model, and the number of tree
hyperparameters was set at 10, which is a relatively small
number compared to the number of input features needed to
avoid potential model overfitting. Other RF hyperparameters
in this study included the Gini impurity score to determine tree
split, at least 2 samples to split an internal tree, and at least 1
sample at a leaf node. All default hyperparameter settings,
including those of the SVM and RF models, were based on the
scikit-learn library in Python. An SVM model is a model of
maximum hyperplane and L-2 penalty; radial basis function
kernels and a gamma value of 1/43 (ie, the inverse of the total
number of features) were used as hyperparameter values in this
study. kNN is a nonparametric instance-based model; the
following hyperparameter values were used in this study: k=5,
uniform weights, tree leaf size=30, and p=2. These 3 models
are technically distinct types of ML models. We aimed to
investigate whether specific types of ML models and multimodal
feature fusion would contribute to developing an accurate
COVID-19 classifier for clinical decision support.

We evaluated each respective ML model with 100 independent
runs. Each run used a different randomly selected dataset
comprised of 80% of the original data for training, and the
remaining 20% of data were used to test and validate the model.
Performing multiple runs instead of a single run revealed how
robust the model was, despite system stochasticity. The
80%-20% split of the original data for separate training and
testing sets also ensured that potential model overfitting and
increased model generalizability could be avoided. In addition,
RF models use bagging for internal validation based on
out-of-bag errors (ie, how the “tree” would split out in the
“forest” model).

After each run, important ML performance metrics, including
accuracy, sensitivity, precision, and F1 score, were computed

for the test set. We reported the overall performance of the ML
models first. These different metrics evaluated ML models based
on different aspects. In this study, we also considered 3 different
approaches for calculating the overall performance of
multinomial outputs, as follows: a micro approach (ie, the
one-vs-all approach), a macro approach (ie, unweighted
averages; each of the 4 classes were given the same 25%
weights), and a weighted average approach based on the
percentage of each class in the entire sample.

In addition, because the output in this study was multinomial
instead of binary, each class had its own performance metrics.
We aggregated these performance metrics across 100
independent runs, determined each metric’s distribution, and
evaluated model robustness based on these distributions. If ML
performance metrics in the testing set had a small variation (ie,
small standard errors), then the model was considered robust
against model input changes, thereby allowing it to reveal the
intrinsic pattern of the data. This was because in each run, a
different randomly selected dataset (ie, 80% of the original data)
was selected to train the model.

An advantage that the RF model had over SVM and kNN models
was that it had relatively clearer interpretability, especially when
interpreting feature importance. After developing the RF model
based on the training set, we were able to rank the importance
of input features based on their corresponding Gini impurity
score from the RF model [40,41]. It should be noted that only
the training set was used to compute Gini impurity, not the test
set. We then assessed the top contributing features’ clinical
relevance to COVID-19.

We also developed and evaluated the performance of
single-modality (ie, using clinical information, lab testing, and
CT features individually) ML models. The performance results
were used as baseline conditions. The models’ performance
results were then compared to the multimodal classifications to
demonstrate the potential performance gain of the feature fusion
of different feature modalities. In this study, each individual
ML model (ie, the RF, SVM, and kNN models) was
independently evaluated, and the respective results were
reported, without combining the prediction of the final output
class.

The deep learning CNN and late fusion machine learning codes
were developed in Python with various supporting packages,
such as scikit-learn.

Results

Clinical Characterization of the 4 Classes
Detailed demographic, clinical, and lab testing results among
four classes were provided in supplementary Table S1. We
compared clinical features across the 4 classes. The prevalence
of each feature in all 4 classes is shown in Multimedia Appendix
3. In general, most clinical features varied substantially between
the nonsevere COVID-19, severe COVID-19, and non-COVID
viral pneumonia classes. It should be noted that all symptom
feature values, except gender and age group (ie, >50 years)
values, in the noninfected healthy class were set to 0, so that
they could be used as a reference. Based on the 2-sample z-test
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of proportions, the nonsevere COVID-19 and severe COVID-19
classes differed significantly (P<.05) in 10 out of 22 symptom
features, including comorbidities such as hypertension (P<.001),
diabetes (P<.001), cardiovascular diseases (P<.001), and chronic
obstructive pulmonary disease (P=.005). The nonsevere
COVID-19 and non-COVID viral infection classes differed
significantly in 12 features, including smoking habit (P<.001),
fever (P<.001), and sore throat (P=.002). However, the
nonsevere COVID-19 and non-COVID viral infection classes
did not differ significantly in terms of comorbidities. The severe
COVID-19 and non-COVID viral infection classes differed
significantly in 16 out of 22 features, making these 2 classes
the most distinct in terms of symptoms. These results showed
that the prevalence of clinical features differed substantially
between the classes. The complete z-test results for each clinical
feature in each pair of classes are provided in Multimedia
Appendix 1.

In addition, based on the ML RF analysis, the top 3
differentiating clinical features were fever, coughing, and old
age (ie, >50 years). For fever and coughing, we used the
non-COVID viral infection class as the reference and
constructed 2×2 contingency tables for the nonsevere COVID-19
and non-COVID viral infection classes, and the severe
COVID-19 and non-COVID viral infection classes. The odds

ratios and 95% confidence intervals for the forest plot are shown
in Figure 2. Compared to patients in the non-COVID viral
infection class, patients in both the nonsevere and severe
COVID-19 classes were more likely to develop fever (ie,
>37°C). In addition, based on the forest plot, patients with severe
COVID-19 also experienced more fevers than patients with
nonsevere COVID-19. Therefore, fever was one of the major
determining factors of differentiating between multiple classes.
Furthermore, patients with nonsevere COVID-19 (P<.001) and
patients with severe COVID-19 (P<.001) reported significantly
less coughing than the patients with non-COVID viral infection
(Figure 2). There were no statistically significant differences
between the nonsevere and severe COVID-19 classes in terms
of clinical features. With regard to the old age feature, we
included the severe COVID-19, nonsevere COVID-19, and
noninfected healthy classes in the analysis because the
prevalence of old age in the noninfected healthy class was not
0. The forest plot for this analysis is shown in Figure 2. Patients
with severe COVID-19 were significantly older than patients
with non-COVID viral infection, while patients with nonsevere
COVID-19 and noninfected healthy individuals were younger
than patients with non-COVID viral infection. These differences
in clinical features between the 4 classes could pave the way
toward a data-driven ML model.

Figure 2. Forest plot of the top 3 differentiating clinical features. Viral pneumonia was used as the reference class during comparisons and the calculation
of odds ratios. The noninfected healthy class had no individuals with fevers or coughs. Therefore, these individuals were not included in the first 2
graphs (ie, the left and middle graphs). The error bars represent variation in estimated odds ratios, not the original feature variations.

Differences in Lab Testing Features Between the 4
Classes
With regard to the continuous lab testing features, we calculated
and compared the exact distributions among the 4 classes. The
boxplots for each lab testing feature across the 4 classes are
provided in Multimedia Appendix 4. In general, the 4 classes
differed substantially across many lab testing features. Based
on the 2-sided Kolmogorov-Smirnov test results, the nonsevere
and severe COVID-19 classes were only similar in hemoglobin
level (HGB P=.74) and platelet count (PLT P=.61). These 2
classes differed significantly in the remaining 8 lab testing
features (WBC P=.02; NE% P<.001; NE P<.001; LY% P<.001;
LY P=.002; CRP P<.001; TBIL P=.001; CREA P<.001;) . In
other words, the lab testing features of patients with severe or
nonsevere COVID-19 had distinct distributions. Similarly, the
nonsevere COVID-19 and noninfected healthy classes were
only similar in creatine level; the nonsevere COVID-19 and
non-COVID viral infection classes were only similar in
hemoglobin level (P=.65), platelet count (P=.14), and total

bilirubin level (P=.09); the severe COVID-19 and noninfected
healthy classes were only similar in total bilirubin level (P=.24);
the severe COVID-19 and non-COVID viral infection classes
were only similar in hemoglobin level (P=.11) and neutrophil
count (P=.08); and the non-COVID viral infection and
noninfected healthy classes were only similar in white blood
cell count (P=.70). The complete Kolmogorov-Smirnov test
results for each lab testing feature in each pair of classes are
provided in Multimedia Appendix 1.

Based on the RF model, the 3 most influential differentiating
features were C-reactive protein level, hemoglobin level, and
neutrophil count. The distribution of C-reactive protein level
among the 4 classes are provided in the boxplot in Figure 3. In
addition to the Kolmogorov-Smirnov test, which did not account
for multiple comparisons between classes, further pairwise
comparisons were performed with the nonparametric
Kruskal-Wallis H test. Each of the 6 pairs used in the
Kruskal-Wallis H test, as well as the overall Kruskal-Wallis
test, showed significant differences between each class. The
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distribution of hemoglobin levels is shown in Figure 3. Although
the noninfected healthy class differed significantly from the
nonsevere COVID-19, severe COVID-19, and non-COVID
viral infection class in terms of hemoglobin level, the other 3
pairs did not show statistically significant differences in lab

testing features. The distribution of neutrophil count is shown
in Figure 3. All pairwise comparisons and the overall
Kruskal-Wallis test showed significant differences between
classes in terms of lab testing features.

Figure 3. Multiple comparisons of the top differentiating lab testing features. hs-CRP: high-sensitivity C-reactive protein.

CT Differences Between the 4 Classes Based on
High-Level CNN Features
We analyzed the FC2 layer features from the ResNet CNN in
relation to the 4 classes. The corresponding boxplot is shown
in Multimedia Appendix 5. The 2-sided Kolmogorov-Smirnov
tests showed significant differences between every pair of
classes in almost all 10 CT features in the FC2 layer. The only
exceptions were feature 6 (ie, CNN6) between the severe

COVID-19 and non-COVID viral infection classes and features
1, 4, and 5 between the noninfected healthy and non-COVID
viral infection classes (Multimedia Appendix 6). Based on the
RF model results, features 1, 6, and 10 were the 3 most critical
features in the FC2 layer with regard to multinomial
classification. Further Kruskal-Wallis tests were performed for
these 3 features, and the results are shown in Figure 4. These
results showed that developing an accurate classifier based on
the CNN representation of high-level features is possible.

Figure 4. Multiple comparisons of the top differentiating CT features in the CNN. CNN: convolutional neural network; CT: computed tomography.

Accurate Multimodal Model for COVID-19
Multinomial Classification
We developed and validated 3 different types of ML models,
as follows: the kNN, RF, and SVM models. With regard to
training data, the average overall multimodal classification
accuracy of the kNN, RF, and SVM models was 96.2% (SE
0.5%), 99.8% (SE 0.3%), and 99.2% (SE 0.2%), respectively.
With regard to test data, the average overall multimodal
classification accuracy of the 3 models was 95.4% (SE 0.2%),
96.9% (SE 0.2%), and 97.7% (SE 0.1%), respectively (Figure
5). These 3 models also achieved consistent and high

performance across all 4 classes based on the different
approaches for calculating the overall performance, including
the micro approach (ie, the one-vs-all approach), macro
approach (ie, unweighted averages across all 4 classes), and
weighted average approach (ie, based on percentage of each
class in the entire sample). It should be noted that overall
accuracy did not depend on sample size, so there was only 1
approach for calculating accuracy. The F1 score, sensitivity,
and precision were quantified via each approach (ie, the micro,
macro, and weighted average approaches). The F1 scores that
were calculated using the macro approach were 95.9% (SE
0.1%), 98.8% (SE<0.1%), and 99.1% (SE<0.1%) for the kNN,
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RF, and SVM models, respectively. The F1 scores that were
calculated using the micro approach was 96.2% (SE<0.1%),
98.8% (SE<0.1%), and 99.2% (SE<0.1%) for the kNN, RF, and
SVM models, respectively. The F1 scores calculated using the
weighted average approach was 96.2% (SE<0.1%), 98.9%
(SE<0.1%), and 99.2% (SE<0.1%) for the kNN, RF, and SVM
models, respectively. The differences in F1 scores based on the
different approaches (ie, the micro, macro, and weighted average

approaches) were minimal (Figure 5). In addition, the
differences in F1 scores across the different ML models (Figure
5) were also not significant. Similarly, model sensitivity and
precision were all >95% for all ML model types and all
approaches for calculating the performance metric. The complete
overall performance metrics for the 3 different evaluation
approaches and 3 ML models are presented in Multimedia
Appendix 7.

Figure 5. The overall performance of machine learning models across the 4 classes. Model performance was based on the prediction of unseen testing
data (ie, the 20% of the original data), not on the 80% of the original data that were used to develop the model. kNN: k nearest neighbor; RF: random
forest; SVM: support vector machine.

After examining the performance metrics across the 3 different
types of ML models, it was clear that the SVM model
consistently had the best performance with regard to all metrics,
followed by the RF model, though the difference was almost
indistinguishable. The kNN model had about a 1%-3%
deficiency in performance compared to the other 2 models. It
should be noted that the kNN model also had an accuracy, F1

score, sensitivity, and precision of at least 95%. Therefore, the
kNN model was only bested by 2 even more competitive models.
Furthermore, the relatively small standard errors demonstrated
that the ML models were robust against different randomly
sampled inputs (Multimedia Appendix 7).
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With regard to each individual class, the noninfected healthy
class had a 95.2%-99.9% prediction accuracy, 95.5%-98.4%
F1 score, 91.4%-97.3% sensitivity, and 97.5%-99.9% precision
in the testing set, depending on the specific ML model used. It
should be noted these are ranges, not standard errors, as shown
in Figure 6. The approach to computing class-specific model
performance was the one-vs-all approach. With regard to the
nonsevere COVID-19 class, ML models achieved a
95.8%-97.4% accuracy, 97.8%-98.6% F1 score, 99.8%-99.9%
sensitivity, and 95.8%-97.4% precision. With regard to the
severe COVID-19 class, ML models achieved a 92.4%-99.0%
accuracy, 93.4%-96.6% F1 score, 94.3%-94.7% sensitivity, and
92.4%-99.0% precision. With regard to the non-COVID viral
pneumonia infection class, ML models achieved a 90.6%-95.0%

accuracy, 92.9%-96.8% F1 score, 95.4%-98.8% sensitivity, and
90.6%-95.0% precision. The non-COVID viral infection class
was relatively more challenging to differentiate from the other
3 classes, but the difference was not substantial. Therefore, the
potential clinical use of the ML models is still justified. Similar
to the results of overall model performance (Figure 5),
class-specific performance metrics also had relatively small
standard errors, indicating that the training of models was
consistent and robust against randomly selected inputs. Except
for a few classes and model performance metrics, the SVM
model performed slightly better than the RF and kNN models.
The complete class-specific results are shown in Figure 6. The
complete class-specific performance metrics across the 3 ML
models are shown in Multimedia Appendix 8.

Figure 6. Class-specific performance of machine learning models. kNN: k nearest neighbor; RF: random forest; SVM: support vector machine.

All 3 ML multinomial classification models, which were based
on different computational techniques, had consistently high

overall performance (Figure 5, Table S3) and high performance
for each specific class (Figure 6, Multimedia Appendix 8). Of
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the 3 types of ML models developed and evaluated, the SVM
model was marginally better than the RF and kNN models. As
a result, the ML multinomial classification models were able
to accurately differentiate between the 4 classes all at once,
provide accurate and detailed class-specific predictions, and act
as reliable decision-making tools for clinical diagnostic support
and the triaging of patients with suspected COVID-19, who
might or might not be infected with a clinically similar type of
virus other than SARS-CoV-2.

In addition to the multimodal classification that incorporated
all 3 different feature sets (ie, binary clinical, continuous lab
testing, and CT features in the ResNet CNN; Figure 1), we also
tested how each specific feature modality performed without
feature fusion (ie, unimodality). By using each of the 23
symptom features alone, the RF, kNN, and SVM models
achieved an average accuracy of 74.5% (SE 0.3%), 73.3% (SE
0.3%), and 75.5% (SE 0.3%) with the testing set, respectively.
By using each of the 10 lab testing features alone, the RF, kNN,
and SVM models achieved an average accuracy of 67.7% (SE
0.4%), 56.2% (SE 0.4%), and 59.5% (SE 0.3%) with the testing
set, respectively.

The overall accuracy of the CNN with CT scan data alone was
90.8% (SE 0.3%) across the 4 classes. With regard to each pair
of classes, the CNN was able to accurately differentiate between
the severe COVID-19 and noninfected healthy classes with
99.9% (SE<0.1%) accuracy, the non-COVID viral infection
and noninfected healthy classes with 99.2% (SE 0.1%) accuracy,
the severe COVID-19 and nonsevere COVID-19 classes with
95.4% (SE 0.1%) accuracy, and the non-severe COVID-19 and
noninfected healthy classes with 90.3% (SE 0.2%) accuracy.
However, by using CT features alone (ie, without feature late
fusion), the CNN could only differentiate between the
non-COVID viral infection and nonsevere COVID-19 classes
with 84.9% (SE 0.2%) accuracy, and the non-COVID viral
infection and severe COVID-19 with 74.2% (SE 0.2%) accuracy
in the testing set.

Substantial performance boosts were gained by combining input
features from the different feature modalities and performing
multimodal classification, instead of using a single-feature
modality alone. A 15%-42% increase in prediction accuracy
with the testing set was achieved compared to the
single-modality models. It should be noted that the RF, SVM,
and kNN models were technically distinct ML models. However,
the performance differences between these 3 distinct ML models
were marginal, based on the multimodal features. Therefore,
we concluded that the high performance in COVID-19
classification in this study (Figures 5 and 6) was largely due to
multimodal feature late fusion, not due to the specific type of
ML model.

Gini impurity scores derived from the RF model identified major
contributing factors that differentiated the 4 classes. With regard
to clinical feature modality, the top 3 most influential features
were fever, coughing, and old age (ie, >50 years). The forest
plots of odds ratios for these features are provided in Figure 2,
which shows the exact influence that these features had across
classes. With regard to lab testing features, the top 3 most
influential features, in descending order, were high-sensitivity

C-reactive protein level, hemoglobin level, and absolute
neutrophil count. The distribution of these 3 features across the
4 classes and the results of multiple comparisons are shown in
Figure 3. Although high-sensitivity C-reactive protein level is
a known factor for COVID-19 severity and prognosis [42], we
showed that it could also differentiate patients with COVID-19
from patients with non-COVID viral pneumonia and healthy
individuals. In addition, we learned that different hemoglobin
and neutrophil levels were novel features for accurately
distinguishing between patients with clinical COVID-19,
patients with non-COVID viral pneumonia, and healthy
individuals. These results shed light on which set of clinical
and lab testing features are the most critical in identifying
COVID-19, which will help guide clinical practice. With regard
to the CT features extracted from the CNN, the RF models
identified the top 3 influential features, which were CT features
6, 10, and 1 in the 10-element FC2 layer (Figure 4). Although
the actual clinical interpretation of CT features was not clear at
the time of this study due to the nature of DL models, including
the ResNet CNN applied in this study, these features showed
promise in accurately differentiating between multinomial
classes all at once via CT scans, instead of training several
CNNs for binary classifications between each class pair. Future
research might reveal the clinical relevance of these features in
a more interpretable way with COVID-19 pathology data.

Discussion

Principal Findings
In this study, we provided a more holistic perspective to
characterizing COVID-19 and accurately differentiating
COVID-19, especially nonsevere COVID-19, from other
clinically similar viral pneumonias and noninfections. The
human body is an integrated and systemic entity. When the
body is infected by pathogens, clinical consequences can be
detected not only with biomedical imaging features (eg, CT
scan features), but also with other features, such as lab testing
results for blood biochemistry [20,43]. A single-feature modality
might not reveal the full clinical consequences and provide the
best predictive power for COVID-19 detection and
classification, but the synergy of multiple modalities exceeds
the power of any single modality. Currently, multimodality
medical data can be effectively stored, transferred, and
exchanged with electronic health record systems. The economic
cost of acquiring clinical and lab testing modality data are lower
than the economic cost of acquiring current confirmatory
qRT-PCR data. Availability and readiness are also advantages
that these modalities have over qRT-PCR, which currently has
a long turnaround time. This study harnessed the power of
multimodality medical information for an emerging pandemic,
for which confirmatory molecular tests have reliability and
availability issues across time and space. This study’s novel
analytical framework can be used to prepare for incoming waves
of disease epidemics in the future, when clinicians’ experience
and understanding with the disease may vary substantially.

Upon the further examination of comprehensive patient
symptom data, we believed that our current understanding and
definition of asymptomatic COVID-19 would be inadequate.
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Of the 214 patients with nonsevere COVID-19, 60 (28%) had
no fever (ie, <37°C), 78 (36.4%) did not experience coughing,
141 (65.9%) did not feel chest congestion and pain, and 172
(80.4%) did not report having a sore throat upon admission.
Additionally, there were 10 (4.7%) patients with confirmed
COVID-19 in the nonsevere COVID-19 class who did not
present with any of these common symptoms and could be
considered patients with asymptomatic COVID-19. Even after
considering headache, muscle pain, and fatigue, there were still
4 (1.9%) patients who did not show symptoms related to typical
respiratory diseases. Of these 4 patients, 1 (25%) had diarrhea
upon admission. Therefore, using symptom features alone is
not sufficient for detecting and differentiating patients with
asymptomatic COVID-19. Nevertheless, all asymptomatic
patients were successfully detected via our model, and no false
negatives were observed. This finding shows the incompleteness
of the current definition and understanding of asymptomatic
COVID-19, and the potential power that nontraditional
analytical tools have for identifying these patients.

Based on this perspective, we developed a comprehensive
end-to-end analytical framework that integrated both
high-dimensional biomedical imaging data and low-dimensional
clinical and lab testing data. CT scans were first processed with
DL CNNs. We developed a customized ResNet CNN
architecture with 2 FC layers before the final output layer. We
then used the second FC layer as the low-dimensional
representation of the original high-dimensional CT data. In other
words, a CNN was applied first for dimensional reduction. The
feature fusion of CT (ie, represented by the FC layers), clinical,
and lab testing feature modalities demonstrated feasibility and
high accuracy in differentiating between the nonsevere
COVID-19, severe COVID-19, non-COVID viral pneumonia,
and noninfected healthy classes all at once. The consistent high
performance across the 3 different types of ML models (ie, the
RF, SVM, and kNN models), as well as the substantial
performance boost from using a single modality, further
unleashed the hidden power of feature fusion for different
biomedical feature modalities. Compared to the accuracy of
using any single-feature modality alone (60%-80%), the feature
fusion of multimodal biomedical data substantially boosted
prediction accuracy (>97%) in the testing set.

We compared the performance of our model, which was based
on the multimodal biomedical data of 683 participants, against
the performance of state-of-the-art benchmarks in COVID-19
classification studies. A DL study that involved thoracic CT
scans for 87 participants claimed to have >99% accuracy [37],
and another study with 200 participants claimed to have
86%-99% accuracy in differentiating between individuals with
and without COVID-19 [36]. Another study reported a 95%
area under the curve for differentiating between COVID-19 and
other community-acquired pneumonia diseases in 3322
participants [39]. Furthermore, a 92% area under the curve was
achieved in a study of 905 participants with and without
COVID-19 by using multimodal CT, clinical, and lab testing
information [44]. A study that used CT scans to differentiate
between 3 multinomial classes (ie, the COVID [no clinical state
information], non-COVID viral pneumonia, and healthy classes)
achieved an 89%-96% accuracy based on a total of 230

participants [38]. In addition, professionally trained human
radiologists have achieved a 60%-83% accuracy in
differentiating COVID-19 from other types of
community-acquired pneumonia diseases [45]. Therefore, the
performance of our model is on par with, or superior to, the
performance of these benchmark models and exceeds the
performance of human radiologists. Moreover, previous studies
have generally focused on differentiating patients with
COVID-19 from individuals without COVID-19 or patients
with other types of pneumonia. In other words, the current
COVID-19 classification models are mostly binary classifiers.
Our study not only detected COVID-19 in healthy individuals,
but also addressed the more important clinical issue of
differentiating COVID-19 from other viral infections. Our study
also distinguished between different COVID-19 clinical states
(ie, severe vs nonsevere). Therefore, our study provides a novel
and effective breakthrough for clinical applications, not just
incremental improvements for existing ML models.

The success of this study sheds light on many other disease
systems that use multimodal biomedical data inputs.
Specifically, the feature fusion of high- and low-dimensional
biomedical data modalities can be applied to more feature
modalities, such as individual-level high-dimensional “-omics”
data. Currently, a study on the genome-wide association between
individual single nucleotide polymorphisms and COVID-19
susceptibility has revealed several target loci that are involved
in COVID-19 pathology. Following a similar approach, we may
also conduct another study, in which we first carry out the
dimensional reduction of “-omics” data, and then perform data
fusion with other low-dimensional modalities [46-48].

With regard to classification, this study adopts a hybrid of DL
(ie, CNN) and ML (ie, RF, SVM, and kNN ML) models via
feature late fusion. By using various data-driven methods, we
avoided the potential cause-effect pitfall and focused directly
on the more important clinical question. For instance, many
comorbidities, such as diabetes [49,50] and cardiovascular
diseases [51,52], are strongly associated with the occurrence of
severe COVID-19. It is still unclear whether diabetes or reduced
kidney function causes severe COVID-19, whether
SARS-CoV-2 infection worsens existing diabetes, or whether
diabetes and COVID-19 actually mutually influence each other
and result in undesirable clinical prognoses. Future studies can
use data-driven methods to further investigate the causality of
comorbidities and COVID-19.

There are some limitations in this study and potential
improvements for future research. For instance, to perform
multinomial classification across the 4 classes, we had to discard
a lot of features, especially those in the lab testing modality.
The non-COVID viral pneumonia class used a different
electronic health record system that collected different lab
testing features from participants in Wuhan (ie, participants in
the severe COVID-19, nonsevere COVID-19, and noninfected
healthy classes). Many lab testing features were able to
accurately differentiate between severe and nonsevere
COVID-19 in our preliminary study, such as high-sensitivity
Troponin I level, D-dimer level, and lactate dehydrogenase
level. However, these features were not present, or largely
missing, in the non-COVID viral infection class. Eventually,
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only 10 lab testing features were included, which is small
compared to the average of 20-30 features that are usually
available in different electronic health record systems. This is
probably the reason why the lab testing feature modality alone
was not able to provide accurate classifications (ie, the highest
accuracy achieved was 67.7% with the RF model) across all 4
classes in this study. In addition, although we had a reasonably
large participant pool of 638 individuals, more participants are
needed to further validate the findings of this study.

Another potential practical pitfall was that not all feature
modalities were readily available at the same time for feature
fusion and multimodal classification. With regard to
single-modality features, CT had the best performance in
generating accurate predictions. However, CT is usually
performed in the radiology department. Lab testing may be
outsourced, and obtaining lab test results takes time.
Consequently, there might be lags in data availability among
different feature modalities. We believe that when multimodal
features are not available all at once, single-modality features
can be used to perform first-round triaging. Multimodal features
are needed when accuracy is a must.

It should be noted that although the participants in this study
came from different health care facilities, the majority of them
were of Chinese Han ethnicity. The biomedical features among
the different COVID-19 and non-COVID classes may be

different in people of other races and ethnicities, or people with
other confounding factors. The cross-validation of the findings
in this study based on other ethnicity groups and larger sample
sizes is needed for future research.

This study used a common CNN architecture (ie, a ResNet).
The 10 CT features extracted from the FC2 layer of the ResNet
were used to match the dimensionality of the other 2
low-dimensional feature modalities. Future research on different
disease systems can explore and compare other architectures
that use different biomedical imaging data (eg, CT, X-ray, and
histology data). The actual dimensionality of the FC2 layer can
also be optimized to deliver better performance. Finally, this
study presented the results of individual classification models.
To achieve even higher performance, the combination of
multiple models can be explored in future studies.

Conclusion
In summary, different biomedical information across different
modalities, such as clinical information, lab testing results, and
CT scans, work synergistically to reveal the multifaceted nature
of COVID-19 pathology. Our ML and DL models provided a
feasible technical method for working directly with multimodal
biomedical data and differentiating between patients with severe
COVID-19, patients with nonsevere COVID-19, patients with
non-COVID viral infection, and noninfected healthy individuals
at the same time, with >97% accuracy.
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ResNet: residual neural network
SARS: severe acute respiratory syndrome
SVM: support vector machine
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